Careers360 Logo
RD Sharma Class 12 Exercise 10.5 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.5 Differentiation Solutions Maths - Download PDF Free Online

Updated on Jan 20, 2022 05:35 PM IST

RD Sharma books are well known for their accuracy, subject knowledge and exam-oriented questions. There is always a high possibility that the questions in CBSE exams might appear from this book as many schools refer to them for setting up question papers.
RD Sharma Class 12th Exercise 10.5 Is designed specifically for students to prepare for exams. It is created by a team of subject experts that have years of experience with exam-oriented materials. These solutions will help students get a better understanding of the subject and score good marks in exams.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.5
  3. Differentiation exercise 10.5 question 30
  4. Differentiation exercise 10.5 question 33
  5. Differentiation exercise 10.5 question 55
  6. Differentiation exercise 10.5 question 58
  7. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.5

Differentiation exercise 10.5 question 1

Answer: χ1x(1lnx)x2
Hint: Differentiate by function xn
Given: x1x
Solution: Let,y=x1x
Taking log on both sides,
logy=logx1xlogy=1xlogx [logab=bloga]
Differentiate both sides,
1ydydx=1xddx(logx)+logxddx(x1) [using product rule]
1ydydx=1x×1x+(logx)×(1x2)1ydydx=1x2logxx2
1ydydx=(1logx)x2dydx=y(1logx)x2
put value of y=x1x
dydx=x1x[(1logx)x2]

Differentiation exercise 10.5 question 2

Answer: xsinx(cosxlnx+(sinxx))
Hint: Differentiate by xn
Given: xSinx
Solution: Let y=xSinx
Take natural log to both sides
lny=lnxsinxlny=sinxlnx [logab=bloga]

Diff both side w.r.t x

ddx(lny)=ddx(sinxlnx)
Using implicit diff on LHS, product rule on RHS
1y(dydx)=cosxlnx+sinxxdydx=y(cosxlnx+sinxx)
Substituting back for y
dydx=xsinx(cosxlnx+sinxx)

Differentiation exercise 10.5 question 3

Answer: (1+cosx)x[(xsinx1+cosx)+log(1+cosx)
Hint: Differentiate by cosnx
Given: (1+cosx)x
Solution:Let y=(1+cosx)x ...........(i)
Taking log on both the sides,
logy=log(1+cosx)xlogy=xlog(1+cosx)
Differentiating with respect to x,
1ydydx=xddxlog(1+cosx)+log(1+cosx)ddx(x) [Using product rule]
1ydydx=x1(1+cosx)ddx(1+cosx)+log(1+cosx)(1)1ydydx=x(1+cosx)(0sinx)+log(1+cosx)
1ydydx=log(1+cosx)xsomx(1+cosx)dydx=y[log(1+cosx)xsinx1+cosx]
dydx=(1+cosx)x[log(1+cosx)xsinx(1+cosx)] [Using equation (i)]

Differentiation exercise 10.5 question 4

Answer: xcos1x(cos1xxlogx1x2)
Hint: Differentiate by function xnx
Given: xcos1x
Solution: Let y=xcos1x
y=ecos1xlogx [ab=eblogx]
Differentiate w.r.t x
ecos1xlogx(ddx)cos1logx
xcos1x(cos1x(ddx)logx+logxddxcos1x)
xcos1x[cos1x1x+logx(11x2)]
xcos1x[cos1xxlogx1x2]

Differentiation exercise 10.5 question 5

Answer: logxx1(1+logxloglogx)
Hint: Differentiate by logx(x)
Given: (logx)x
Solution: Let y=(logx)x
Taking log both sides
logy=xlog(logx)
Differentiate w.r.t x,
1ydydx=xddx{log(logx)}+log(logx)(ddx)(x)
1ydydx=x1logxddx(logx)+log(logx)(1)
1ydydx=xlogx(1x)+log(logx)1ydydx=1logx+log(logx)dydx=y[1logx+log(logx)]
Now, put value of y=(logx)x
dydx=(logx)x[1logx+log(logx)]

Differentiation exercise 10.5 question 6

Answer: (logx)cosx(1+logxloglogx)
Hint: Diff. by applying xlogx
Given: (logx)cosx
Solution: Let y=(logx)cosx
Taking log both sides
logy=cosxlog(logx) [aslogab=bloga]
Differentiate w.r.t x
1ydydx=d(cosxlog(logx)dx
Using product of rule cosxlog(logx)
(uv)=uv+vu1ydydx=d(cosx)dxlog(logx)+d(log(logx)dx)cosx
1ydydx=sinxlog(logx)cosx1ydydx=sinxlog(logx)+1logx1xcosx
1ydydx=sinxlog(logx)+cosxxlogxdydx=y(sinxlog(logx)+cosxxlogx)
dydx=(logx)cosx(sinxlog(logx)+cosxxlogx)
dydx=(logx)cosx(cosxxlogxsinx.log(logx))

Differentiation exercise 10.5 question 7

Answer: (sin)cosx(cosxcotxsinlog(sinx)

Given: (sinx)cosx
Solution: Let y=(sinx)cosx
Taking log both sides
logy=log(sinx)cosx [logmn=nlogm]
logy=cosxlog(sinx)
Differentiate w.r.t x,
1ydydx=cosxddx(log(sinx)+log(sinx)ddx(cosx))
1ydydx=cosx1sinxcosx+log(sinx)(sinx)
dydx=y(cosxcotxsin(log(sinx))(sinx)cosx(cosxcotxsinlog(sinx))

Differentiation exercise 10.5 question 8

Answer: exlogx(1+logx)
Hint: Differentiate by applying ex
Given: exlogx
Solution: Let y=exlogx
y=xx [ab=ebloga]
Taking log on both sides
logy=logexlogxlogy=xlogx
Differentiate w.r.t x,
1y=xddx(logx)+logxddxx [ use multiplication rule]
1ydydx=x1x+logx.1dydx=y+ylogx
dydx=y(1+logx)=exlogx(1+logx)dydx=y(1+logx)
=exlogx(1+logx)

Differentiation exercise 10.5 question 9

Answer: (sinx)logxlog(sinx)x+logx+sinx
Hint: Diff by sinxx
Given: (sinx)logx
Solution:
Let y=(sinx)logx ........(i)
taking log on both sides,
logy=log(sinx)logxlogy=logxlog(sinx) [ Using logab=bloga]
Differentiate w.r.t x, using product rule and chain rule,
1ydydx=logxddx(logsinx)+logsinxddx(logx)
=logx(1sinx)ddx(sinx)+logsinx(1x)
=logxsinx×cosx+logsinxx
1ydydx=logxcotx+logsinxxdydx=y[logxcotx+logsinxx]dydx=(sinx)logx[logxcotx+logsinxx] [Using equaton (i)]

Differentiation exercise 10.5 question 10

Answer: 10logsinx×log10×cotx
Hint: Diff by 10x
Given: 10logsinx
Solution: Let y=10logsinx .........(1)
Taking log both sides
logy=log10logsinxlogy=logsinxlog10
Differentiate w.r.t x,
1ydydx=log10ddxlogsinx1ydydx=log101sinxddxsinx
1ydydx=log10(1sinx)cosxdydx=y(log10cotx)dydx=10logsinx×log10×cotx ......[Using (1)]

Differentiation exercise 10.5 question 11

Answer: (logx)logx(1x+log(logx)x)

Hint: Diff by (logx)logx
Given:(logx)logx
Solution: Let y=(logx)logx
Taking log on both sides
logy=log(logx)logxlogy=logxlog(logx) [log(ab)=bloga]
Differentiate w.r.t x,
1ydydx=d(logxlog(logx)dx
Use product rule
(uv)=uv+vu1ydydx=d(logx)dxlog(logx)+d(log(logx)dxlogx
1ydydx=1xlog(logx)+1logx+d(logx)dxlogx1ydydx=1xlog(logx)+d(logx)dx
1ydydx=1xlog(logx)+1xdydx=y(1x+log(logx)x)dydx=(logx)logx(1x+log(logx)x)

Differentiation exercise 10.5 question 12

Answer: 1010x10x(log10)2
Hint: Diff by (10)10x
Given: (10)10x
Solution: Let y=(10)10x
Taking log on both sides
logy=log10(10x)=10xlog10
Differentiate w.r.t x,
1ydydx=log10ddx10x=log10×10xlog10
dydx=y×10x×(log10)2=1010x10x(log10)2

Differentiation exercise 10.5 question 13

Answer: sinxx(logsinx+xcotx)
Hint: Diff equation by sinx
Given: sinxx
Solution: Let y=(sinx)x
Taking log on both sides
y=sinxxlogy=logsinxxlogy=xlogsinx1ydydx=logsinx+xcotxdydx=sinxx(logsinx+xcotx)

Differentiation exercise 10.5 question 14

Answer: (x1sin1x11x2)+(sinx)xlog(sinx)
Hint: Diff by using (sin1x)x
Given: (sin1x)x
Solution: Let y=(sin1x)x
Taking log on both sides
logy=xlog(sin1x)
Differentiate w.r.t x,
1ydydx=log(sin1x)+x1sin1x11x2dydx=y[log(sin1x)+x1sin1x11x2]
Now , put the value of , y=(sin1x)x
dydx=(sin1x)x[log(sin1x)+x1sin1x11x2]

Differentiation exercise 10.5 question 15

Answer: xsin1x[sin1xx+logx1x2]
Hint: Diff by xsin1x
Given:xsin1x
Solution: Let y=xsin1x
Taking log on both sides
1ydydx=sin1xlogx1ydydx=logx1x2+sin1xx
dydx=y[logx1x2+sin1xx]dydx=xsin1x[sin1xx+logx1x2]

Differentiation exercise 10.5 question 16

Answer: (tanx)1x(xcosecxsecx)ln(tan(x).1x2)
Hint: Diff by (tanx)1x
Given: (tanx)1x
Solution: Let y=(tanx)1x
Taking log on both sides
logy=log(tanx)1x1ydydx=1xlogtanx
1ydydx=1x2ln(tanx)+1x(1tanxsec2x)(1tanx=cotx)
So,
1ydydx=y(1x2ln(tanx+1xcosecxsecx)dydx=(tanx)1x(1x2lntanx)+1xcosecxsecxdydx=(tanx)1x[(xcosecxsecx)ln(tanx)1x2]
Differentiate w.r.t x,

Differentiation exercise 10.5 question 17

Answer: dydx=[tan1xx+logx1+x2]tan1x
Hint: Diff by xtan1x
Given: xtan1x
Solution: Let y=xtan1x
Taking log on both sides
logy=logxtan1x1ydydx=tan1x1x+logx11+x2
1ydydx=tan1xx+logx1+x2
dydx=(tan1xx+logx1+x2)ydydx=xtan1x[tan1xx+logx1+x2]

Differentiation exercise 10.5 question 18 (i)

Answer: xxx(logx+1+12x)
Hint:  Diff by xxx
Given: xxx
Solution:
Let, y=xxx
Taking log both side
logy=logxxx[logmn=logm+logn]
logy=logxx+logx
logy=xlogx+log(x)12
logy=(x+12)logx
ddxlogy=ddx(x+12)logx
1ydydx=ddx(x+12)logx+(x+12)ddxlogxdydx=xxx(logx+1+12x)

Differentiation exercise 10.5 question 18 (ii)

Answer:xsinxcosx[sinxcosxx+logx(sinx+cosx)]+4x(x2+1)2
Hint:  Diff by xn
Given: y=xsinxcosx+x21x2+1
Solution:
y=u+v
dydx=dudx+dvdx .........(1)
u=xsinxcosx
Take log
logu=logxsinxcosxlogu=(sinxcosx)logx1duududx=(sinxcosx)1x+logx(cosx+sinx)
dudx=[sinxcosxx+logx(sinx+cosx)xsinxcosxv=x21x2+1
logv=log(x21x2+1)=log(x21)log(x2+1)
1vdvdx=1x21(2x)1x2+1(2x)dvdx=(2xx2+1)(2xx2+1)(x21x2+1)
=2×((x2+1)(x21)(x21)(x2+1))=2(2x)(x2+1)2
=4x(x2+1)2
Using (1) we get
dydx=xsinxcosx[sinxcosxx+logx(sinx+cosx)]+4x(x2+1)2

Differentiation exercise 10.5 question 18 (iii)

Answer: xxcosx(cosx(1+logx)xsinxlogx4x(x21)2
Hint:  Diff by xcosx
Given: y=xxcosx+x2+1x21
Solution:  Let y=xxcosx+x2+1x21
 Let u=xxcosx and v=x2+1x21y=u+v
Diff by w.r.t.x
dydx=d(u+v)dxdydx=dudx+dvdxdydx=d(u+v)dxdydx=dudx+dvdx
Calculate dudx
u=xxcosx[log(ab)=bloga]
Take log on both sides
logu=logxxcosxlogu=xcosxlogx
Diff w.r.t x
d(logu)dx=d(xcosxlogx)dx1ududx=d(xcosxlogx)dx
Use product rule
(uv)=uv+vu
Where u=xcosx,v=logx
1ududx=d(x)dxcosx+xd(cosx)dxlogx+cosx
1ududx=cosxlogx+x(sinx)logx+xcosx1x
1ududx=cosxlogx+cosxxsinxlogx1ududx=cosx(logx+1)xsinxlogx
dudx=u[cosx(logx+1)xsinxlogx]dudx=xxcosx(cosx(logx+1)xsinxlogx)

Calculate dvdx v=x2+1x21
Diff w.r.t x
dvdx=d(x2+1x21)dxdvdx=d(x2+1x21)dxdvdx=d(x2+1x21)dx
Use quotient rule (uv)=uvvuv2
dvdx=d(x2+1)dx(x21)ddx(x21)(x2+1)(x21)2dvdx=(2x+0)(x21)(2x0)(x2+1)(x21)2dvdx=2x(x21)2x(x2+1)(x21)2
dvdx=2x(x21x21)(x21)2
dvdx=2x(2)(x21)2
=4x(x21)2
Now dydx=dudx+dvdx
Put value
dydx=xxcosx(cosx(1+logx)xsinxlogx)4x(x21)2

Differentiation exercise 10.5 question 18 (iv)

Answer: (xcosx)x{(1xtanx)+log(xcosx)+(xsinx)1x{xcosxx2sinxlog(xsinxx2)}
Hint: Diff by applyingxx
Given: (xcosx)x+(xsinx)1x
Solution:  Let y=(xcosx)x+(xsinx)1x
u=(xcosx)x
Take log both sides
logu=log(xcosx)x
1u×dudx=(xcosx)x[(logx+1)+{logcosx+xcosx(sinx)}]
1ududx=(xcosx)x{(1xtanx)+log(xcosx)}.....................(1)
v=(xsinx)1x
Take log both side
logv=1xlog(xsinx)
1vdvdx=1x{1xsinx(xcosx+sinx×1}+log(xsinx)×1x2
1x(xcosx+sinx×1xsinx)+log(xsinx)×1x2
dudx=(xsinx)1x{xcosx+sinxx2sinxlog(xsinx)x2} ............(2)
From (1) and (2)
dydx=(xcosx)x{(1xtanx)+log(xcosx)+(xsinx)1x{xcosxx2sinxlog(xsinxx2)}

Differentiation exercise 10.5 question 18 (v)

Answer: (x+1x)x[(x21x2+1)+log(x+1x)]+x(1+1x)(x+1logxx2)
Hint:  Diff by (x+1x)x
Given: (x+1x)x+x(1+1x)
Solution:  Let y=(x+1x)x+x(1+1x)
y=u+v
Diff w.r.t x
dydx=d(u+v)dx
=dudx+dvdx
Calculate dudx,u=(x+1x)x
Take log on both side
logu=log(x+1x)xlogu=xlog(x+1x)
1ududx=d(xlog(1+1x)dx
Use product rule (uv)=uv+vu
1ududx=log(x+1x)+1(x+1x)ddx(x+1x)x
1ududx=log(x+1x)+(xx2+1(x21x2)x)
1ududx=log(x+1x)+(x21x2+1)
dudx=u(log(x+1x))+(x21x2+1)
dudx=(x+1x)x(x21x2+1+log(x+1x))
Calculate dvdx
v=x(1+1x)
Taking logv=[1+1x]logx
Diff w.r.t. x
Use product rule
1vdvdx=d(1+1x)dxlogx+d(logx)dx(1+1x)
1vdvdx=d(1)dx+d(1x)dxlogx+1x(1+1x)
1v(dvdx)=1x2logx+1x(1+1x)
1v(dvdx)=(logx+x+1x2)dvdx=v(logx+x+1x2)
dvdx=x(1+1x)(x+1logxx2)
Now dydx=dudx+dvdx
Put value of dudx and dvdx
dydx=(x+1x)x[(x21x2+1)+log(x+1x)]+x(1+1x)(x+1logxx2)

Differentiation exercise 10.5 question 18 (vi)

Answer: esinxcosx+(tanx)x[log(tanx)+xsec2xtanx]
Hint: Diff by esinx
Given: esinx+(tanx)x
Solution: y=esinx+(tanx)x
Let z=(tanx)x
Take log on both sides
logz=xlogtanx
Diff w.r.t x
1zdzdx=logtanx+xsec2xtanx
Thus
dydx=esinxcosx+(tanx)x[log(tanx)+xsec2xtanx]

Differentiation exercise 10.5 question 18 (viii)

Answer: (x23x+2xlogx)xx23+(x2x3+2xlog(x3))(x3)x2
Hint: Diff by xn3
Given: y=xx23+(x3)x2
Solution: y=u+v
u=xx23
logu=logxx23logu=(x23)logx
1ududx=(x23)1x+logx(2x)
dudx=(x23x+2xlogx)xx23
Now v=(x3)x2
Take log on both sides
logv=log(x3)x21vdvdx=x2log(x3)
dvdx=[x2x3+2xlog(x3)](x3)x2
dydx=dudx+dvdx
(x23x+2xlogx)xx23+(x2x3+2xlog(x3))(x3)x2

Differentiation exercise 10.5 question 19

Answer: dydx=ex+10xlog10+xx(logn+1)
Hint: Differentiate the statement taking u and v
Given: y=ex+10x+xx
Solution:
Let xx=u
y=ex+10x+udydx=d(ex)dx+d(10x)dx+dudx ..........(1)
For u,u=xx
logu=logxxddx(logu)=xlogx
1ududx=logx+xddx(logx)
dudx=u[logx+1x]=xx(logx+1)
Put dudx in eq (1)
ddx(ex)=exdydx=ex+10xlog10+xx(logx+1)0

Differentiation exercise 10.5 question 20

Answer: dydx=nxn1+nxlogn+xx(logx+1)
Hint: Differentiate the equation taking log on both sides
Given: y=xx+nx+xx+nn
Solution: y=xx+nx+xx+nn
As we know
[ddx(xn)=nxn1]
[ddx(logx)=1x]
According to question
dydx=ddx(xx)+ddx(nx)+dudx+ddx(xn) .......(1)
Take u=xx
ddx(logu)=logxx=ddx(xlogx)
$1ududx=dxdxlogx+xddx(logx)dudx=u[log+x1x]dudx=xx[logx+1]$
Put in eq. (1)
dydx=nxn1+nxlogn+xx(logx+1)

Differentiation exercise 10.5 question 21

Answer: dydx=(x21)3(2x1)(x3)(4x1)[6xx21+22x112(x3)2x(4x1)]
Hint: Differentiate the equation taking log on both sides
Given: y=(x21)3(2x1)(x3)(4x1)
Solution:
y=(x21)3(2x1)(x3)(4x1)
Taking log on both sides,
logy=log[(x21)3(2x1)(x3)12(4x1)12]
w.r.t x
1ydydx=3log(x21)+log(2x1)12log(x3)12log(4x1)
[logAB=logA+logBlogaB=logAlogBlogAn=nlogA]
1ydydx=3.2xx21+22x1121(x3)121(4x1)4x
dydx=y[6xx21+22x112(x3)2x(4x1)]
dydx=(x21)3(2x1)(x3)(4x1)[6xx21+22x112(x3)2x(4x1)]

Differentiation exercise 10.5 question 22

Answer: dydx=eaxsecxlogx12x[a+tanx+1xlogx+112x]
Hint: Differentiate the equation taking log on both sides
Given: y=eaxsecxlogx12x
Solution:
y=eaxsecxlogx12x
Taking log on both sides,
logy=log[eaxsecxlogx12x]
=log(eax)+log(secx)+log(logx)log(12x)12
logy=ax+log(secx)+log(logx)12log(12x)
1ydydx=a+secxtanxsecx+1logx1x121(2)(12x)
dydx=y[a+tanx+1xlogx+112x]
dydx=eaxsecxlogx12x[a+tanx+1xlogx+112x]

Differentiation exercise 10.5 question 23


Answer: dydx=e3xsin4x.2x[e3xsin4x2x(3+4cot4x+ln2)]
Hint: Differentiate the equation taking log on both sides
Given: y=e3xsin4x2x
Solution:
[logAB=logA+logB]
lny=lne3x+lnsin4x+ln2x
Diff w.r.t x
1ydydx=1e3xe3x3+cos4xsin4x4+ln2
dydx=e3xsin4x.2x[e3xsin4x.2x(3+4cot4x+ln2)]

Differentiation exercise 10.5 question 24

Answer: dydx=sinxsin2xsin3xsin4x[cotx+cot2x.2+3cot3x+4cot4x]
Hint: Differentiate the equation taking log on both sides
Given: y=sinxsin2xsin3xsin4x
Solution:
y=sinxsin2xsin3xsin4x
Taking log on both sides,
logy=log(sinxsin2xsin3xsin4x)
=logsinx+logsin2x+logsin3x+logsin4x
1ydydx=cotx+cot2x.2+3cot3x+4cot4x[ddx(logsinx)=1sinxcosx=cotx]
dydx=y[cotx+cot2x.2+3cot3x+4cot4x]
dydx=sinxsin2xsin3xsin4x[cotx+cot2x.2+3cot3x+4cot4x]

Differentiation exercise 10.5 question 27

Answer: dydx=(tanx)cotx[cosec2x(1logtanx)]+(cotx)tanx[sec2xlog(cotx)1]
Hint: Differentiate the equation taking log on both sides
Given: y=(tanx)cotx+(cotx)tanx
Solution: y=(tanx)cotx+(cotx)tanx
Let's assume y1=(tanx)cotx and 
y2=(cotx)tanxdydx=dy1dx+dy2dx .......(1)
Now y1=(tanx)cotx
logy1=cotxlog(tanx)
On diff both sides w.r.t. x
1y1dy1dx=[cotx1tanxsec2x+log(tanx)xcosec2x]
dy1dx=(tanx)cotx[cosec2x(1log(tanx)] .......(2)
y2=(cotx)tanxlogy2=tanxlog(cotx)
On diff both sides w.r.t. x
1y2dy2dx=[tanx1cotx(cosec2x)+logcotxsec2x]
dy2dx=y2[sec2x+log(cotx)sec2x]
dy2dx=(cotx)tanx[sec2xlog(cotx1)] ........(3)
dydx=dy1dx+dy2dx

Differentiation exercise 10.5 question 28 (i)

Answer: dydx=(sinx)x[xcotx+logsinx]+12xx2
Hint: Differentiate the equation taking log on both sides
Given:
Solution:
y=(sinx)x+sin1(x)y=y1+y2
Diff w.r.t x
dydx=dy1dx+dy2dx .......(1)
y1=(sinx)x
Taking log on both sides
logy1=log(sinx)x[logmn=nlogm]
logy1=xlogsinx
1y1dydx=x1sinxcosx+logsinx1 [ddxlogx=1xddxI.II=IddxII+IIddxI]
dy1dx=y1[xcotx+logsinx]dy1dx=(sinx)n[x.cotx+logsinx] .......(2)
y2=sin1(x)dy2dx=11(x)2ddx(x)
dy2dx=11x12xdy2dx=12x(1x)
dy2dx=12xx2 .........(3)
Put (2) and (3) in eq(1)
dydx=(sinx)x[xcotx+logsinx]+12xx2

Differentiation exercise 10.5 question 28 (ii)

Answer: dydx=xsinx(sinxx+logxcosx)+12xx2
Hint: Differentiate the equation taking log on both sides
Given: y=xsinx+sin1(x)
Solution: y=xsinx+sin1(x)
y=y1+y2
Diff w.r.t x
dydx=dy1dx+dy2dx .......(1)
 Let y1=xsinxlogy1=logx(sinx)x
On diff both side with respect to x we get
1ydydx=sinxddxlogx+logxddxsinx
1ydydx=sinx1x+logxcosx
dydx=y(sinxx+logxcosx)
dydx=xsinx(sinxx+logxcosx) from 1
y2=sin1(x)
dy2dx=11(x)2ddx(x)[ddxsin1(x)=11x2]
dy2dx=11x12xdy2dx=12x(1x)
dy2dx=12xx2 ........(3)
Put (2) and (3) in eq(1)
dydx=xsinx(sinxx+logxcosx)+12xx2

Differentiation exercise 10.5 question 29 (i)

Answer: dydx=xcosx(cosxxsinxlogx)+sintanx(1+sec2xlogsinx)
Hint: To solve this equation we use f(x)f(x) formula
Given:
Solution:
y=xcosx+sinxtanxy=(f(x))f(x)
 Let u=xcosxlogu=xcosxlogu=cosxlogx
1ududx=cosx1x+logx(sinx)dudx=u(cosxxsinxlogx)
=xcosx[(cosxxsinxlogx)]v=sinxtanxlogv=tanxlogsinx
1vdvdx=tanx[1sinxddx(sinx)]+logsinxsec2x
dvdx=v(tanx×cosxsinx+sec2xlogsinx)
dvdx=v(sinxcosx×cosxsinx+secsin2xlogsinx)
dvdx=sinxtanx(1+sec2xlogsinx)
dydx=dudx+dvdx
dvdx=xcosx[(cosxxsinxlogx)]+sinxtanx(1+sec2xlogsinx)

Differentiation exercise 10.5 question 29 (ii)

Answer: dydx=xx(1+logx)+(sinx)x[xcotx+log(sinx)]
Hint: Differentiate the equation taking log on both sides
Given: y=xx+(sinx)x
Solution: y=xx+(sinx)x
dydx=dudx+dvdx .............(1)
 Let u=xxlogu=logxxlogu=xlogx
Diff w.r.t x
1ududx=x1x+logxdudx=u(1+logx)dudx=xx(1+logx) ..............(2)
 Again let v=(sinx)xlogv=log(sinx)xlogv=xlog(sinx)
Diff w.r.t x
1vdvdx=xcosxsinx+log(sinx)dvdx=v[xcotx+log(sinx)]dvdx=(sinx)x[xcotx+log(sinx)] ...........(3)
Put (2) and (3) in eq (1)
dydx=xx(1+logx)+(sinx)x[xcotx+log(sinx)]

Differentiation exercise 10.5 question 30

Answer: dydx=(tanx)logx[logx(tanx)x+logxsec2xtanx]
Hint: Differentiate the equation taking log on both sides
Given: y=(tanx)logx+cos2(π4)
Solution:
dydx=ddx(u+cos2(π4))dydx=dudx
Let u=(tanx)logx
logu=log(tanx)logxddx(logu)=log(tanx)logx
1ududx=ddx(logx)log(tanx)+logxddxlog(tanx)
dudx=u[log(tanx)x+logx1tanxsec2x]
dudx=(tanx)logx[logx(tanx)x+logxsec2xtanx]dydx=(tanx)logx[logx(tanx)x+logxsec2xtanx]

Differentiation exercise 10.5 question 31

Answer: dydx=xx(logx+1)+x1x2(1logx)
Hint: Differentiate the equation taking log on both sides
Given: y=xx+x1x
Solution: y=xx+x1x
dydx=dudx+dvdx
Let u=xx
logu=logxxddx(logu)=logxxddx(logu)=ddx(xlogx)
1ududx=dxdxlogx+xddx(logx)dudx=u[logx+x]1x]dudx=xx[logx+1]
Let v=x1x
logv=logx1x
ddx(logv)=ddx(1xlogx)1vdvdx=1xddx(logx)+logxddx(1x)
dvdx=v[1x2+logx(1x2)]=x1x[1logxx2]
dydx=dudx+dvdx=xx(logx+1)+x1x2(1logx)

Differentiation exercise 10.5 question 32

Answer: dydx=xlogx[2logxx]+(logx)x(1logx+log(logx))
Hint: Differentiate the equation taking log on both sides
Given: y=xlogx+(logx)x
Solution:
Let’s assume y1=xlogx and 
y2=(logx)xdydx=dy1dx+dy2dx
Now y1=xlogx
logy1=logxlogx
Diff w.r.t x
1y1×dy1dx=[logx1x+logx1x]
dy1dx=xlogx[2logxx] .............(1)
y2=(logx)xlogy2=xlog(logx)
Diff both sides w.r.t x
1y2dy2dx=[x1logx1x1+log(logx)]
dy2dx=(logx)x[1logx+log(logx)] ...............(2)
dydx=dy1dx+dy2dxxlogx[2logxx]+(logx)x(1logx+log(logx))

Differentiation exercise 10.5 question 33

Answer: dydx=yx
Hint: To differentiate the equation take log on both the sides
Given: x13y7=(x+y)20
Solution:
log(x13y7)=log(x+y)20
log(x13)+log(y7)=log(x+y)20
ddx(13logx+7logy)=ddx(20log(x+y))
131x+71ydydx=201x+yddx(x+y)
13x+7ydydx=20x+y(1+dydx)
(7y20x+y)dydx=20x+y13x
7x+7y20y(x+y)ydydx=20x13x13yx(x+y)
7x13yy(x+y)dydx=7x13yx(x+y)
dydx=7x13y(x+y)×y[(x+y)dy7x13ydydx=yx
Hence proved

Differentiation exercise 10.5 question 34

Answer: xdydx=2y
Hint: Differentiate the equation by taking log on both the sides
Given: x16y9=(x2+y)17
Solution:
x16y9=(x2+y)17
Taking log on both sides,
log(x16y9)=log(x2+y)17log(x16)+log(y9)=log(x2+y)17
ddx16log(x)+ddx9log(y)=ddx(17log(x2+y))
16x+9ydydx=171x+y[(x2+y)dydx]
16x34x2+y=(17x2+y9y)dydx
16x2+16y34xx(x2+y)=(17y9x29y(x2+y)ydydx18x2+16yx(x2+y)=9x2+8y(x2+y)ydydxxdydx=2y

Differentiation exercise 10.5 question 35

Answer: dydx=cos(xx)xx(1+logx)
Hint: Differentiate the equation by taking log on both the sides
Given: y=sin(x)x
Solution:
Let take u=(x)x
y=sinudydx=cosududx
ddx(logu)=ddx(xlogx)
1ududx=logxdxdx+xddx(logx)dudx=u[logx+x1x]dudx=xx[logx+1]
Put the value of du/dx we get
dydx=cos(xx)xxlog(x+1)

Differentiation exercise 10.5 question 36

Answer: dydx={xx(1+logx)+yxlogy)xy(x1)}
Hint: To solve this equation we denote both term as u and v
Given: xx+yx=1
Solution:
dudx+dvdx=0
u=xx
Taking log on both sides,
logu=xlogx
on diff. we get
1ududx=xddx(logx)+logxdxdxdudx=u(x1x+logx)
dudx=xx(logx+1)v=yx
Taking log both side
logv=xlogy
on diff. we get
1vdvdx=xddx(logy)+logydxdx
dvdx=v[xydydx+logy]dvdx=yx[xydydx+logy]
Hence dydx={xx(1+logx)+yxlogy)xy(x1)}

Differentiation exercise 10.5 question 37

Answer: dydx=(y(y+xlogy))x(ylogx+x)
Hint: Adding log on both sides of equation
Given: xyyx=1
Solution:
Taking log on both sides,
logxy+logyx=0ylogx+xlogy=0
logxdydx+yddx(logx)+logyddxx+xddx(logy)=0
logxdydx+yx+logy+xydydx=0dydx(logx+xy)=(yx+logy)
dydx=(yx+logy)(logx+xy)dydx
dydx=(y(y+xlogy)x(ylogx+x)dydx=(y(y+xlogy)x(ylogx+x)

Differentiation exercise 10.5 question 38

Answer: dydx=x(1+log(x+y)yxlogyylogx+xy(1+logx+y)
Hint: To solve this we add log on both sides
Given: xy+yx=(x+y)x+y
Solution:
Taking log on both sides,
logxy+logyx=log(x+y)x+yylogx+xlogy=(x+y)+log(x+y) [ddx(uv)=u.dv+vdu]
ylogx+xlogy+xyy+logy=(x+y)(x+y)(1+y)+log(x+y)(1+y)
=(1+y)(1+log(x+y))yx+logy+y(logx+xy)=1+log(x+y)+y(1+log(x+y))
y(logx+xy(1+log(x+y))=1+log(x+y)(yx+logy)
y=x(1+log(x+y)y+xlogy)ylogx+xy(1+log(x+y))

Differentiation exercise 10.5 question 39

Answer: dydx=mynx
Hint: To solve this we add log on both sides
Given: xmyn=1
Solution:
log(xmyn)=log1=0
logxm+logyn=0ddxmlogx+nlogy=ddx0
m1x+n1ydydx=0dydx=mynx

Differentiation exercise 10.5 question 40

Answer: dydx=(1+logy)2logy
Hint: To solve this we differentiate method
Given: yx=eyx
Solution:
ddxxlogy=(yx)loge=ddx(yx)
dxdxlogy+xddx(logy)=dydxdxdxlogy+x1ydydx=dydx1
dydx(xy1)=(1+logy)dydx=y(1+logy)xy
dydx=y(1+logy)yxdydx=y(1+logy)xlogydydx=(1+logy)2logy

Differentiation exercise 10.5 question 41

Answer: dydx=log(cosy)ycotxlog(sinx)+xtany
Hint: To solve this equation we will convert log function
Given: (sinx)y=(cosy)x
Solution:
log(sinx)y=log(cosy)xylog(sinx)=xlog(cosy)
yddxlog(sinx)+logsinxdydx=xddxlogcosy+logcosydxdxy1sinxcosx+logsinxdydx=x1cosy(sinx)dydx+logcosy1
ycotx+logsinxdydx=xtandydx+logcosydxdxlog(sinx)+ycosxsinx=log(cosy)+xsinycosy
dxdxlog(sinx)+xtany=log(cosy)ycotxdydx=log(cosy)ycotxlog(sinx)+xtany
Hence it is proved

Differentiation exercise 10.5 question 42

Answer: dydx=log(tany+ytanx)log(cosx)xsecycosecy
Hint: To solve this equation, we will convert them in log
Given: (cosx)y=(tany)x
Solution:
Taking log on both sides,
log(cosx)y=log(tany)xylog(cosx)=xlog(tanx)
ddx(ylog(cosx))=ddx(xlog(tanx)) [ddx(logx)=1xddxcosx=sinxddx(tanx)=sec2x]
dydxlog(cosx)+yddx(log(cosx))=dxdxlog(tanx)+xddx(log(tanx))

dydxlog(cosx)+y(sinxcosx)=log(tanx)+xsec2ytanydydx
dydxlog(cosx)tanxy=log(tanx)+x1cos2ysinycosydydx
dydx[log(cosx)xsinycosy]=log(tanx)+ytanx
dydx=log(tanx)+ytanxlog(cosx)xcosecysecy

Differentiation exercise 10.5 question 43

Answer: dydx+eyx=0
Hint: To solve this equation we will do differentiate differently
Given: ex+ey=ex+y
Solution:
ex+ey=ex+y
Diff w.r.t x [ddxex=ex]
ddxex+ddxey=ddxex+y
ex+eydydx=ex+yddx(x+y)ex+eydydx=ex+y(1+dydx)
dydx(ex+yey)=exex+ydydx=(exexey)exeyey
dydx=ex(1ey)ey(ex1)
dydx=ex(ey1)ey(ex1)dydx=exex+yex+yey=ex(ex+ey)(ex+ey)ey
dydx=eyex=eyxdydx+eyx=0
Hence proved

Differentiation exercise 10.5 question 44

Answer: dydx=(logy)2logy1
Hint: To solve this equation we convert terms in log
Given: ey=yx
Solution:
ey=yx
yloge=xlogy[logab=bloga]
y=xlogy ...................(1)
dydx=x1ydydx+logydydxxydydx=logy
dydx(1xy)=logydydx=logy(1xy)
dydx=logy(11logy)dydx=(logy)2(logy1)
Hence proved

Differentiation exercise 10.5 question 45

Answer: dydx=1xx
Hint: To solve this equation we will convert term into log
Given: ex+yx=0
Solution:
ex+yx=0
logex+y=logx(x+y)loge=logxddx(x+y)=ddx(logx)
1+dydx=1xdydx=1x1=1xxdydx=1xx
Hence proved

Differentiation exercise 10.5 question 46

Answer: dydx=sin2(a+y)sin(a+y)ycos(a+y)
Hint: To solve this equation we use uv' form
Given: y=xsin(a+y)
Solution:
(uv)=uv+vu
dydx=1×sin(a+y)+xcos(a+y)[0+dydx]y=sin(a+y)+xcos(a+y)y
y=sin(a+y)1xcos(a+y)sin(a+y)sin(a+y)dydx=sin2(a+y)sin(a+y)ycos(a+y)
Hence proved

Differentiation exercise 10.5 question 47


Answer: dydx=sin2(a+y)sina
Hint: To solve this equation we use uv' form
Given: xsin(a+y)+sinacos(a+y)=0
Solution: (uv)=uv+vu
sin(a+y)+xcos(a+y)y+sina(sin(a+y)(0+y)=0
y[xcos(a+y)+(sina)sin(a+y)]=sin(a+y)
y=sin(a+y)xcos(a+y)+(sina)(sina+y)sin(a+y)sin(a+y)
dydx=sin2(a+y)sina(cos2(a+y)+sin2(a+y)(sin2x+cos2x=1)
dydx=sin2(a+y)sina
Hence proved

Differentiation exercise 10.5 question 48

Answer: dydx=1(x+y)ycotu(x+y)logsinx1
Hint: To solve this we convert terms into log
Given: (sinx)y=x+y
Solution:
(sinx)y=x+y [dydxlogsinx=y]
log(sinx)y=log(x+y) [y=1sinx×cosx]
ylog(sinx)=log(x+y) [cosxsinx=cotx]
yddxlog(sinx)+logsinxdydx=1x+yddx(x+y)
ycotx+logsinxdydx=1x+y+1x+ydydx
dydx(1x+ylogsinx)=ycotx1x+y
dydx(1(x+y)logsinxx+y)=(x+y)ycotx1x+y
dydx=(x+y)ycotx11(x+y)logsinxdydx=(1ycotx(x+y)(x+y)logsinx1
dy=1(x+y)ycotx(x+y)logsinx1
Hence proved

Differentiation exercise 10.5 question 49

Answer: dydx=y(x2y+x+y)x(xy2+x+y)
Hint: To solve this equation we solve the log term firstly
Given: xylog(x+y)=1
Solution:
xylog(x+y)=1
ddx(x)ylog(x+y)+xddx(y)log(x+y)+xy
ddxlog(x+y)=ddx(1)ylog(x+y)+dydxxlog(x+y)+xy1x+y(1+dydx)=0
dydx[xlog(x+y)+xyx+y]=(ylog(x+y)+xyx+y)
dydx[x(x+y)log(x+y)+xyx+y]=y(x+y)log(x+y)x+y
dydx=y(x+y)log(x+y)+xx(x+y)log(x+y)+y
Hence proved

Differentiation exercise 10.5 question 50

Answer: dydx=yx(1xcosy)
Hint: To solve this equation we differentiate it separately
Given: y=xsiny
Solution:
y=xsiny
u=x1v=siny
dydx=xcosydydx+siny1dydx=xcosydydx+siny
dydxxcosydydx=sinydydx(1xcosy)=sinydydx=yx(1xcosy)
Hence proved

Differentiation exercise 10.5 question 51

Answer: 120
Hint: To solve this equation we use ddxuvwz form
Given: f(x)=(1+x)(1+x2)(1+x4)(1+x8)
u v w z
Solution:
ddx(uvwz)=vwzdudx+uwzdvdx+uvzdwdx+uvwdzdx
f(x)=1×(1+x2)(1+x4)(1+x8)+(1+x)(1+x4)(1+x8)2x+(1+x)(1+x2)(1+x8)4x3+8x7(1+x)(1+x2)(1+x4)
f(1)=1×2×2×2+2×2×2×2+2×2×2×4+8×1×2×2×2=8+16+36+64f(1)=120

Differentiation exercise 10.5 question 52

Answer: 41+x2+x4
Hint: To solve this equation we use (uv) form
Given: y=log(x2+x+1)x2x+1+23tan1(3x1x2)
Solution:
dydx=((2x+1)(x2x+1)(2x1)(x2+x+1(x2x+1)2)+23(11+3x2(1x2)2)(3(1x2)3x(2x)(1x2)2)


=2x3+x22x2x+2x+12x32x22x+x2+x+1(x2x+1)(x2+x+1)+ 2x(1x2)2(1+x2+x4)[33x2+23x2(1x2)2]
=22x2+2+2x21+x2+x4=41+x2+x4

Differentiation exercise 10.5 question 53

Answer: dydx=(sinxcosx)sinxcosx(sinx+cosx)(logsinxcosx)+1
Hint: To solve this we take log both sides
Given: y=(sinxcosx)sinxcosx
Solution:
y=(sinxcosx)sinxcosx
Taking log on both sides,
logy=log(sinxcosx)sinxcosx [logxn=nlogx]

logy=(sinxcosx)log(sinxcosx)

1ydydx=log(sinxcosx)(cosx+sinx)+(sinxcosx)(1(sinxcosx)(cosx+sinx))

1ydydx=(cosx+sinx)[1+log(sinxcosx)]dydx=y(sinx+cosx)[log(sinxcosx)+1

dydx=(sinxcosx)sinxcosx(sinx+cosx)(logsinxcosx)+1


Differentiation exercise 10.5 question 54

Answer: dydx=y(x1)x(y+1)
Hint: To solve this equation we solve side by side
Given: xy=e(xy)
Solution:
log(xy)=log(e(xy))
[duvdx=udvdx+vdudx]
Diff w.r.t xu [dexdx=ex]
xdydx+1(y)=e(xy)ddx(xy)xdydx+y=e(xy)(1dydx)
xdydx+y=e(xy)e(xy)dydxxdydx+e(xy)dydx=e(xy)y
dydx(x+e(xy))=e(xy)ydydx=y(x1)x(y+1)

Differentiation exercise 10.5 question 55

Answer: dydx=(yxlogy+xy1y+xx(logx+1))(xylogy+yx1x)
Hint: To solve this equation we solve this differently
Given: yx+xy+xx=ab
Solution: Let uvw
u+v+w=ab
Diff w.r.t. x
ddx(u+v+w)=ddxabdudx+dvdu+dwdv=0u=yx ...........(1)
Taking log on both sides,
logu=logyx[logab=bloga]
Diff w.r.t. u [ddx(uv)=uv+vu]
ddx(logu)=ddx(xlogy)[ddxlogx=1x]
1ududx=x1ydydx+logy(1)dudx=u(xydydx+logy)

v=xy ..............(2)
Taking log on both sides,
logv=logxylogv=ylogx
Diff w.r.t
1vdvdx=y1x+logxdydxdvdu=v(yx+logxdydx)w=xx ..........(3)
Log on b.s.
logw=logxxlogw=xlogx
Diff w.r.t
1wdwdx=x1x+logx(1)
From (1)
dudx+dvdx+dwdx=0
yx(xydylogy)+xy(yx+logxdydx)+xx(1+logx)=0
yxlogy+yx1xdydx+xylogxdydx+xy1yx+xx(1+logx)=0
yxlogy+xyyx+xx(logx+1)+yx1xdydx+xylogxdydx=0
yx1dydx+xylogydydx=(yxlogx+xyyx+xx(logx+1)
dydx=(yxlogy+xy1y+xx(logx+1))(xylogy+yx1x)

Differentiation exercise 10.5 question 56

Answer: dydx=ytanx+logcosylog(cosx)+xtany
Hint: To solve this equation we add log on both sides
Given: (cosx)y=(cosy)x
Solution:
(cosx)y=(cosy)x
Taking log on both sides,
log(cosx)y=log(cosy)x
ylog(cosx)=xlog(cosy)[logmn=nlogm]
d(uv)dx=udvdx+vdudx
yddxlog(cosx)+log(cosx)dydx=xddxlog(cosy)+logcosydydx
y(sinxcosx)+log(cosx)dydx=xddxlog(cosy)dydx+logcosy ..........(1)
ytanx+log(cosx)dydx=x(siny)cosydydx+logcosy
log(cosx)dydx+xtanydydx=ytanx+logcosx
dydx(log(cosx)+xtany)=ytanx+logcosx
dydx=ytanx+logcosylog(cosx)+xtany

Differentiation exercise 10.5 question 57

Answer: dydx=cos2(a+y)sina
Hint: To solve this equation we make statement cos(a+y)acos(a+y)=x
Given: cosy=xcos(a+y)
Solution: we have
cosy=xcos(a+y)
cos((a+y)a)cos(a+y)=x
cos(a+y)cosa+sin(a+y)sinacos(a+y)=x
cos(a+y)cosacos(a+y)+sin(a+y)sinacos(a+y)
ddx(cosa+tan(a+y)sina)=dxdx
sinaddx(tan(a+y))=1[ddxtanx=sec2x]
sinasec2(a+y)ddx(a+y)=1
sinacos2(a+y)dydx=1dydx=cos2(a+y)sina
Hence proved

Differentiation exercise 10.5 question 58

Answer: ydydx+x=2y
Hint: To solve this we add log on both side
Given: (xy)exxy=a
Solution:
exxy=axy
Taking log on both sides,
logexxy=log(axy)
xxyloge=logalog(xy)[logpq=logplogq]
xxy=logalog(xy)
Differentiate w.r.t x we get
ddx(xxy)=0dydxlog(xy)
(xxy)dxdxxdydx(xy)(xy)2=ddxlogt [ddxp(x)q(x)=q(x)dpdxpdqdxq2]
(xy)1x(1dydx)(xy)2=ddxlogdtdx xy=t=>dtdx=dxdxdydx
dtdx=1dydx
x2yx+xdydx(xy)2=1t
y+xdy(xy)2=1(xy)(1dydx)y+xdydx=(dydx1)(xy)
=xdydxxydydx+yy=x+yydydxydydx+x=2y
Hence proved

Differentiation exercise 10.5 question 59

Answer: dydx=xyxlogx
Hint: To solve this equation we use chain rule and quotient rule
Given: x=exy
Solution: we have x=exy
Diff w.r.t x we get [ddxex=ex]
1=exyddx(xy) [Chain rule]
1=exy×yddxxxddxyy2[(uv)=urvvruv2]
y2=exy(yxdydx)y2=yexyxdydxexy
xdydxexy=yexyy2dydx=y(exyy)xexy
x.dydx=1logx(xy)[x=exy,logx=xy]
dydx=xyx(logx)

Differentiation exercise 10.5 question 60

Answer: dydx=xtanx(tanxx+logxsec2x)+x2(x2+1)
Hint: To solve this equation we use log on both side
Given: y=xtanx+x2+12
Solution: ddx(logu)=log(xtanx)=tanxlogx
 Let u=xtanx
1ududx=tanxddxlogx+logxddx(tanx)
dudx=u(tanxx+(logxsec2x))dudx=xtanx(tanxx+(logxsec2x))
dydx=ddx(u+x2+12)dydx=dudx+ddx(x2+12)
dydx=xtanx(tanxx+logx) +12x2+12ddx(x2+12) [ddxx=12x][ddxx2=2x]
=xtanx(tanxx+logxsec2x)+12(x2+1)2x2
dydx=xtanx(tanxx+logxsec2x)+x2(x2+1)

Differentiation exercise 10.5 question 61

Answer: dydxα(1αx)2+β(1βx2)(1x)2(1βx2)+2αβy2x3αβyxαy2x2y3βx3(1αx)2(1βx)2(1yx)2
Hint: To solve this equation we differentiate it differently
Given: y=1+α(1xα)+βx(1xα)(1xβ)+γx2(1xα)(1xβ)(1xγ)
Solution:
y=1+α(1xα)+βx(1xα)(1xβ)+γx2(1xα)(1xβ)(1xγ)
y=1+A+B+C
dydx=0+dAdx+dBdx+dCdx
A=αx(1αx)dAdx=(1αx)ααx(α)(1αx)2
dAdx=αα2x+α2x(1αx)2dAdx=α(1αx)2 .............(1)
dBdx=ddx(βx(1x)(1βx))
dBdx=(1x)(1βx)ββx(1x)(β)+(1βx)(1)(1x)2(1βx)2
dBdx=β(1xβx+βx2)βx(β+βx1+βx)(1x)2(1βx)2
dBdx=ββxβ2x+β2x2+β2xβ2x2+βxβ2x2)(1x)2(1βx)2
dBdx=β(1βx2)(1x)2(1βx)2 .................(2)
c=yx(1αx)(1βx)(1γx)
dcdx=(1αx)(1βx)(1γx)yyx(1αx)(1βx)γ(1β)(1γx)(α)+(1αx)(1γx)(β)(1αx)2(1βx)2(1γx)2
dcdx=(1αxβx+αβx2)(1γx)γγx{(γ)(1αxβx+αβx)+(α)+(1βxγx+βγx)+(β)(1αxγx+αγx2)}(1ax)2(1βx)2(1γx)2

dcdx=(1αxβx+αβx2)(1γx)γγx{(γ)(1αxβx+αβx)+(α)+(1βxγx+βγx2)+(β)(1αxγx+αγx2)}(1ax)2(1βx)2(1γx)2
dcdx=γ(1αxβx+αβx2γx+αyx2+βγx2αβγx2γx(γ+αγx+βγxαβγ2x2α+αβx+αγxαβyx2β+αβx+γβx+αβγx2)}(1ax)2(1βx)2(1γx)2
dcdx=γαγxβγx+αβγx2γ2x+αγ2x2+βγ2x2αβγ2x2γ2xαγ2x2βγ2x2+αβγ2x3+αγxαβγxαγ2x2+αβy2x3+βγxαβγx2+γ2βx2+αβγ2x3(1ax)2(1βx)2(1γx)2
dcdx=αβγxαγ2x2αβγ2x3βγ2x2(1αx)2(1βx)2(1γx)2dydx=α(1αx)2+β(1βx2)(1x)2(1βx)2++2αβγ2x3αβγxαγ2x2βγ3x3(1αx)2(1βx)2(1γx)2

Differentiation exercise 10.5 question 62

Answer: dydx=y×(logy+xy)
Hint: To solve this equation we use log on both side
Given: xyyx=ab
Solution:
xy=z
Taking log on both side
logxy=logzylogx=logzdydxlogx+yx=1zdzdx
dzdx=xy(yx+logxdydx) ............(1)
yx=plogyx=logpxlogy=logp
logy+xydydx=1pdpdxdpdx=yx(logy+xydydx)dydx=yx(logy+xy)

Provide solution for RD Sharma maths class 12 chapter Differentiation exercise 10.5 question 62
Edit Q


RD Sharma Class 12th Exercise 10.5 deals with the Chapter Differentiation and is a lengthy exercise consisting of 71 questions. As solving all of them at once is a tedious task, students should divide the sums and practice accordingly. Although these are basic level one questions they can be quite tricky unless students know their basics right.

In this exercise you will learn topics like:

1. Differentiation of Trigonometric equations

2. Differentiation involving exponents

3. Finding first derivatives of complex Algebraic equations

4. Proof sums involving derivatives

These are the following traits that make RD Sharma Class 12th Exercise 10.5 material the best choice for students:

1. Detailed questions

The solutions provided by Brinley contain detailed questions that cover the entire syllabus. This means that students don't have to worry about any missing topics.

2. Step-by-step solutions

These solutions are interpreted with step-by-step explanations that are extremely helpful for students to understand the questions properly. Students who find RD Sharma material confusing can refer to these solutions for a clear understanding. Class 12 RD Sharma Chapter 10 Exercise 10.5 Solution material is made in such a way that it is easy for both a class topper as well as an average student to study effectively.

3. Helpful for class lectures

As differentiation is a vast topic it is not necessary that teachers might cover all the questions from the book. This is why RD Sharma class 12 Chapter 10 Exercise 10.5 material is helpful for students to stay in line with their class lectures and side-by-side prepare for their exams.

4. Exam-oriented material

The sole purpose of this material is to enable students to score good marks in exams by merging all the solutions and concepts in a singular material. The questions from RD Sharma class 12 Chapter 10 Exercise 10.5 material are exam-oriented and as RD Sharma books are widely used the questions from this material can also show up in your exam.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What are the charges for this material?

RD Sharma Class 12th Exercise 10.5 solutions are provided on Careers360’s website and are accessible for free. Students can refer to this material through their browser on the go without any hassle.

2. Which material is best suited for maths, RD Sharma or NCERT?

When compared to NCERT RD Sharma materials are exam oriented and best suited for maths. They contain detailed concepts with step-by-step explanations that help students better understand the subject.

3. Can I find solutions for all chapters on the Careers360’s website?

Students can search their relevant chapter name on Branly’s website to get access to their materials. To find solutions for Differentiation, refer to RD Sharma Class 12th Exercise 10.5.

4. What is differentiation?

The process of finding the rate of change of a function is called Differentiation. To learn more, check RD Sharma Class 12 solutions Differentiation Ex 10.5.

5. What are the real life applications of differentiation?

Given below are some of the applications:

  • Business and Economics

  • Distance and Velocity calculation

  • Variation in Temperature

  • Physics etc.

Articles

Back to top