RD Sharma books are well known for their accuracy, subject knowledge and exam-oriented questions. There is always a high possibility that the questions in CBSE exams might appear from this book as many schools refer to them for setting up question papers.RD Sharma Class 12th Exercise 10.5 Is designed specifically for students to prepare for exams. It is created by a team of subject experts that have years of experience with exam-oriented materials. These solutions will help students get a better understanding of the subject and score good marks in exams.
This Story also Contains
RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise Differentiation Excercise: 10.5 Differentiation exercise 10.5 question 30 Differentiation exercise 10.5 question 33 Differentiation exercise 10.5 question 55 Differentiation exercise 10.5 question 58 RD Sharma Chapter-wise Solutions Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise Differentiation Excercise: 10.5 Answer: χ 1 x ( 1 − ln x ) x 2 Hint: Differentiate by function
x n Given: x 1 x Solution: Let,
y = x 1 x Taking log on both sides,
log y = log x 1 x ⇒ log y = 1 x log x [ ∵ log a b = b log a ] Differentiate both sides,
1 y d y d x = 1 x d d x ( log x ) + log x d d x ( x − 1 ) [using product rule]
1 y d y d x = 1 x × 1 x + ( log x ) × ( − 1 x 2 ) 1 y d y d x = 1 x 2 − log x x 2 1 y d y d x = ( 1 − log x ) x 2 d y d x = y ( 1 − log x ) x 2 put value of
y = x 1 x d y d x = x 1 x ⋅ [ ( 1 − log x ) x 2 ] Differentiation exercise 10.5 question 2
Answer: x sin x ( cos x ln x + ( sin x x ) ) Hint: Differentiate by
x n Given: x Sin x Solution: Let
y = x Sin x Take natural log to both sides
ln y = ln x sin x ln y = sin x ln x [ ∵ log a b = b log a ] Diff both side w.r.t x
d d x ( ln y ) = d d x ( sin x ln x ) Using implicit diff on LHS, product rule on RHS1 y ( d y d x ) = cos x ln x + sin x x d y d x = y ( cos x ln x + sin x x ) Substituting back for yd y d x = x sin x ( cos x ln x + sin x x )
Differentiation exercise 10.5 question 3
Answer: ( 1 + cos x ) x [ ( − x sin x 1 + cos x ) + log ( 1 + cos x ) Hint: Differentiate by
cos n x Given: ( 1 + cos x ) x Solution :Let
y = ( 1 + cos x ) x ...........(i)
Taking log on both the sides,
log y = log ( 1 + cos x ) x log y = x log ( 1 + cos x ) Differentiating with respect to
x ,
1 y d y d x = x d d x log ( 1 + cos x ) + log ( 1 + cos x ) d d x ( x ) [Using product rule]
1 y d y d x = x 1 ( 1 + cos x ) d d x ( 1 + cos x ) + log ( 1 + cos x ) ( 1 ) 1 y d y d x = x ( 1 + cos x ) ( 0 − sin x ) + log ( 1 + cos x ) 1 y d y d x = log ( 1 + cos x ) − x som x ( 1 + cos x ) d y d x = y [ log ( 1 + cos x ) − x sin x 1 + cos x ] d y d x = ( 1 + cos x ) x [ log ( 1 + cos x ) − x sin x ( 1 + cos x ) ] [Using equation (i)]
Answer: x cos − 1 x ( cos − 1 x x − log x 1 − x 2 ) Hint: Differentiate by function
x n x Given: x cos − 1 x Solution: Let
y = x cos − 1 x y = e cos − 1 x log x [ ∵ a b = e b log x ] Differentiate w.r.t
x e cos − 1 x log x ( d d x ) cos − 1 log x x cos − 1 x ( cos − 1 x ( d d x ) log x + log x d d x cos − 1 x ) x cos − 1 x [ cos − 1 x ⋅ 1 x + log x ⋅ ( − 1 1 − x 2 ) ] x cos − 1 x [ cos − 1 x x − log x 1 − x 2 ] Differentiation exercise 10.5 question 5
Answer: log x x − 1 ( 1 + log x log log x ) Hint: Differentiate by
log x ( x ) Given: ( log x ) x Solution: Let
y = ( log x ) x Taking log both sides
log y = x log ( log x ) Differentiate w.r.t
x ,
1 y d y d x = x ⋅ d d x { log ( log x ) } + log ( log x ) ( d d x ) ( x ) ⇒ 1 y d y d x = x 1 log x d d x ( log x ) + log ( log x ) ( 1 ) ⇒ 1 y d y d x = x log x ( 1 x ) + log ( log x ) ⇒ 1 y d y d x = 1 log x + log ( log x ) ⇒ d y d x = y [ 1 log x + log ( log x ) ] Now, put value of
y = ( log x ) x ⇒ d y d x = ( log x ) x [ 1 log x + log ( log x ) ] Differentiation exercise 10.5 question 6
Answer: ( log x ) cos x ( 1 + log x log log x ) Hint: Diff. by applying
x log x Given: ( log x ) cos x Solution : Let
y = ( log x ) cos x Taking log both sides
log y = cos x ⋅ log ( log x ) [ a s log a b = b log a ] Differentiate w.r.t
x 1 y d y d x = d ( cos x ⋅ log ( log x ) d x Using product of rule
cos x ⋅ log ( log x ) ( u v ) ′ = u ′ v + v ′ u 1 y d y d x = d ( cos x ) d x log ( log x ) + d ( log ( log x ) d x ) cos x 1 y d y d x = − sin x ⋅ log ( log x ) cos x 1 y d y d x = sin x ⋅ log ( log x ) + 1 log x ⋅ 1 x cos x 1 y d y d x = sin x ⋅ log ( log x ) + cos x x log x d y d x = y ( − sin x ⋅ log ( log x ) + cos x x log x ) d y d x = ( log x ) cos x ( − sin x ⋅ log ( log x ) + cos x x log x ) d y d x = ( log x ) cos x ( cos x x log x − s i n x . log ( log x ) ) Differentiation exercise 10.5 question 7
Answer: ( sin ) cos x ( cos x cot x − sin log ( sin x ) Given: ( sin x ) cos x Solution : Let
y = ( sin x ) cos x Taking log both sides
log y = log ( sin x ) cos x [ ∵ log m n = n log m ] log y = cos x ⋅ log ( sin x ) Differentiate w.r.t x,
1 y d y d x = cos x ⋅ d d x ( log ( sin x ) + log ( sin x ) d d x ( cos x ) ) 1 y d y d x = cos x ⋅ 1 sin x ⋅ cos x + log ( sin x ) ( − sin x ) d y d x = y ( cos x ⋅ cot x − sin ( log ( sin x ) ) ( sin x ) cos x ( cos x ⋅ cot x − sin log ( sin x ) ) Differentiation exercise 10.5 question 8
Answer: e x log x ( 1 + log x ) Hint: Differentiate by applying
e x Given: e x log x Solution: Let
y = e x log x y = x x [ ∵ a b = e b log a ] Taking log on both sides
log y = log e x log x log y = x log x Differentiate w.r.t x,
1 y = x d d x ( log x ) + log x d d x x [ use multiplication rule]
1 y d y d x = x ⋅ 1 x + log x .1 d y d x = y + y log x d y d x = y ( 1 + log x ) = e x log x ( 1 + log x ) d y d x = y ( 1 + log x ) = e x log x ( 1 + log x ) Differentiation exercise 10.5 question 9
Answer: ( sin x ) log x log ( sin x ) x + log x + sin x Hint: Diff by
sin x x Given: ( sin x ) log x Solution: Let
y = ( sin x ) log x ........(i)
taking log on both sides,
log y = log ( sin x ) log x log y = log x log ( sin x ) [ Using log a b = b log a ] Differentiate w.r.t x, using product rule and chain rule,
1 y d y d x = log x d d x ( log sin x ) + log sin x d d x ( log x ) = log x ( 1 sin x ) d d x ( sin x ) + log sin x ( 1 x ) = log x sin x × cos x + log sin x x 1 y d y d x = log x cot x + log sin x x d y d x = y [ log x cot x + log sin x x ] d y d x = ( sin x ) log x [ log x cot x + log sin x x ] [Using equaton (i)]
Differentiation exercise 10.5 question 10
Answer: 10 log sin x × log 10 × cot x Hint: Diff by
10 x Given: 10 log sin x Solution: Let
y = 10 log sin x .........(1)
Taking log both sides
log y = log 10 log sin x log y = log sin x log 10 Differentiate w.r.t x,
1 y d y d x = log 10 d d x log sin x 1 y d y d x = log 10 1 sin x d d x sin x 1 y d y d x = log 10 ( 1 sin x ) cos x d y d x = y ( log 10 ⋅ cot x ) d y d x = 10 log sin x × log 10 × cot x ......[Using (1)]
Differentiation exercise 10.5 question 11
Answer: ( log x ) log x ( 1 x + log ( log x ) x )
Hint: Diff by
( log x ) log x Given: ( log x ) log x Solution : Let
y = ( log x ) log x Taking log on both sides
log y = log ( log x ) log x log y = log x ⋅ log ( log x ) [ ∵ log ( a b ) = b log a ] Differentiate w.r.t x,
1 y d y d x = d ( log x ⋅ log ( log x ) d x Use product rule
( u v ) ′ = u ′ v + v ′ u 1 y d y d x = d ( log x ) d x ⋅ log ( log x ) + d ( log ( log x ) d x ⋅ log x 1 y d y d x = 1 x log ( log x ) + 1 log x + d ( log x ) d x log x 1 y d y d x = 1 x log ( log x ) + d ( log x ) d x 1 y d y d x = 1 x log ( log x ) + 1 x d y d x = y ( 1 x + log ( log x ) x ) d y d x = ( log x ) log x ( 1 x + log ( log x ) x ) Differentiation exercise 10.5 question 12
Answer: 10 10 x ⋅ 10 x ⋅ ( log 10 ) 2 Hint: Diff by
( 10 ) 10 x Given: ( 10 ) 10 x Solution : Let
y = ( 10 ) 10 x Taking log on both sides
log y = log 10 ( 10 x ) = 10 x log 10 Differentiate w.r.t x,
1 y d y d x = log 10 d d x 10 x = log 10 × 10 x ⋅ log 10 d y d x = y × 10 x × ( log 10 ) 2 = 10 10 x ⋅ 10 x ( log 10 ) 2 Differentiation exercise 10.5 question 13
Answer: sin x x ( log sin x + x cot x ) Hint: Diff equation by
sin x Given: sin x x Solution: Let
y = ( sin x ) x Taking log on both sides
y = sin x x log y = log sin x x log y = x log sin x 1 y d y d x = log sin x + x cot x d y d x = sin x x ( log sin x + x cot x ) Differentiation exercise 10.5 question 14
Answer: ( x ⋅ 1 sin − 1 x ⋅ 1 1 − x 2 ) + ( sin x ) x log ( sin x ) Hint: Diff by using
( sin − 1 x ) x Given: ( sin − 1 x ) x Solution : Let
y = ( sin − 1 x ) x Taking log on both sides
log y = x ⋅ log ( sin − 1 x ) Differentiate w.r.t x,
⇒ 1 y d y d x = log ( sin − 1 x ) + x ⋅ 1 sin − 1 x ⋅ 1 1 − x 2 ⇒ d y d x = y [ log ( sin − 1 x ) + x ⋅ 1 sin − 1 x ⋅ 1 1 − x 2 ] Now , put the value of ,
y = ( sin − 1 x ) x ⇒ d y d x = ( sin − 1 x ) x [ log ( sin − 1 x ) + x ⋅ 1 sin − 1 x ⋅ 1 1 − x 2 ] Differentiation exercise 10.5 question 15
Answer: x sin − 1 x [ sin − 1 x x + log x 1 − x 2 ] Hint: Diff by
x sin − 1 x Given: x sin − 1 x Solution: Let
y = x sin − 1 x Taking log on both sides
1 y d y d x = sin − 1 x ⋅ log x 1 y d y d x = log x 1 − x 2 + sin − 1 x x d y d x = y [ log x 1 − x 2 + sin − 1 x x ] d y d x = x sin − 1 x [ sin − 1 x x + log x 1 − x 2 ] Differentiation exercise 10.5 question 16
Answer: ( tan x ) 1 x ⋅ ( x cosec x sec x ) − ln ( tan ( x ) . 1 x 2 ) Hint: Diff by
( tan x ) 1 x Given: ( tan x ) 1 x Solution: Let
y = ( tan x ) 1 x Taking log on both sides
log y = log ( tan x ) 1 x 1 y d y d x = 1 x log tan x 1 y d y d x = − 1 x 2 ln ( tan x ) + 1 x ( 1 tan x sec 2 x ) ( 1 tan x = cot x ) So,
1 y d y d x = y ( − 1 x 2 ln ( tan x + 1 x cosec x ⋅ sec x ) d y d x = ( tan x ) 1 x ( − 1 x 2 ln tan x ) + 1 x cos e c x sec x d y d x = ( tan x ) 1 x [ ( x cosec x ⋅ sec x ) − ln ( tan x ) ⋅ 1 x 2 ] Differentiate w.r.t x,
Differentiation exercise 10.5 question 17
Answer: d y d x = [ tan − 1 x x + log x 1 + x 2 ] ⋅ tan − 1 x Hint: Diff by
x tan − 1 x Given: x tan − 1 x Solution : Let
y = x tan − 1 x Taking log on both sides
log y = log x tan − 1 x 1 y d y d x = tan − 1 x ⋅ 1 x + log x ⋅ 1 1 + x 2 1 y d y d x = tan − 1 x x + log x 1 + x 2 d y d x = ( tan − 1 x x + log x 1 + x 2 ) y d y d x = x tan − 1 x [ tan − 1 x x + log x 1 + x 2 ] Differentiation exercise 10.5 question 18 (i)
Answer: x x x ( log x + 1 + 1 2 x ) Hint: Diff by x x x Given: x x x Solution: Let,
y = x x x Taking log both side
log y = log x x x [ log m n = log m + log n ] log y = log x x + log x log y = x log x + log ( x ) 1 2 log y = ( x + 1 2 ) ⋅ log x d d x log y = d d x ( x + 1 2 ) ⋅ log x 1 y d y d x = d d x ( x + 1 2 ) ⋅ log x + ( x + 1 2 ) ⋅ d d x log x d y d x = x x x ( log x + 1 + 1 2 x ) Differentiation exercise 10.5 question 18 (ii)
Answer: x sin x − cos x [ sin x − cos x x + log x ( sin x + cos x ) ] + 4 x ( x 2 + 1 ) 2 Hint: Diff by x n Given: y = x sin x − cos x + x 2 − 1 x 2 + 1 Solution: y = u + v d y d x = d u d x + d v d x .........(1)
u = x sin x − cos x Take log
log u = log x sin x − cos x log u = ( sin x − cos x ) ⋅ log x 1 d u u d u d x = ( sin x − cos x ) ⋅ 1 x + log x ( cos x + sin x ) d u d x = [ sin x − cos x x + log x ( sin x + cos x ) x sin x − cos x v = x 2 − 1 x 2 + 1 log v = log ( x 2 − 1 x 2 + 1 ) = log ( x 2 − 1 ) − log ( x 2 + 1 ) 1 v d v d x = 1 x 2 − 1 ( 2 x ) ⋅ − 1 x 2 + 1 ( 2 x ) d v d x = ( 2 x x 2 + 1 ) ( − 2 x x 2 + 1 ) ( x 2 − 1 x 2 + 1 ) = 2 × ( ( x 2 + 1 ) − ( x 2 − 1 ) ( x 2 − 1 ) ( x 2 + 1 ) ) = 2 ( 2 x ) ( x 2 + 1 ) 2 = 4 x ( x 2 + 1 ) 2 Using (1) we get
d y d x = x sin x − cos x [ sin x − cos x x + log x ( sin x + cos x ) ] + 4 x ( x 2 + 1 ) 2 Differentiation exercise 10.5 question 18 (iii)
Answer: x x cos x ( cos x ( 1 + log x ) − x sin x log x − 4 x ( x 2 − 1 ) 2 Hint: Diff by x cos x Given: y = x x cos x + x 2 + 1 x 2 − 1 Solution: Let y = x x cos x + x 2 + 1 x 2 − 1 Let u = x x cos x and v = x 2 + 1 x 2 − 1 y = u + v Diff by w.r.t.x
d y d x = d ( u + v ) d x d y d x = d u d x + d v d x d y d x = d ( u + v ) d x d y d x = d u d x + d v d x Calculate
d u d x u = x x cos x [ ∵ log ( a b ) = b log a ] Take log on both sides
log u = log x x cos x log u = x cos x log x Diff w.r.t x
d ( log u ) d x = d ( x cos x log x ) d x 1 u d u d x = d ( x cos x log x ) d x Use product rule
( u v ) ′ = u ′ v + v ′ u Where
u = x cos x , v = log x 1 u d u d x = d ( x ) d x cos x + x d ( cos x ) d x log x + cos x 1 u d u d x = cos x ⋅ log x + x ( − sin x ) log x + x cos x 1 x 1 u d u d x = cos x ⋅ log x + cos x − x sin x log x 1 u d u d x = cos x ( log x + 1 ) − x sin x log x d u d x = u [ cos x ( log x + 1 ) − x sin x log x ] d u d x = x x cos x ( cos x ( log x + 1 ) − x sin x log x ) C alculate d v d x v = x 2 + 1 x 2 − 1 Diff w.r.t xd v d x = d ( x 2 + 1 x 2 − 1 ) d x d v d x ⋅ = d ( x 2 + 1 x 2 − 1 ) d x d v d x = d ( x 2 + 1 x 2 − 1 ) d x Use quotient rule ( u v ) ′ = u ′ v − v ′ u v 2 d v d x = d ( x 2 + 1 ) d x ⋅ ( x 2 − 1 ) − d d x ( x 2 − 1 ) ( x 2 + 1 ) ( x 2 − 1 ) 2 d v d x = ( 2 x + 0 ) ( x 2 − 1 ) − ( 2 x − 0 ) ( x 2 + 1 ) ( x 2 − 1 ) 2 d v d x = 2 x ( x 2 − 1 ) − 2 x ( x 2 + 1 ) ( x 2 − 1 ) 2 d v d x = 2 x ( x 2 − 1 − x 2 − 1 ) ( x 2 − 1 ) 2 d v d x = 2 x ( − 2 ) ( x 2 − 1 ) 2 = − 4 x ( x 2 − 1 ) 2 Now d y d x = d u d x + d v d x Put valued y d x = x x cos x ( cos x ( 1 + log x ) − x sin x log x ) − 4 x ( x 2 − 1 ) 2
Differentiation exercise 10.5 question 18 (iv)
Answer: ( x cos x ) x { ( 1 − x tan x ) + log ( x cos x ) + ( x sin x ) 1 x { x cos x x 2 sin x − log ( x sin x x 2 ) } Hint: Diff by applying
x x Given: ( x cos x ) x + ( x sin x ) 1 x Solution: Let y = ( x cos x ) x + ( x sin x ) 1 x u = ( x cos x ) x Take log both sides
log u = log ( x cos x ) x 1 u × d u d x = ( x cos x ) x [ ( log x + 1 ) + { log cos x + x cos x ( − sin x ) } ] 1 u d u d x = ( x cos x ) x { ( 1 − x tan x ) + log ( x cos x ) } .....................(1)
v = ( x sin x ) 1 x Take log both side
log v = 1 x log ( x sin x ) 1 v d v d x = 1 x { 1 x sin x ( x cos x + sin x × 1 } + log ( x sin x ) × − 1 x 2 1 x ( x cos x + sin x × 1 x sin x ) + log ( x sin x ) × − 1 x 2 d u d x = ( x sin x ) 1 x { x cos x + sin x x 2 sin x − log ( x sin x ) x 2 } ............(2)
From (1) and (2)
d y d x = ( x cos x ) x { ( 1 − x tan x ) + log ( x cos x ) + ( x sin x ) 1 x { x cos x x 2 sin x − log ( x sin x x 2 ) } Differentiation exercise 10.5 question 18 (v)
Answer: ( x + 1 x ) x [ ( x 2 − 1 x 2 + 1 ) + log ( x + 1 x ) ] + x ( 1 + 1 x ) ( x + 1 − log x x 2 ) Hint: Diff by ( x + 1 x ) x Given: ( x + 1 x ) x + x ( 1 + 1 x ) Solution: Let y = ( x + 1 x ) x + x ( 1 + 1 x ) y = u + v Diff w.r.t x
d y d x = d ( u + v ) d x = d u d x + d v d x Calculate
d u d x , u = ( x + 1 x ) x Take log on both side
log u = log ( x + 1 x ) x log u = x log ( x + 1 x ) 1 u d u d x = d ( x log ( 1 + 1 x ) d x Use product rule
( u v ) ′ = u ′ v + v ′ u 1 u d u d x = log ( x + 1 x ) + 1 ( x + 1 x ) d d x ( x + 1 x ) x 1 u d u d x = log ( x + 1 x ) + ( x x 2 + 1 ( x 2 − 1 x 2 ) x ) 1 u d u d x = log ( x + 1 x ) + ( x 2 − 1 x 2 + 1 ) d u d x = u ( log ( x + 1 x ) ) + ( x 2 − 1 x 2 + 1 ) d u d x = ( x + 1 x ) x ⋅ ( x 2 − 1 x 2 + 1 + log ( x + 1 x ) ) Calculate
d v d x v = x ( 1 + 1 x ) Taking
log v = [ 1 + 1 x ] log x Diff w.r.t. x
Use product rule
1 v d v d x = d ( 1 + 1 x ) d x ⋅ log x + d ( log x ) d x ( 1 + 1 x ) 1 v d v d x = d ( 1 ) d x + d ( 1 x ) d x ⋅ log x + 1 x ( 1 + 1 x ) 1 v ( d v d x ) = − 1 x 2 ⋅ log x + 1 x ( 1 + 1 x ) 1 v ( d v d x ) = ( − log x + x + 1 x 2 ) d v d x = v ( − log x + x + 1 x 2 ) d v d x = x ( 1 + 1 x ) ( x + 1 − log x x 2 ) Now
d y d x = d u d x + d v d x Put value of
d u d x and d v d x d y d x = ( x + 1 x ) x [ ( x 2 − 1 x 2 + 1 ) + log ( x + 1 x ) ] + x ( 1 + 1 x ) ( x + 1 − log x x 2 ) Differentiation exercise 10.5 question 18 (vi)
Answer: e sin x cos x + ( tan x ) x ⋅ [ log ( tan x ) + x sec 2 x tan x ] Hint: Diff by
e sin x Given: e sin x + ( tan x ) x Solution: y = e sin x + ( tan x ) x Let
z = ( tan x ) x Take log on both sides
log z = x log tan x Diff w.r.t x
1 z d z d x = log tan x + x sec 2 x tan x Thus
d y d x = e sin x cos x + ( tan x ) x ⋅ [ log ( tan x ) + x sec 2 x tan x ] Differentiation exercise 10.5 question 18 (viii)
Answer: ( x 2 − 3 x + 2 x log x ) x x 2 − 3 + ( x 2 x − 3 + 2 x log ( x − 3 ) ) ( x − 3 ) x 2 Hint: Diff by
x n − 3 Given: y = x x 2 − 3 + ( x − 3 ) x 2 Solution: y = u + v u = x x 2 − 3 log u = log x x 2 − 3 log u = ( x 2 − 3 ) log x 1 u d u d x = ( x 2 − 3 ) ⋅ 1 x + log x ( 2 x ) d u d x = ( x 2 − 3 x + 2 x log x ) ⋅ x x 2 − 3 Now
v = ( x − 3 ) x 2 Take log on both sides
log v = log ( x − 3 ) x 2 1 v d v d x = x 2 log ( x − 3 ) d v d x = [ x 2 x − 3 + 2 x log ( x − 3 ) ] ( x − 3 ) x 2 d y d x = d u d x + d v d x ( x 2 − 3 x + 2 x log x ) x x 2 − 3 + ( x 2 x − 3 + 2 x log ( x − 3 ) ) ( x − 3 ) x 2 Differentiation exercise 10.5 question 19
Answer: d y d x = e x + 10 x log 10 + x x ( log n + 1 ) Hint: Differentiate the statement taking u and v
Given: y = e x + 10 x + x x Solution: Let
x x = u y = e x + 10 x + u d y d x = d ( e x ) d x + d ( 10 x ) d x + d u d x ..........(1)
For
u , u = x x log u = log x x d d x ( log u ) = x log x 1 u d u d x = log x + x ⋅ d d x ( log x ) d u d x = u [ log x + x̸ ⋅ 1 ⧸ x ] = x x ( log x + 1 ) Put
d u d x in eq (1)
d d x ( e x ) = e x d y d x = e x + 10 x log 10 + x x ( log x + 1 ) 0
Differentiation exercise 10.5 question 20
Answer: d y d x = n ⋅ x n − 1 + n x ⋅ log n + x x ( log x + 1 ) Hint: Differentiate the equation taking log on both sides
Given: y = x x + n x + x x + n n Solution: y = x x + n x + x x + n n As we know
[ d d x ( x n ) = n x n − 1 ] [ d d x ( log x ) = 1 x ] According to question
d y d x = d d x ( x x ) + d d x ( n x ) + d u d x + d d x ( x n ) .......(1)
Take
u = x x d d x ( log u ) = log x x = d d x ( x log x ) $1 u d u d x = d x d x ⋅ log x + x d d x ( log x ) d u d x = u [ log + ⧸ x ⋅ 1 ⧸ x ] d u d x = x x [ log x + 1 ] $ Put in eq. (1)
d y d x = n ⋅ x n − 1 + n x ⋅ log n + x x ( log x + 1 ) Differentiation exercise 10.5 question 21
Answer: d y d x = ( x 2 − 1 ) 3 ( 2 x − 1 ) ( x − 3 ) ( 4 x − 1 ) [ 6 x x 2 − 1 + 2 2 x − 1 − 1 2 ( x − 3 ) − 2 x ( 4 x − 1 ) ] Hint: Differentiate the equation taking log on both sides
Given: y = ( x 2 − 1 ) 3 ( 2 x − 1 ) ( x − 3 ) ( 4 x − 1 ) Solution: y = ( x 2 − 1 ) 3 ( 2 x − 1 ) ( x − 3 ) ( 4 x − 1 ) Taking log on both sides,
log y = log [ ( x 2 − 1 ) 3 ( 2 x − 1 ) ( x − 3 ) 1 2 ( 4 x − 1 ) 1 2 ] w.r.t x 1 y d y d x = 3 log ( x 2 − 1 ) + log ( 2 x − 1 ) − 1 2 log ( x − 3 ) − 1 2 log ( 4 x − 1 ) [ ∵ log A B = log A + log B log a B = log A − log B log A n = n log A ] 1 y d y d x = 3.2 x x 2 − 1 + 2 2 x − 1 − 1 2 ⋅ 1 ( x − 3 ) − 1 2 ⋅ 1 ( 4 x − 1 ) 4 x d y d x = y [ 6 x x 2 − 1 + 2 2 x − 1 − 1 2 ( x − 3 ) − 2 x ( 4 x − 1 ) ] d y d x = ( x 2 − 1 ) 3 ( 2 x − 1 ) ( x − 3 ) ( 4 x − 1 ) [ 6 x x 2 − 1 + 2 2 x − 1 − 1 2 ( x − 3 ) − 2 x ( 4 x − 1 ) ] Differentiation exercise 10.5 question 22
Answer: d y d x = e a x sec x log x 1 − 2 x [ a + tan x + 1 x log x + 1 1 − 2 x ] Hint: Differentiate the equation taking log on both sides
Given: y = e a x sec x log x 1 − 2 x Solution: y = e a x sec x log x 1 − 2 x Taking log on both sides,
log y = log [ e a x sec x log x 1 − 2 x ] = log ( e a x ) + log ( sec x ) + log ( log x ) − log ( 1 − 2 x ) 1 2 log y = a x + log ( sec x ) + log ( log x ) − 1 2 log ( 1 − 2 x ) 1 y d y d x = a + sec x ⋅ tan x sec x + 1 log x ⋅ 1 x − 1 2 ⋅ 1 ( − 2 ) ( 1 − 2 x ) d y d x = y [ a + tan x + 1 x log x + 1 1 − 2 x ] d y d x = e a x sec x log x 1 − 2 x [ a + tan x + 1 x log x + 1 1 − 2 x ] Differentiation exercise 10.5 question 23
Answer: d y d x = e 3 x ⋅ sin 4 x .2 x [ e 3 x ⋅ sin 4 x ⋅ 2 x ( 3 + 4 cot 4 x + ln 2 ) ] Hint: Differentiate the equation taking log on both sides
Given: y = e 3 x ⋅ sin 4 x ⋅ 2 x Solution: [ ∵ log A B = log A + log B ] ln y = ln e 3 x + ln sin 4 x + ln 2 x Diff w.r.t x
1 y d y d x = 1 e 3 x ⋅ ⋅ e 3 x ⋅ 3 + cos 4 x sin 4 x ⋅ 4 + ln 2 d y d x = e 3 x ⋅ sin 4 x .2 x [ e 3 x ⋅ sin 4 x .2 x ( 3 + 4 cot 4 x + ln 2 ) ] Differentiation exercise 10.5 question 24
Answer: d y d x = sin x ⋅ sin 2 x ⋅ sin 3 x ⋅ sin 4 x [ cot x + cot 2 x .2 + 3 cot 3 x + 4 cot 4 x ] Hint: Differentiate the equation taking log on both sides
Given: y = sin x ⋅ sin 2 x ⋅ sin 3 x ⋅ sin 4 x Solution: y = sin x ⋅ sin 2 x ⋅ sin 3 x ⋅ sin 4 x Taking log on both sides,
log y = log ( sin x ⋅ sin 2 x ⋅ sin 3 x ⋅ sin 4 x ) = log sin x + log sin 2 x + log sin 3 x + log sin 4 x 1 y d y d x = cot x + cot 2 x .2 + 3 cot 3 x + 4 cot 4 x [ ∵ d d x ( log sin x ) = 1 sin x ⋅ cos x = cot x ] d y d x = y [ cot x + cot 2 x .2 + 3 cot 3 x + 4 cot 4 x ] d y d x = sin x ⋅ sin 2 x ⋅ sin 3 x ⋅ sin 4 x [ cot x + cot 2 x .2 + 3 cot 3 x + 4 cot 4 x ] Differentiation exercise 10.5 question 27
Answer: d y d x = ( tan x ) cot x [ cosec 2 x ( 1 − log tan x ) ] + ( cot x ) tan x [ sec 2 x ⋅ log ( cot x ) − 1 ] Hint: Differentiate the equation taking log on both sides
Given: y = ( tan x ) cot x + ( cot x ) tan x Solution: y = ( tan x ) cot x + ( cot x ) tan x Let's assume
y 1 = ( tan x ) cot x and y 2 = ( cot x ) tan x d y d x = d y 1 d x + d y 2 d x .......(1)
Now
y 1 = ( tan x ) cot x log y 1 = cot x ⋅ log ( tan x ) On diff both sides w.r.t. x
1 y 1 d y 1 d x = [ cot x ⋅ 1 tan x ⋅ sec 2 x + log ( tan x ) x − cos e c 2 x ] d y 1 d x = ( tan x ) cot x [ cosec 2 x ( 1 − log ( tan x ) ] .......(2)
y 2 = ( cot x ) tan x log y 2 = tan x log ( cot x ) On diff both sides w.r.t. x
1 y 2 d y 2 d x = [ tan x ⋅ 1 cot x ⋅ − ( cos e c 2 x ) + log cot x ⋅ sec 2 x ] d y 2 d x = y 2 [ − sec 2 x + log ( cot x ) ⋅ sec 2 x ] d y 2 d x = ( cot x ) tan x [ sec 2 x log ( cot x − 1 ) ] ........(3)
d y d x = d y 1 d x + d y 2 d x Answer: d y d x = ( sin x ) x [ x cot x + log sin x ] + 1 2 x − x 2 Hint: Differentiate the equation taking log on both sides
Given: Solution: y = ( sin x ) x + sin − 1 ( x ) y = y 1 + y 2 Diff w.r.t x
d y d x = d y 1 d x + d y 2 d x .......(1)
y 1 = ( sin x ) x Taking log on both sides
log y 1 = log ( sin x ) x [ ∵ log m n = n log m ] log y 1 = x log sin x 1 y 1 d y d x = x ⋅ 1 sin x ⋅ cos x + log sin x ⋅ 1 [ ∵ d d x log x = 1 x d d x I . I I = I d d x I I + I I d d x I ] d y 1 d x = y 1 [ x ⋅ cot x + log sin x ] d y 1 d x = ( sin x ) n [ x . cot x + log sin x ] .......(2)
y 2 = sin − 1 ( x ) d y 2 d x = 1 1 − ( x ) 2 ⋅ d d x ( x ) d y 2 d x = 1 1 − x ⋅ 1 2 x d y 2 d x = 1 2 x ( 1 − x ) d y 2 d x = 1 2 x − x 2 .........(3)
Put (2) and (3) in eq(1)
d y d x = ( sin x ) x [ x cot x + log sin x ] + 1 2 x − x 2 Differentiation exercise 10.5 question 28 (ii)
Answer: d y d x = x sin x ( sin x x + log x cos x ) + 1 2 x − x 2 Hint: Differentiate the equation taking log on both sidesGiven: y = x sin x + sin − 1 ( x ) Solution: y = x sin x + sin − 1 ( x ) y = y 1 + y 2 Diff w.r.t xd y d x = d y 1 d x + d y 2 d x .......(1) Let y 1 = x sin x log y 1 = log x ( sin x ) x On diff both side with respect to x we get1 y d y d x = sin x d d x log x + log x d d x sin x 1 y d y d x = sin x 1 x + log x cos x d y d x = y ( sin x x + log x cos x ) d y d x = x sin x ( sin x x + log x cos x ) from 1y 2 = sin − 1 ( x ) d y 2 d x = 1 1 − ( x ) 2 ⋅ d d x ( x ) [ ∵ d d x sin − 1 ( x ) = 1 1 − x 2 ] d y 2 d x = 1 1 − x ⋅ 1 2 x d y 2 d x = 1 2 x ( 1 − x ) d y 2 d x = 1 2 x − x 2 ........(3) Put (2) and (3) in eq(1)d y d x = x sin x ( sin x x + log x cos x ) + 1 2 x − x 2
Differentiation exercise 10.5 question 29 (i)
Answer: d y d x = x cos x ( cos x x − sin x log x ) + sin tan x ( 1 + sec 2 x log sin x ) Hint: To solve this equation we use
f ( x ) f ( x ) formula
Given: Solution: y = x cos x + sin x tan x y = ( f ( x ) ) f ( x ) Let u = x cos x log u = x cos x log u = cos x log x 1 u d u d x = cos x ⋅ 1 x + log x ( − sin x ) d u d x = u ( cos x x − sin x log x ) = x cos x [ ( cos x x − sin x log x ) ] v = sin x tan x log v = tan x log sin x 1 v d v d x = tan x [ 1 sin x d d x ( sin x ) ] + log sin x sec 2 x d v d x = v ( tan x × cos x sin x + sec 2 x log sin x ) d v d x = v ( sin x cos x × cos x sin x + sec sin 2 x log sin x ) d v d x = sin x tan x ( 1 + sec 2 x log sin x ) d y d x = d u d x + d v d x d v d x = x cos x [ ( cos x x − sin x log x ) ] + sin x tan x ( 1 + sec 2 x log sin x ) Differentiation exercise 10.5 question 29 (ii)
Answer: d y d x = x x ( 1 + log x ) + ( sin x ) x [ x cot x + log ( sin x ) ] Hint: Differentiate the equation taking log on both sides
Given: y = x x + ( sin x ) x Solution: y = x x + ( sin x ) x d y d x = d u d x + d v d x .............(1)
Let u = x x log u = log x x log u = x log x Diff w.r.t x
1 u d u d x = x ⋅ 1 x + log x d u d x = u ( 1 + log x ) d u d x = x x ( 1 + log x ) ..............(2)
Again let v = ( sin x ) x log v = log ( sin x ) x log v = x log ( sin x ) Diff w.r.t x
1 v d v d x = x ⋅ cos x sin x + log ( sin x ) d v d x = v [ x ⋅ cot x + log ( sin x ) ] d v d x = ( sin x ) x [ x ⋅ cot x + log ( sin x ) ] ...........(3)
Put (2) and (3) in eq (1)
d y d x = x x ( 1 + log x ) + ( sin x ) x [ x cot x + log ( sin x ) ] Answer: d y d x = ( tan x ) log x [ log x ( tan x ) x + log x sec 2 x tan x ] Hint: Differentiate the equation taking log on both sides
Given: y = ( tan x ) log x + cos 2 ( π 4 ) Solution: d y d x = d d x ( u + cos 2 ( π 4 ) ) d y d x = d u d x Let
u = ( tan x ) log x log u = log ( tan x ) log x d d x ( log u ) = log ( tan x ) log x 1 u d u d x = d d x ( log x ) log ( tan x ) + log x ⋅ d d x log ( tan x ) d u d x = u [ log ( tan x ) x + log x ⋅ 1 tan x ⋅ sec 2 x ] d u d x = ( tan x ) log x [ log x ( tan x ) x + log x ⋅ sec 2 x tan x ] d y d x = ( tan x ) log x [ log x ( tan x ) x + log x sec 2 x tan x ] Differentiation exercise 10.5 question 31
Answer: d y d x = x x ( log x + 1 ) + x 1 x − 2 ( 1 − log x ) Hint: Differentiate the equation taking log on both sidesGiven: y = x x + x 1 x Solution: y = x x + x 1 x d y d x = d u d x + d v d x Let u = x x log u = log x x d d x ( log u ) = log x x d d x ( log u ) = d d x ( x log x ) 1 u ⋅ d u d x = d x d x ⋅ log x + x d d x ( log x ) d u d x = u [ log x + x ] ⋅ 1 x ] d u d x = x x [ log x + 1 ] Let v = x 1 x log v = log x 1 x d d x ( log v ) = d d x ( 1 x log x ) 1 v ⋅ d v d x = 1 x ⋅ d d x ( log x ) + log x ⋅ d d x ( 1 x ) d v d x = v [ 1 x 2 + log x ⋅ ( − 1 x 2 ) ] = x 1 x [ 1 − log x x 2 ] d y d x = d u d x + d v d x = x x ( log x + 1 ) + x 1 x − 2 ( 1 − log x )
Differentiation exercise 10.5 question 32
Answer: d y d x = x log x [ 2 log x x ] + ( log x ) x ( 1 log x + log ( log x ) ) Hint: Differentiate the equation taking log on both sides
Given: y = x log x + ( log x ) x Solution: Let’s assume
y 1 = x log x and y 2 = ( log x ) x d y d x = d y 1 d x + d y 2 d x Now
y 1 = x log x log y 1 = log x ⋅ log x Diff w.r.t x
1 y 1 × d y 1 d x = [ log x ⋅ 1 x + log x ⋅ 1 x ] d y 1 d x = x log x [ 2 log x x ] .............(1)
y 2 = ( log x ) x log y 2 = x log ( log x ) Diff both sides w.r.t x
1 y 2 d y 2 d x = [ x ⋅ 1 log x ⋅ 1 x ⋅ 1 + log ( log x ) ] d y 2 d x = ( log x ) x [ 1 log x + log ( log x ) ] ...............(2)
d y d x = d y 1 d x + d y 2 d x x log x [ 2 log x x ] + ( log x ) x ( 1 log x + log ( log x ) ) Answer: d y d x = y x Hint: To differentiate the equation take log on both the sides
Given: x 13 y 7 = ( x + y ) 20 Solution: log ( x 13 y 7 ) = log ( x + y ) 20 log ( x 13 ) + log ( y 7 ) = log ( x + y ) 20 d d x ( 13 log x + 7 log y ) = d d x ( 20 log ( x + y ) ) 13 ⋅ 1 x + 7 ⋅ 1 y ⋅ d y d x = 20 ⋅ 1 x + y ⋅ d d x ( x + y ) 13 x + 7 y d y d x = 20 x + y ⋅ ( 1 + d y d x ) ( 7 y − 20 x + y ) ⋅ d y d x = 20 x + y − 13 x 7 x + 7 y − 20 y ( x + y ) y d y d x = 20 x − 13 x − 13 y x ( x + y ) 7 x − 13 y y ( x + y ) d y d x = 7 x − 13 y x ( x + y ) d y d x = 7 x − 13 y ( x + y ) × y [ ( x + y ) d y 7 x − 13 y d y d x = y x Hence proved
Differentiation exercise 10.5 question 34
Answer: x ⋅ d y d x = 2 y Hint: Differentiate the equation by taking log on both the sides
Given: x 16 y 9 = ( x 2 + y ) 17 Solution: x 16 y 9 = ( x 2 + y ) 17 Taking log on both sides,
log ( x 16 y 9 ) = log ( x 2 + y ) 17 log ( x 16 ) + log ( y 9 ) = log ( x 2 + y ) 17 d d x 16 log ( x ) + d d x 9 log ( y ) = d d x ( 17 log ( x 2 + y ) ) 16 x + 9 y ⋅ d y d x = 17 ⋅ 1 x + y ⋅ [ ( x 2 + y ) d y d x ] 16 x − 34 x 2 + y = ( 17 x 2 + y − 9 y ) d y d x 16 x 2 + 16 y − 34 x x ( x 2 + y ) = ( 17 y − 9 x 2 − 9 y ( x 2 + y ) y ⋅ d y d x − 18 x 2 + 16 y x ( x 2 + y ) = − 9 x 2 + 8 y ( x 2 + y ) y ⋅ d y d x x ⋅ d y d x = 2 y Differentiation exercise 10.5 question 35
Answer: d y d x = cos ( x x ) ⋅ x x ( 1 + log x ) Hint: Differentiate the equation by taking log on both the sides
Given: y = sin ( x ) x Solution: Let take
u = ( x ) x y = sin u d y d x = cos u ⋅ d u d x d d x ( log u ) = d d x ( x log x ) 1 u ⋅ d u d x = log x ⋅ d x d x + x ⋅ d d x ( log x ) d u d x = u [ log x + x ⋅ 1 x ] d u d x = x x [ log x + 1 ] Put the value of
d u / d x we get
d y d x = cos ( x x ) ⋅ x x ⋅ log ( x + 1 ) Answer: d y d x = − { x x ( 1 + log x ) + y x log y ) x ⋅ y ( x − 1 ) } Hint: To solve this equation we denote both term as u and v
Given: x x + y x = 1 Solution: d u d x + d v d x = 0 u = x x Taking log on both sides,
log u = x log x on diff. we get
1 u d u d x = x d d x ( log x ) + log x ⋅ d x d x d u d x = u ( x ⋅ 1 x + log x ) d u d x = x x ( log x + 1 ) v = y x Taking log both side
log v = x log y on diff. we get
1 v ⋅ d v d x = x ⋅ d d x ( log y ) + log y ⋅ d x d x d v d x = v [ x y ⋅ d y d x + log y ] d v d x = y x ⋅ [ x y ⋅ d y d x + log y ] Hence
d y d x = − { x x ( 1 + log x ) + y x log y ) x ⋅ y ( x − 1 ) } Differentiation exercise 10.5 question 37
Answer: d y d x = − ( y ( y + x log y ) ) x ( y log x + x ) Hint: Adding log on both sides of equation
Given: − x y ⋅ y x = 1 Solution: Taking log on both sides,
log x y + log y x = 0 y log x + x log y = 0 log x d y d x + y ⋅ d d x ( log x ) + log y d d x x + x d d x ( log y ) = 0 log x d y d x + y x + log y + x y d y d x = 0 d y d x ( log x + x y ) = − ( y x + log y ) d y d x = − ( y x + log y ) ( log x + ⋅ x y ) d y d x d y d x = − ( y ( y + x log y ) x ( y log x + x ) d y d x = − ( y ( y + x log y ) x ( y log x + x ) Answer: d y d x = x ( 1 + log ( x + y ) − y x log y y log x + x − y ( 1 + log x + y ) Hint: To solve this we add log on both sides
Given: x y + y x = ( x + y ) x + y Solution: Taking log on both sides,
log x y + log y x = log ( x + y ) x + y y log x + x log y = ( x + y ) + log ( x + y ) [ ∵ d d x ( u − v ) = u . d v + v ⋅ d u ] y ⋅ log x + x log y ′ + x y y ′ + log y = ( x + y ) ( x + y ) ( 1 + y ′ ) + log ( x + y ) ( 1 + y ′ ) = ( 1 + y ′ ) ( 1 + log ( x + y ) ) y x + log y + y ′ ( log x + x y ) = 1 + log ( x + y ) + y ′ ( 1 + log ( x + y ) ) y ′ ( log x + x y − ( 1 + log ( x + y ) ) = 1 + log ( x + y ) − ( y x + log y ) y ′ = x ( 1 + log ( x + y ) ′ − y + x log y ) y log x + x − y ( 1 + log ( x + y ) ) Differentiation exercise 10.5 question 40
Answer: d y d x = ( 1 + log y ) 2 log y Hint: To solve this we differentiate method
Given: y x = e y − x Solution: d d x x log y = ( y − x ) log e = d d x ( y − x ) d x d x log y + x d d x ( log y ) = d y d x − d x d x log y + x 1 y d y d x = d y d x − 1 d y d x ( x y − 1 ) = − ( 1 + log y ) d y d x = − y ( 1 + log y ) x − y d y d x = y ( 1 + log y ) y − x d y d x = y ( 1 + log y ) x ⋅ log y d y d x = ( 1 + log y ) 2 log y Differentiation exercise 10.5 question 41
Answer: d y d x = log ( cosy ) − y cot x log ( sin x ) + x tan y Hint: To solve this equation we will convert log function
Given: ( sin x ) y = ( cos y ) x Solution: log ( sin x ) y = log ( cos y ) x y log ( sin x ) = x log ( cos y ) y d d x log ( sin x ) + log sin x d y d x = x d d x log cos y + log cos y d x d x y 1 sin x cos x + log sin x d y d x = x 1 cos y ( − sin x ) d y d x + log cos y ⋅ 1 y cot x + log sin x d y d x = − x tan d y d x + log cos y d x d x log ( sin x ) + y cos x sin x = log ( cos y ) + x − sin y cos y d x d x log ( sin x ) + x tan y = log ( cos y ) − y cot x d y d x = log ( cos y ) − y cot x log ( sin x ) + x tan y Hence it is proved
Differentiation exercise 10.5 question 42
Answer: d y d x = log ( tan y + y tan x ) log ( cos x ) − x sec y cos e c y Hint: To solve this equation, we will convert them in log
Given: ( cos x ) y = ( tan y ) x Solution: Taking log on both sides,
log ( cos x ) y = log ( tan y ) x y log ( cos x ) = x log ( tan x ) d d x ( y log ( cos x ) ) = d d x ( x log ( tan x ) ) [ ∵ d d x ( log x ) = 1 x d d x cos x = − sin x d d x ( tan x ) = sec 2 x ] d y d x ⋅ log ( cos x ) + y d d x ( log ( cos x ) ) = d x d x ⋅ log ( tan x ) + x ⋅ d d x ( log ( tan x ) ) d y d x log ( cos x ) + y ( − sin x cos x ) = log ( tan x ) + x ⋅ sec 2 y tan y − d y d x d y d x log ( cos x ) − tan x ⋅ y = log ( tan x ) + x ⋅ 1 cos 2 y sin y cos y ⋅ d y d x d y d x [ log ( cos x ) − x sin y cos y ] = log ( tan x ) + y tan x d y d x = log ( tan x ) + y tan x log ( cos x ) − x cos e c y ⋅ sec y Differentiation exercise 10.5 question 43
Answer: d y d x + e y − x = 0 Hint: To solve this equation we will do differentiate differently
Given: e x + e y = e x + y Solution: e x + e y = e x + y Diff w.r.t x
[ ∵ d d x e x = e x ] d d x e x + d d x e y = d d x e x + y e x + e y d y d x = e x + y d d x ( x + y ) e x + e y d y d x = e x + y ( 1 + d y d x ) d y d x ( e x + y − e y ) = e x − e x + y d y d x = ( e x − e x e y ) e x e y − e y d y d x = e x ( 1 − e y ) e y ( e x − 1 ) d y d x = − e x ( e y − 1 ) e y ( e x − 1 ) d y d x = e x − e x + y e x + y − e y = e x − ( e x + e y ) ( e x + e y ) − e y d y d x = − e y e x = − e y − x d y d x + e y − x = 0 Hence proved
Differentiation exercise 10.5 question 44
Answer: d y d x = ( log y ) 2 log y − 1 Hint: To solve this equation we convert terms in log
Given: e y = y x Solution: e y = y x y log e = x log y [ ∵ log a b = b log a ] y = x log y ...................(1)
d y d x = x ⋅ 1 y d y d x + log y d y d x − x y d y d x = log y d y d x ( 1 − x y ) = log y d y d x = log y ( 1 − x y ) d y d x = log y ( 1 − 1 log y ) d y d x = ( log y ) 2 ( log y − 1 ) Hence proved
Differentiation exercise 10.5 question 45
Answer: d y d x = 1 − x x Hint: To solve this equation we will convert term into log
Given: e x + y − x = 0 Solution: e x + y − x = 0 log e x + y = log x ( x + y ) log e = log x d d x ( x + y ) = d d x ( log x ) 1 + d y d x = 1 x d y d x = 1 x − 1 = 1 − x x d y d x = 1 − x x Hence proved
Differentiation exercise 10.5 question 46
Answer: d y d x = sin 2 ( a + y ) sin ( a + y ) − y cos ( a + y ) Hint: To solve this equation we use uv' form
Given: y = x sin ( a + y ) Solution: ( u v ) ′ = u ′ v + v ′ u d y d x = 1 × sin ( a + y ) + x cos ( a + y ) [ 0 + d y d x ] y ′ = sin ( a + y ) + x cos ( a + y ) y ′ y ′ = sin ( a + y ) 1 − x cos ( a + y ) ⋅ sin ( a + y ) sin ( a + y ) d y d x = sin 2 ( a + y ) sin ( a + y ) − y ⋅ cos ( a + y ) Hence proved
Differentiation exercise 10.5 question 47
Answer: d y d x = sin 2 ( a + y ) sin a Hint: To solve this equation we use uv' form
Given: x sin ( a + y ) + sin a ⋅ cos ( a + y ) = 0 Solution: ( u v ) ′ = u ′ v + v ′ u sin ( a + y ) + x ⋅ cos ( a + y ) y ′ + sin a ( − sin ( a + y ) ( 0 + y ′ ) = 0 y ′ [ x ⋅ cos ( a + y ) + ( − sin a ) ⋅ sin ( a + y ) ] = − sin ( a + y ) y ′ = − sin ( a + y ) x ⋅ cos ( a + y ) + ( − sin a ) ⋅ ( sin a + y ) ⋅ sin ( a + y ) sin ( a + y ) d y d x = − sin 2 ( a + y ) − sin a ( cos 2 ( a + y ) + sin 2 ( a + y ) ( sin 2 x + cos 2 x = 1 ) d y d x = sin 2 ( a + y ) sin a Hence proved
Answer: d y d x = 1 − ( x + y ) y cot u ( x + y ) log sin x − 1 Hint: To solve this we convert terms into log
Given: ( sin x ) y = x + y Solution: ( sin x ) y = x + y [ ∵ d y d x ∫ log sin x = y ] log ( sin x ) y = log ( x + y ) [ y = 1 sin x × cos x ] y log ( sin x ) = log ( x + y ) [ cos x sin x = cot x ] y d d x log ( sin x ) + log sin x ⋅ d y d x = 1 x + y d d x ( x + y ) y cot x + log sin x ⋅ d y d x = 1 x + y + 1 x + y d y d x d y d x ( 1 x + y − log sin x ) = y cot x ⋅ − 1 x + y d y d x ( 1 − ( x + y ) log sin x x + y ) = ( x + y ) y cot x − 1 x + y d y d x = ( x + y ) y cot x − 1 1 − ( x + y ) log sin x d y d x = − ( 1 − y cot x ( x + y ) − ( x + y ) log sin x − 1 d y = 1 − ( x + y ) ⋅ y cot x ( x + y ) log sin x − 1 Hence proved
Differentiation exercise 10.5 question 49
Answer: d y d x = − y ( x 2 y + x + y ) x ( x y 2 + x + y ) Hint: To solve this equation we solve the log term firstly
Given: x y log ( x + y ) = 1 Solution: x y log ( x + y ) = 1 d d x ( x ) ⋅ y ⋅ log ( x + y ) + x ⋅ d d x ( y ) ⋅ log ( x + y ) + x − y d d x log ( x + y ) = d d x ( 1 ) y ⋅ log ( x + y ) + d y d x ⋅ x ⋅ log ( x + y ) + x ⋅ y ⋅ 1 x + y ( 1 + d y d x ) = 0 d y d x [ x ⋅ log ( x + y ) + x y x + y ] = − ( y log ( x + y ) + x y x + y ) d y d x [ x ⋅ ( x + y ) log ( x + y ) + x y x + y ] = − y ( x + y ) log ( x + y ) x + y d y d x = − y ( x + y ) log ( x + y ) + x x ⋅ ( x + y ) ⋅ log ( x + y ) + y Hence proved
Differentiation exercise 10.5 question 50
Answer: d y d x = y x ( 1 − x cos y ) Hint: To solve this equation we differentiate it separately
Given: y = x sin y Solution: y = x sin y u = x − 1 v = sin y d y d x = x cos y d y d x + sin y ⋅ 1 d y d x = x cos y d y d x + sin y d y d x − x cos y d y d x = sin y d y d x ( 1 − x cos y ) = sin y d y d x = y x ( 1 − x cos y ) Hence proved
Differentiation exercise 10.5 question 51
Answer: 120
Hint: To solve this equation we use
d d x u v w z form
Given: f ( x ) = ( 1 + x ) ⋅ ( 1 + x 2 ) ⋅ ( 1 + x 4 ) ( 1 + x 8 ) u v w z
Solution: d d x ( u v w z ) = v w z ⋅ d u d x + u w z ⋅ d v d x + u v z ⋅ d w d x + u v w d z d x f ′ ( x ) = 1 × ( 1 + x 2 ) ( 1 + x 4 ) ( 1 + x 8 ) + ( 1 + x ) ( 1 + x 4 ) ( 1 + x 8 ) 2 x + ( 1 + x ) ( 1 + x 2 ) ( 1 + x 8 ) 4 x 3 + 8 x 7 ( 1 + x ) ( 1 + x 2 ) ( 1 + x 4 ) f ′ ( 1 ) = 1 × 2 × 2 × 2 + 2 × 2 × 2 × 2 + 2 × 2 × 2 × 4 + 8 × 1 × 2 × 2 × 2 = 8 + 16 + 36 + 64 f ( 1 ) ′ = 120 Differentiation exercise 10.5 question 52
Answer: 4 1 + x 2 + x 4 Hint: To solve this equation we use
( u v ) ′ form
Given: y = log ( x 2 + x + 1 ) x 2 − x + 1 + 2 3 tan − 1 ( 3 x 1 − x 2 ) Solution: d y d x = ( ( 2 x + 1 ) ( x 2 − x + 1 ) − ( 2 x − 1 ) ( x 2 + x + 1 ( x 2 − x + 1 ) 2 ) + 2 3 ( 1 1 + 3 x 2 ( 1 − x 2 ) 2 ) ( 3 ( 1 − x 2 ) − 3 x ( − 2 x ) ( 1 − x 2 ) 2 ) = 2 x 3 + x 2 − 2 x 2 − x + 2 x + 1 − 2 x 3 − 2 x 2 − 2 x + x 2 + x + 1 ( x 2 − x + 1 ) ( x 2 + x + 1 ) + 2 x ⋅ ( 1 − x 2 ) 2 ( 1 + x 2 + x 4 ) [ 3 − 3 x 2 + 2 3 x 2 ( 1 − x 2 ) 2 ] = 2 − 2 x 2 + 2 + 2 x 2 1 + x 2 + x 4 = 4 1 + x 2 + x 4 Differentiation exercise 10.5 question 53
Answer: d y d x = ( sin x − cos x ) sin x − cos x ( sin x + cos x ) ⋅ ( log sin x − cos x ) + 1 Hint: To solve this we take log both sides
Given: y = ( sin x − cos x ) sin x − cos x Solution: y = ( sin x − cos x ) sin x − cos x Taking log on both sides,
log y = log ( sin x − cos x ) sin x − cos x [ ∵ log x n = n log x ] log y = ( sin x − cos x ) log ( sin x − cos x ) 1 y d y d x = log ( sin x − cos x ) ( cos x + sin x ) + ( sin x − cos x ) ( 1 ( sin x − cos x ) ( cos x + sin x ) ) 1 y d y d x = ( cos x + sin x ) [ 1 + log ( sin x − cos x ) ] d y d x = y ( sin x + cos x ) [ log ( sin x − cos x ) + 1 d y d x = ( sin x − cos x ) sin x − cos x ( sin x + cos x ) ⋅ ( log sin x − cos x ) + 1
Differentiation exercise 10.5 question 54
Answer: d y d x = y ( x − 1 ) x ( y + 1 ) Hint: To solve this equation we solve side by side
Given: x y = e ( x − y ) Solution: log ( x y ) = log ( e ( x − y ) ) [ ∵ d u v d x = u ⋅ d v d x + v ⋅ d u d x ] Diff w.r.t x u [ ∵ d e x d x = e x ] x d y d x + 1 ( y ) = e ( x − y ) d d x ( x − y ) x d y d x + y = e ( x − y ) ( 1 − d y d x ) x d y d x + y = e ( x − y ) − e ( x − y ) d y d x x d y d x + e ( x − y ) d y d x = e ( x − y ) − y d y d x ( x + e ( x − y ) ) = e ( x − y ) − y d y d x = y ( x − 1 ) x ( y + 1 ) Answer: d y d x = − ( y x log y + x y − 1 ⋅ y + x x ( log x + 1 ) ) ( x y log y + y x − 1 ⋅ x ) Hint: To solve this equation we solve this differently
Given: y x + x y + x x = a b Solution: Let uvw
u + v + w = a b Diff w.r.t. x
d d x ( u + v + w ) = d d x a b d u d x + d v d u + d w d v = 0 u = y x ...........(1)
Taking log on both sides,
log u = log y x [ ∵ log a b = b log a ] Diff w.r.t. u
[ ∵ d d x ( u v ) = u v ′ + v u ′ ] d d x ( log u ) = d d x ( x log y ) [ ∵ d d x log x = 1 x ] 1 u d u d x = x ⋅ 1 y d y d x + log y ( 1 ) d u d x = u ( x y d y d x + log y ) v = x y ..............(2)
Taking log on both sides,
log v = log x y log v = y log x Diff w.r.t
1 v d v d x = y ⋅ 1 x + log x d y d x d v d u = v ( y x + log x d y d x ) w = x x ..........(3)
Log on b.s.
log w = log x x log w = x log x Diff w.r.t
1 w d w d x = x ⋅ 1 x + log x ( 1 ) From (1)
d u d x + d v d x + d w d x = 0 y x ( x y d y − log y ) + x y ( y x + log x d y d x ) + x x ( 1 + log x ) = 0 y x log y + y x − 1 x d y d x + x y log x d y d x + x y − 1 y x + x x ( 1 + log x ) = 0 y x log y + x y ⋅ y x + x x ( log x + 1 ) + y x − 1 x d y d x + x y log x d y d x = 0 y x − 1 d y d x + x y log y d y d x = − ( y x log x + x y ⋅ y x + x x ( log x + 1 ) d y d x = − ( y x log y + x y − 1 y + x x ( log x + 1 ) ) ( x y log y + y x − 1 x ) Differentiation exercise 10.5 question 56
Answer: d y d x = y tan x + log cos y log ( cos x ) + x tan y Hint: To solve this equation we add log on both sides
Given: ( cos x ) y = ( cos y ) x Solution: ( cos x ) y = ( cos y ) x Taking log on both sides,
log ( cos x ) y = log ( cos y ) x y log ( cos x ) = x log ( cos y ) [ ∵ log m n = n log m ] d ( u v ) d x = u ⋅ d v d x + v ⋅ d u d x y d d x log ( cos x ) + log ( cos x ) d y d x = x d d x log ( cos y ) + log cos y d y d x y ⋅ ( − sin x cos x ) + log ( cos x ) d y d x = x d d x log ( cos y ) d y d x + log cos y ..........(1)
− y tan x + log ( cos x ) d y d x = x ( − sin y ) cos y d y d x + log cos y log ( cos x ) d y d x + x tan y d y d x = y tan x + log cos x d y d x ( log ( cos x ) + x tan y ) = y tan x + log cos x d y d x = y tan x + log cos y log ( cos x ) + x tan y Differentiation exercise 10.5 question 57
Answer: d y d x = cos 2 ( a + y ) sin a Hint: To solve this equation we make statement
cos ( a + y ) − a cos ( a + y ) = x Given: cos y = x ⋅ cos ( a + y ) Solution: we have
cos y = x ⋅ cos ( a + y ) cos ( ( a + y ) − a ) cos ( a + y ) = x cos ( a + y ) cos a + sin ( a + y ) sin a cos ( a + y ) = x cos ( a + y ) cos a cos ( a + y ) + sin ( a + y ) ⋅ sin a cos ( a + y ) d d x ( cos a + tan ( a + y ) sin a ) = d x d x sin a ⋅ d d x ( tan ( a + y ) ) = 1 [ ∵ d d x tan x = sec 2 x ] sin a ⋅ sec 2 ( a + y ) d d x ( a + y ) = 1 sin a cos 2 ( a + y ) ⋅ d y d x = 1 d y d x = cos 2 ( a + y ) sin a Hence proved
Answer: y ⋅ d y d x + x = 2 y Hint: To solve this we add log on both side
Given: ( x − y ) e x x − y = a Solution: e x x − y = a x − y Taking log on both sides,
log e x x − y = log ( a x − y ) x x − y log e = log a − log ( x − y ) [ ∵ log p q = log p − log q ] x x − y = log a − log ( x − y ) Differentiate w.r.t x we get
d d x ( x x − y ) = 0 − d y d x log ( x − y ) ( x x − y ) d x d x − x d y d x ( x − y ) ( x − y ) 2 = − d d x log t [ ∵ d d x p ( x ) q ( x ) = q ( x ) d p d x − p d q d x q 2 ] ( x − y ) 1 − x ( 1 − d y d x ) ( x − y ) 2 = − d d x log d t d x x − y = t => d t d x = d x d x − d y d x d t d x = 1 − d y d x x 2 − y − x + x d y d x ( x − y ) 2 = − 1 t − y + x ⋅ d y ( x − y ) 2 = − 1 ( x − y ) ( 1 − d y d x ) − y + x ⋅ d y d x = ( d y d x − 1 ) ( x − y ) = x ⋅ d y d x − x − y d y d x + y − y = x + y − y d y d x y d y d x + x = 2 y Hence proved
Differentiation exercise 10.5 question 59
Answer: d y d x = x − y x log x Hint: To solve this equation we use chain rule and quotient rule
Given: x = e x y Solution: we have
x = e x y Diff w.r.t x we get
[ ∵ d d x e x = e x ] 1 = e x y d d x ( x y ) [Chain rule]
1 = e x y × y d d x x − x d d x y y 2 [ ∵ ( u v ) ′ = u r v − v r u v 2 ] y 2 = e x y ( y − x d y d x ) y 2 = y ⋅ e x y − x d y d x e x y x d y d x e x y = y ⋅ e x y − y 2 d y d x = y ( e x y − y ) x ⋅ e x y x . d y d x = 1 log x ( x − y ) [ ∵ x = e x y , log x = x y ] d y d x = x − y x ( log x ) Differentiation exercise 10.5 question 60
Answer: d y d x = x tan x ( tan x x + log x sec 2 x ) + x 2 ( x 2 + 1 ) Hint: To solve this equation we use log on both side
Given: y = x tan x + x 2 + 1 2 Solution: d d x ( log u ) = log ( x tan x ) = tan x − log x Let u = x tan x 1 u d u d x = tan x d d x log x + log x ⋅ d d x ( tan x ) d u d x = u ( tan x x + ( log x ⋅ sec 2 x ) ) d u d x = x tan x ( tan x x + ( log x ⋅ sec 2 x ) ) d y d x = d d x ( u + x 2 + 1 2 ) d y d x = d u d x + d d x ( x 2 + 1 2 ) d y d x = x tan x ( tan x x + log x ) + 1 2 x 2 + 1 2 d d x ( x 2 + 1 2 ) [ ∵ d d x x = 1 2 x ] [ ∵ d d x x 2 = 2 x ] = x tan x ( tan x x + log x sec 2 x ) + 1 2 ( x 2 + 1 ) ⋅ 2 x 2 d y d x = x tan x ( tan x x + log x sec 2 x ) + x 2 ( x 2 + 1 ) Differentiation exercise 10.5 question 61
Answer: d y d x α ( 1 − α x ) 2 + β ( 1 − β x 2 ) ( 1 − x ) 2 ( 1 − β x 2 ) + 2 α β y 2 x 3 − α β y x − α y 2 x 2 − y 3 β x 3 ( 1 − α x ) 2 ( 1 − β x ) 2 ( 1 − y x ) 2 Hint: To solve this equation we differentiate it differently
Given: y = 1 + α ( 1 x − α ) + β x ( 1 x − α ) ( 1 x − β ) + γ x 2 ( 1 x − α ) ( 1 x − β ) ( 1 x − γ ) Solution: y = 1 + α ( 1 x − α ) + β x ( 1 x − α ) ( 1 x − β ) + γ x 2 ( 1 x − α ) ( 1 x − β ) ( 1 x − γ ) y = 1 + A + B + C d y d x = 0 + d A d x + d B d x + d C d x A = α x ( 1 − α x ) d A d x = ( 1 − α x ) α − α x ( − α ) ( 1 − α x ) 2 d A d x = α − α 2 x + α 2 x ( 1 − α x ) 2 d A d x = α ( 1 − α x ) 2 .............(1)
d B d x = d d x ( β x ( 1 − x ) ( 1 − β x ) ) d B d x = ( 1 − x ) ( 1 − β x ) β − β x ( 1 − x ) ( − β ) + ( 1 − β x ) ( − 1 ) ( 1 − x ) 2 ( 1 − β x ) 2 d B d x = β ( 1 − x − β x + β x 2 ) − β x ( − β + β x − 1 + β x ) ( 1 − x ) 2 ( 1 − β x ) 2 d B d x = β − β x − β 2 x + β 2 x 2 + β 2 x − β 2 x 2 + β x − β 2 x 2 ) ( 1 − x ) 2 ( 1 − β x ) 2 d B d x = β ( 1 − β x 2 ) ( 1 − x ) 2 ( 1 − β x ) 2 .................(2)
c = y x ( 1 − α x ) ( 1 − β x ) ( 1 − γ x ) d c d x = ( 1 − α x ) ( 1 − β x ) ( 1 − γ x ) y − y x ( 1 − α x ) ( 1 − β x ) − γ ( 1 − β ) ( 1 − γ x ) ( − α ) + ( 1 − α x ) ( 1 − γ x ) ( − β ) ( 1 − α x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d c d x = ( 1 − α x − β x + α β x 2 ) ( 1 − γ x ) γ − γ x { ( − γ ) ( 1 − α x − β x + α β x ) + ( − α ) + ( 1 − β x − γ x + β γ x ) + ( − β ) ( 1 − α x − γ x + α γ x 2 ) } ( 1 − a x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d c d x = ( 1 − α x − β x + α β x 2 ) ( 1 − γ x ) γ − γ x { ( − γ ) ( 1 − α x − β x + α β x ) + ( − α ) + ( 1 − β x − γ x + β γ x 2 ) + ( − β ) ( 1 − α x − γ x + α γ x 2 ) } ( 1 − a x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d c d x = γ ( 1 − α x − β x + α β x 2 − γ x + α y x 2 + β γ x 2 − α β γ x 2 − γ x ( − γ + α γ x + β γ x − α β γ 2 x 2 − α + α β x + α γ x − α β y x 2 − β + α β x + γ β x + α β γ x 2 ) } ( 1 − a x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d c d x = γ − α γ x − β γ x + α β γ x 2 − γ 2 x + α γ 2 x 2 + β γ 2 x 2 − α β γ 2 x 2 − γ 2 x − α γ 2 x 2 − β γ 2 x 2 + α β γ 2 x 3 + α γ x − α β γ x − α γ 2 x 2 + α β y 2 x 3 + β γ x − α β γ x 2 + γ 2 β x 2 + α β γ 2 x 3 ( 1 − a x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d c d x = − α β γ x − α γ 2 x 2 − α β γ 2 x 3 − β γ 2 x 2 ( 1 − α x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 d y d x = α ( 1 − α x ) 2 + β ( 1 − β x 2 ) ( 1 − x ) 2 ( 1 − β x ) 2 + + 2 α β γ 2 x 3 − α β γ x − α γ 2 x 2 − β γ 3 x 3 ( 1 − α x ) 2 ( 1 − β x ) 2 ( 1 − γ x ) 2 RD Sharma Class 12th Exercise 10.5 deals with the Chapter Differentiation and is a lengthy exercise consisting of 71 questions. As solving all of them at once is a tedious task, students should divide the sums and practice accordingly. Although these are basic level one questions they can be quite tricky unless students know their basics right.
In this exercise you will learn topics like:
1. Differentiation of Trigonometric equations
2. Differentiation involving exponents
3. Finding first derivatives of complex Algebraic equations
4. Proof sums involving derivatives
These are the following traits that make RD Sharma Class 12th Exercise 10.5 material the best choice for students:
1. Detailed questions
The solutions provided by Brinley contain detailed questions that cover the entire syllabus. This means that students don't have to worry about any missing topics.
2. Step-by-step solutions
These solutions are interpreted with step-by-step explanations that are extremely helpful for students to understand the questions properly. Students who find RD Sharma material confusing can refer to these solutions for a clear understanding. Class 12 RD Sharma Chapter 10 Exercise 10.5 Solution material is made in such a way that it is easy for both a class topper as well as an average student to study effectively.
3. Helpful for class lectures
As differentiation is a vast topic it is not necessary that teachers might cover all the questions from the book. This is why RD Sharma class 12 Chapter 10 Exercise 10.5 material is helpful for students to stay in line with their class lectures and side-by-side prepare for their exams.
4. Exam-oriented material
The sole purpose of this material is to enable students to score good marks in exams by merging all the solutions and concepts in a singular material. The questions from RD Sharma class 12 Chapter 10 Exercise 10.5 material are exam-oriented and as RD Sharma books are widely used the questions from this material can also show up in your exam.
RD Sharma Chapter-wise Solutions