RD Sharma Class 12 Exercise 3.7 Inverse Trigonometric Function Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 3.7 Inverse Trigonometric Function Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 12:28 PM IST

The RD Sharma Solutions for Class 12 Mathematics have helped thousands of students score good marks in their public exams. It is the best guide for students to sharpen their mathematical skills whenever they find the time. Unfortunately, inverse Trsigonometry is not a concept that every student in a class would find accessible. But with the help of RD Sharma Class 12th exercie 3.7, they can perform well in their examinations.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

Inverse Trigonometric Functions Excercise: 3.7

Inverse Trignometric Functions exercise 3.7 question 1 (i)

Answer: $\frac{\pi }{6}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left(\sin \frac{\pi}{6}\right)$
Explanation:
We know that the value of $\sin \frac{\pi }{6}$ is $\frac{1}{2}$
By substituting this value in $\sin ^{-1}\left(\sin \frac{\pi}{6}\right)$
We get $\sin ^{-1}\left ( \frac{1}{2} \right )$
Let,
\begin{aligned} &y=\sin ^{-1}\left(\frac{1}{2}\right) \\ &\sin y=\frac{1}{2} \\ &\sin y=\left(\frac{1}{2}\right) \\ &\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \end{aligned}
The range of principal value of $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
and $\sin (\frac{\pi }{6}) =\frac{1}{2}$
Therefore, $\sin ^{-1}\left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6}$
Hence, \begin{aligned} &\therefore \sin ^{-1}(\sin \theta)=\theta \text { with } \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ &\sin ^{-1}\left(\sin \frac{\pi}{6}\right) \text { is } \frac{\pi}{6} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 1 (ii)

Answer: $-\frac{\pi }{6}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left(\sin \frac{7 \pi}{6}\right)$
Explanation:
First, we solve $\left(\sin \frac{7 \pi}{6}\right)$
$\operatorname{Sin} \frac{7 \pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)$
As we know $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
$\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right) \quad \because \sin [\pi+\theta]=\sin (-\theta)$
$\sin ^{-1}\left(\sin \frac{7 \pi}{6}\right)=\sin ^{-1}\left(-\frac{1}{2}\right)$
Now, $\text { let } y=\sin ^{-1}\left(-\frac{1}{2}\right)$
\begin{aligned} &-\sin y=\frac{1}{2} \\ &-\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \\ &-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right) \end{aligned}
The range of principal value of $\sin ^{-1}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text { and } \sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$
$\therefore \sin ^{-1}\left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6} \quad\left\{\text { As } \operatorname{Sin} \frac{7 \pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)\right\}$
As \begin{aligned} &\left[\sin ^{-1}(\sin x)\right]=x \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 1 (iii)

Answer: $\frac{\pi }{6}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left(\sin \frac{5 \pi}{6}\right)$
Explanation:
First, we solve $\sin \frac{5\pi }{6}$
$\frac{5 \pi}{6}=\pi-\frac{\pi}{6}$
Then,
\begin{aligned} &\sin \left(\pi-\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right) \\ &\sin (\pi-\theta)=\sin (\theta) \end{aligned}
We know that the value of $\sin \frac{\pi }{6}$ is $\frac{1}{2}$
$\sin \frac{5 \pi}{6}=\frac{1}{2}$
By substituting this value in $\sin ^{-1}\left(\sin \frac{5 \pi}{6}\right)$
we get $\sin ^{-1}\left(\frac{1}{2}\right)$
Let $y=\sin ^{-1}\left(\frac{1}{2}\right)$
\begin{aligned} &\sin y=\frac{1}{2} \\ &\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \end{aligned}
The range of principal value of $\sin ^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { and } \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
\begin{aligned} &\sin ^{-1}\left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6} \\ &\sin ^{-1}\left(\sin \frac{5 \pi}{6}\right)=\frac{\pi}{6} \quad \because\left[\sin ^{-1}(\sin \theta)=\theta\right] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 1 (iv)

Answer: $-\frac{\pi }{7}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left(\sin \frac{13 \pi}{7}\right)$
Explanation:
First we solve $\left(\sin \frac{13 \pi}{7}\right)$
$\frac{13 \pi}{7}=2 \pi-\frac{\pi}{7}$
$\sin \left(2 \pi-\frac{\pi}{7}\right)=\sin \left(-\frac{\pi}{7}\right) \quad \because[\sin (2 \pi-\theta)=\sin (-\theta)]$
By substituting these value in
$\sin ^{-1}\left(\sin \frac{13 \pi}{7}\right)=\sin ^{-1}\left(\sin -\frac{\pi}{7}\right)$
As $\sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
The range of principal value of $\sin ^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\sin ^{-1}\left(\sin \frac{13 \pi}{7}\right)=-\frac{\pi}{7}$

Inverse Trignometric Functions exercise 3.7 question 1 (v)

Answer: $-\frac{\pi }{8}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given:
Explanation:
First we solve $\left(\sin \frac{17 \pi}{8}\right)$
\begin{aligned} &\sin \frac{17 \pi}{8}=\sin \left(2 \pi+\frac{\pi}{8}\right) \\ &\sin \left(2 \pi+\frac{\pi}{8}\right)=\sin \left(\frac{\pi}{8}\right) \quad \because[\sin (2 \pi+\theta)=\sin (\theta)] \end{aligned}
By substituting these values in $\sin ^{-1}\left(\sin \frac{17 \pi}{8}\right)$
we get $\sin ^{-1}\left(\sin \frac{\pi}{8}\right)$
$\begin{gathered} \text { As } \sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ \therefore \sin ^{-1}\left(\sin \frac{17 \pi}{8}\right)=\frac{\pi}{8} \end{gathered}$

Inverse Trignometric Functions exercise 3.7 question 1 (vi)

Answer: $-\frac{\pi }{8}$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left\{\left(\sin -\frac{17 \pi}{8}\right)\right\}$
Explanation:
First we solve $\left(\sin -\frac{17 \pi}{8}\right)$
As we know, $-\sin \theta=\sin (-\theta)$
\begin{aligned} &\therefore\left(\sin -\frac{17 \pi}{8}\right)=-\sin \frac{17 \pi}{8} \\ &-\sin \frac{17 \pi}{8}=-\sin \left(2 \pi+\frac{\pi}{8}\right) \end{aligned}
$-\sin \left(2 \pi+\frac{\pi}{8}\right)=-\sin \left(\frac{\pi}{8}\right) \quad \because[\sin (2 \pi+\theta)=\sin (\theta)]$
\begin{aligned} &\therefore[-\sin (\theta)=\sin (-\theta)] \\ &-\sin \left(\frac{\pi}{8}\right)=\sin \left(-\frac{\pi}{8}\right) \end{aligned}
By substituting these values in $\sin ^{-1}\left\{\left(\sin -\frac{17 \pi}{8}\right)\right\}$ we get,
$\sin ^{-1}\left(\sin -\frac{\pi}{8}\right)$
$\begin{gathered} \text { As } \sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ \therefore \sin ^{-1}\left(\sin -\frac{\pi}{8}\right)=-\frac{\pi}{8} \end{gathered}$

Inverse Trignometric Functions exercise 3.7 question 1 (vii)Answer:

${\pi }-3$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}\left(\sin 3\right)$
Explanation:
We know that,$\sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which is approximately equals to $\left [ -1.57,1.57 \right ]$
But here $x=3$ , which do not lie on the above range.
∴ We know that $\sin (\pi-x)=\sin (x)$
\begin{aligned} &\sin (\pi-3)=\sin (3) \text { also } \pi-3 \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ &\sin ^{-1}(\sin 3)=\sin ^{-1}(\sin \pi-3) \\ &\text { Then, } \sin ^{-1}(\sin \pi-3)=\pi-3 \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 1 (viii)

$\pi -4$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}(\sin 4)$
Explanation:
We know that $\sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which is approximately equal to $[-1.57, 1.57]$
But $x=4$ , which do not lie on the above range
We know,
\begin{aligned} &\sin (\pi-x)=\sin (x) \\ &\sin (\pi-4)=\sin (4) \text { also } \pi-4 \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ &\sin ^{-1}(\sin 4)=\sin ^{-1}(\sin \pi-4) \end{aligned}
Then,
$\sin ^{-1}(\sin \pi-4)=\pi-4$

Inverse Trignometric Functions exercise 3.7 question 1 (ix)

Answer: $12-4{\pi }$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}(\sin 12)$
Explanation:
We know that $\sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which is approximately equal to $[-1.57, 1.57]$
But $x=12$, which do not lie on the above range
We know $\sin (2 n \pi-x)=\sin (-x)$
Hence $\sin (2 n \pi-12)=\sin (-12)$
Here,
\begin{aligned} &n=2 \text { also } 12-4 \pi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ &\sin ^{-1}(\sin 12)=12-4 \pi \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 1 (x)

Answer: $\pi -2$
Hint: The principal value branch of function $\sin ^{-1}$ is $\left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$
Given: $\sin ^{-1}(\sin 2)$
Explanation:
We know that $\sin ^{-1}(\sin x)=x \text { with } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which is approximately equal to$[-1.57, 1.57]$
But here $x=2$ , which do not lie on the above range,
we know that $\sin (\pi-x)=\sin (x)$
\begin{aligned} &\sin (\pi-2)=\sin (2) \text { also } \pi-2 \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ &\sin ^{-1}(\sin 2)=\sin ^{-1}(\sin \pi-2) \\ &\therefore \sin ^{-1}(\sin \pi-2)=\pi-2 \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 2 (i)

Answer: $\frac{\pi }{4}$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}\left\{\cos \left(-\frac{\pi}{4}\right)\right\}$
Explanation:
We know that $\cos \left(-\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right) \quad \because[\cos (-\theta)=\cos \theta]$
Also know that, $\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
By substituting these values in $\cos ^{-1}\left\{\cos \left(-\frac{\pi}{4}\right)\right\}$
we get,
$\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
Let $y=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$\cos y=\frac{1}{\sqrt{2}}$
Hence, range of principal value of $\cos ^{-1} \text { is }[0, \pi] \text { and } \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
\begin{aligned} &\cos ^{-1}\left\{\cos \left(-\frac{\pi}{4}\right)\right\}=\frac{\pi}{4} \\ &\therefore \cos ^{-1}(\cos x)=x, x \in[0, \pi] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 2 (ii)

Answer: $\frac{3\pi }{4}$
Hint: The principal value branch of function $\cos ^{-1}$ is $[0,\pi ]$
Given: $\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)$
Explanation:
First we solve $\cos \frac{5\pi }{4}$
\begin{aligned} &\cos \frac{5 \pi}{4}=\cos \left(\pi+\frac{\pi}{4}\right) \\ &\cos \left(\pi+\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} \quad \because[\cos (-\theta)=\cos \theta] \end{aligned}
As we know that $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
$\cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
By substituting these value in $\cos ^{-1}\left\{\cos \left(\frac{5 \pi}{4}\right)\right\}$
we get,
$\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
Since $[\cos (-\theta)=\cos \theta]$
Let $y=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
\begin{aligned} &\cos y=-\frac{1}{\sqrt{2}} \\ &-\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\ &\cos \left(\pi-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} \\ &\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}} \end{aligned}
Hence, range of principal value of $\cos ^{-1} \text { is }[0, \pi] \text { and } \cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
$\cos ^{-1}\left\{\cos \left(\frac{5 \pi}{4}\right)\right\}=\frac{3 \pi}{4} \therefore \cos ^{-1}(\cos x)=x, x \in[0, \pi]$

Inverse Trignometric Functions exercise 3.7 question 2 (iii)

Answer: $\frac{2\pi }{3}$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}\left ( \cos \frac{4\pi }{3} \right )$
Explanation:
First we solve $\cos \left ( \frac{4\pi }{3} \right )$
\begin{aligned} &\cos \frac{4 \pi}{3}=\cos \left(\pi+\frac{\pi}{3}\right) \\ &\therefore \cos [\pi+\theta]=-\cos \theta \end{aligned}
\begin{aligned} &\cos \left(\pi+\frac{\pi}{3}\right)=-\frac{1}{2} \\ &\cos \left(\frac{4 \pi}{3}\right)=-\frac{1}{2} \end{aligned}
By substituting these value in $\cos ^{-1}\left\{\cos \left(\frac{4 \pi}{3}\right)\right\}$
$\cos ^{-1}\left(-\frac{1}{2}\right)$
Now,
Let $y=\cos ^{-1}\left(-\frac{1}{2}\right)$
\begin{aligned} &\cos y=-\frac{1}{2} \\ &-\cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\ &\cos \left(\pi-\frac{\pi}{3}\right)=-\frac{1}{2} \\ &\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2} \end{aligned}
Hence, range of principal value of $\cos ^{-1} \text { is }[0, \pi] \text { and } \cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$
$\cos^{-1}(\cos\frac{2\pi}{3})=\frac{2\pi}{3}$

Inverse Trignometric Functions exercise 3.7 question 2 (iv)

Answer: $\frac{\pi }{6}$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$
Explanation:
First we solve $\cos \frac{13 \pi}{6}$
\begin{aligned} &\cos \frac{13 \pi}{6}=\cos \left(2 \pi+\frac{\pi}{6}\right) \\ &\therefore[\cos (2 \pi+\theta)]=\cos \theta \\ &\cos \left(2 \pi+\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right) \end{aligned}
$\begin{gathered} =\frac{\sqrt{3}}{2} \\ \cos \left(\frac{13 \pi}{6}\right)=\frac{\sqrt{3}}{2} \end{gathered}$
By substituting these values in $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$
we get,
$\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Now, $\operatorname{let} y=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
\begin{aligned} &\cos y=\frac{\sqrt{3}}{2} \\ &\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \end{aligned}
Hence, range of principal value of $\cos ^{-1} \text { is }[0, \pi] \text { and } \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
\begin{aligned} &\cos ^{-1}\left(\cos \frac{\pi}{6}\right)=\frac{\pi}{6} \\ &\therefore \cos ^{-1}(\cos x)=x, x \in[0, \pi] \\ &\cos ^{-1}\left\{\cos \left(\frac{13 \pi}{6}\right)\right\}=\frac{\pi}{6} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 2 (v)

Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}(\cos 3)$
Explanation:
We know that
$\cos ^{-1}(\cos 3)=3,3 \in[0, \pi] \quad\left[\cos ^{-1}(\cos \theta)=\theta \text { if } 0 \leq \theta \leq \pi\right]$
Hence, the answer is $\cos ^{-1}(\cos 3)=3$

Inverse Trignometric Functions exercise 3.7 question 2 (vi)

Answer: $2\pi -4$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}(\cos 4)$
Explanation:
We know that $\cos ^{-1}(\cos x)=x \text { if } x \in[0, \pi] \approx[0,3.14]$

And here$x=4$ which do not lie in the above range

\begin{aligned} &\cos (2 \pi-x)=\cos (x) \\ &\cos (2 \pi-4)=\cos (4) \operatorname{so} 2 \pi-4 \text { belongs in }[0, \pi] \\ &\cos ^{-1}(\cos 4)=2 \pi-4 \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 2 (vii)

Answer: ${2\pi }-5$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}(\cos 5)$
Explanation:
We know that $\cos ^{-1}(\cos x)=x \text { if } x \in[0, \pi] \approx[0,3.14]$
And here $x=5$ which do not lie in the above range.
We know that $\cos (2 \pi-x)=\cos (x)$
$\cos (2 \pi-5)=\cos (5) \operatorname{so} 2 \pi-5 \text { belongs in }[0, \pi]$
Hence, $\cos ^{-1}(\cos 5)=2 \pi-5$

Inverse Trignometric Functions exercise 3.7 question 2 (viii)

Answer: ${4\pi }-12$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cos ^{-1}(\cos 12)$
Explanation:
We know that $\cos ^{-1}(\cos x)=x \text { if } x \in[0, \pi] \approx[0,3.14]$
Here$x=12$ which do not lie in the above range.
We know that
\begin{aligned} &\cos (2 n \pi-x)=\cos (x) \\ &\cos (2 n \pi-12)=\cos 12 \end{aligned}
Here, $n=2$
Also, \begin{aligned} &4 \pi-12 \text { belongs in }[0, \pi] \end{aligned}
$\cos ^{-1}(\cos 12)=4 \pi-12$

Inverse Trignometric Functions exercise 3.7 question 3 (i)

Answer: $\\ \\ \frac{\pi}{3}$
Hint: The principal value branch of function $\cos ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\tan ^{-1}\left(\tan \frac{\pi}{3}\right)$
Explanation:
As $\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
By applying this situation
we get
$\tan ^{-1}\left(\tan \frac{\pi}{3}\right)=\frac{\pi}{3}$
Hence, $\tan ^{-1}\left(\tan \frac{\pi}{3}\right) \text { is } \frac{\pi}{3}$

Inverse Trignometric Functions exercise 3.7 question 3 (ii)

Answer: $-\frac{\pi }{7}$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [-\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}\left(\tan \frac{6 \pi}{7}\right)$
Explanation:

First we solve $\tan \frac{6\pi }{7}$

\begin{aligned} &\tan \frac{6 \pi}{7}=\tan \left(\pi-\frac{\pi}{7}\right) \\ &\tan \left(\pi-\frac{\pi}{7}\right)=-\tan \frac{\pi}{7}\; \; \; \; \; \; \; \; \; \quad(\tan (\pi-\theta)=-\tan \theta) \end{aligned}

We know

$\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$\tan ^{-1}\left(\tan \frac{6 \pi}{7}\right)=-\frac{\pi}{7}$

Inverse Trignometric Functions exercise 3.7 question 3 (iii)

Answer: $\frac{\pi }{6}$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [-\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$
Explanation:
First we solve $\tan \frac{7 \pi}{6}$
$\tan \frac{7 \pi}{6}=\tan \left(\pi+\frac{\pi}{6}\right)$
As we know, $\tan (\pi+\theta)=\tan \theta$
\begin{aligned} &\tan \left(\pi+\frac{\pi}{6}\right)=\tan \frac{\pi}{6} \\ &\therefore \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \end{aligned}
By substituting this value in $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ we get
$\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
Now, $\text { let } \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=y$
\begin{aligned} &\tan y=\frac{1}{\sqrt{3}} \\ &\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}} \end{aligned}
The range of principal value of $\tan ^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { and } \tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$
$\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\frac{\pi}{6} \quad \text { As } \quad \tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Inverse Trignometric Functions exercise 3.7 question 3 (iv)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [-\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}\left(\tan \frac{9 \pi}{4}\right)$
Explanation:
First we solve $\tan \frac{9 \pi}{4}$
$\tan \frac{9 \pi}{4}=\tan \left(2 \pi+\frac{\pi}{4}\right)$
$\therefore \tan (2 \pi+\theta)=\tan \theta$
\begin{aligned} &\tan \left(2 \pi+\frac{\pi}{4}\right)=\tan \frac{\pi}{4} \\ &\therefore \tan \frac{\pi}{4}=1 \\ &\tan \frac{9 \pi}{4}=1 \end{aligned}
By substituting this value in $\tan ^{-1}\left(\tan \frac{9 \pi}{4}\right)$, we get
$\tan ^{-1}(1)$
let, $\tan ^{-1}(1)=y$
\begin{aligned} &\tan y=1 \\ &\tan \left(\frac{\pi}{4}\right)=1 \end{aligned}
The range of principal value of $\tan ^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { and } \tan \left(\frac{\pi}{4}\right)=1$
$\tan ^{-1}\left(\tan \frac{9 \pi}{4}\right)=\frac{\pi}{4}\; \; \; \; \; \; \; \; \quad \tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Inverse Trignometric Functions exercise 3.7 question 3 (v)

Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}(\tan 1)$
Explanation:
As we know $\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
By substituting this condition in given question
$\tan ^{-1}(\tan 1)=1$
Hence, $\tan ^{-1}(\tan 1)=1$

Inverse Trignometric Functions exercise 3.7 question 3 (vi)

Answer: $2-\pi$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}(\tan 2)$
Explanation:
As $\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
But here $x=2$ which does not belong to above range
\begin{aligned} &\tan (\pi-\theta)=-\tan (\theta) \\ &\tan (\theta-\pi)=\tan (\theta) \\ &\tan (2-\pi)=\tan (2) \end{aligned}
Now, $2-\pi$in the given range $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Hence, $\tan ^{-1}(\tan 2)=2-\pi$

Inverse Trignometric Functions exercise 3.7 question 3 (vii)

Answer: $4-\pi$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}(\tan 4)$
Explanation:
As $\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
But here $x=4$ which does not belongs to above range
\begin{aligned} &\tan (\pi-\theta)=-\tan (\theta) \\ &\tan (\theta-\pi)=\tan \theta \\ &\tan (4-\pi)=\tan (4) \end{aligned}
Now, $4-\pi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence, $\tan ^{-1}(\tan 4)=4-\pi$

Inverse Trignometric Functions exercise 3.7 question 3 (viii)

Answer: $12-4\pi$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
Given: $\tan ^{-1}(\tan 12)$
Explanation:
As $\tan ^{-1}(\tan x)=x \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
But here $x=12$ which does not belongs to above range
\begin{aligned} &\tan (2 n \pi-\theta)=-\tan (\theta) \\ &\tan (\theta-2 n \pi)=\tan \theta \end{aligned}
Here, $n=2$
$\tan (12-4 \pi)=\tan (12)$
Now, $12-4 \pi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence,

Inverse Trignometric Functions exercise 3.7 question 4 (i)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\sec ^{-1}$ is $\hspace{0.2cm}\forall x\in[0,\pi]\hspace{0.2cm},x\neq \frac{\pi}{2}$
Given: $\sec ^{-1}\left(\sec \frac{\pi}{3}\right)$
Explanation:
As $\sec ^{-1}(\sec x)=x \text { if } x \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$
By applying this situation we get,
$\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\frac{\pi}{3}$
Hence, $\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\frac{\pi}{3}$

Inverse Trignometric Functions exercise 3.7 question 4 (ii)

Answer: $\frac{2\pi }{3}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right)$
Explanation:
As $\sec ^{-1}(\sec x)=x \text { if } x \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$
By applying this situation we get,
$\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}$
Hence, $\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}$

Inverse Trignometric Functions exercise 3.7 question 4 (iii)

Answer: $\frac{3\pi }{4}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{5 \pi}{4}\right)$
Explanation:
First we solve $\sec \frac{5 \pi}{4}$
But $\left(2 \pi-\frac{3 \pi}{4}\right)$ belongs to 3 quadrant
So, $\sec \left(2 \pi-\frac{3 \pi}{4}\right)=\sec \frac{3 \pi}{4}$
\begin{aligned} &\therefore \sec \frac{3 \pi}{4}=\sqrt{2} \\ &-\sec \frac{3 \pi}{4}=-\sqrt{2} \end{aligned}
By substituting these value in $\sec ^{-1}\left(\sec \frac{5 \pi}{4}\right)$ we get,
$\sec ^{-1}(-\sqrt{2})$
Now, $\text { let } y=\sec ^{-1}(-\sqrt{2})$
$\Rightarrow \quad \sec y=-\sqrt{2}$
$\Rightarrow \quad-\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$
\begin{aligned} &\Rightarrow \quad \sec \left(\pi-\frac{\pi}{4}\right) \\ &\Rightarrow \quad \sec \left(\frac{3 \pi}{4}\right)=-\sqrt{2} \end{aligned}
The range of principal value of $\sec ^{-1} \text { is }[0, \pi]-\left\{\frac{\pi}{2}\right\}$
$\sec ^{-1}\left(\sec \frac{3 \pi}{4}\right)=\frac{3 \pi}{4} \; \; \; \; \; \; \; \; \; \; \quad \therefore \sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$

Inverse Trignometric Functions exercise 3.7 question 4 (iv)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{7 \pi}{3}\right)$
Explanation:
First we solve $\sec \frac{7 \pi}{3}$
\begin{aligned} &\sec \left(\frac{7 \pi}{3}\right)=\sec \left(2 \pi+\frac{\pi}{3}\right) \\ &\therefore[\sec (2 \pi+\theta)=\sec \theta] \end{aligned}
\begin{aligned} &\sec \left(2 \pi+\frac{\pi}{3}\right)=\sec \left(\frac{\pi}{3}\right) \\ &\therefore \sec \left(\frac{\pi}{3}\right)=2 \end{aligned}
By substituting these value in $\sec ^{-1}\left(\sec \frac{7 \pi}{3}\right)$ we get,
$\sec ^{-1}(2)$
Now, $\text { let } y=\sec ^{-1}(2)$
\begin{aligned} &\sec y=2 \\ &\sec \left(\frac{\pi}{3}\right)=2 \end{aligned}
The range of principal value of $\sec ^{-1} \text { is }[0, \pi]-\left\{\frac{\pi}{2}\right\} \text { and } \sec \left(\frac{\pi}{3}\right)=2$
\begin{aligned} &\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\frac{\pi}{3} \\ &\sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 4 (v)

Answer: $\frac{\pi }{5}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{9 \pi}{5}\right)$
Explanation:
First we solve $\sec \left(\frac{9 \pi}{5}\right)$
\begin{aligned} &\sec \left(\frac{9 \pi}{5}\right)=\sec \left(2 \pi-\frac{\pi}{5}\right) \\ &\therefore[\sec (2 \pi-\theta)]=\sec \theta \end{aligned}
\begin{aligned} &\sec \left(2 \pi-\frac{\pi}{5}\right)=\sec \left(\frac{\pi}{5}\right) \\ &\sec \left(\frac{9 \pi}{5}\right)=\sec \left(\frac{\pi}{5}\right) \end{aligned}
By substituting these value in $\sec ^{-1}\left(\sec \frac{9 \pi}{5}\right)$ we get,
\begin{aligned} &\sec ^{-1}\left(\sec \frac{\pi}{5}\right) \\ &\therefore \sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\} \\ &\sec ^{-1}\left(\sec \frac{\pi}{5}\right)=\frac{\pi}{5} \end{aligned}
Hence, $\sec ^{-1}\left(\sec \frac{9 \pi}{5}\right)=\frac{\pi}{5}$

Inverse Trignometric Functions exercise 3.7 question 4 (vi)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left\{\sec \left(-\frac{7 \pi}{3}\right)\right\}$
Explanation:
First we solve $\sec \left(-\frac{7 \pi}{3}\right)$
As we know that $\sec (-\theta)=\sec (\theta)$
\begin{aligned} &\sec \left(-\frac{7 \theta}{3}\right)=\sec \left(\frac{7 \pi}{3}\right) \\ &\sec \left(\frac{7 \pi}{3}\right)=\sec \left(2 \pi+\frac{\pi}{3}\right) \end{aligned}
\begin{aligned} &\sec \left(2 \pi+\frac{\pi}{3}\right)=\sec \left(\frac{\pi}{3}\right) \quad \because[\sec (2 \pi+\theta)=\sec \theta] \\ &\sec \left(\frac{\pi}{3}\right)=2 \end{aligned}
By substituting these value in $\sec ^{-1}\left\{\sec \left(-\frac{7 \pi}{3}\right)\right\}$ we get,
$\sec ^{-1}(2)$
Now, $\text { let } y=\sec ^{-1}(2)$
\begin{aligned} &\text { sec } y=2 \\ &\sec \left(\frac{\pi}{3}\right)=2 \end{aligned}
The range of principal value of $\sec ^{-1} \text { is }[0, \pi]-\left\{\frac{\pi}{2}\right\} \text { and } \sec \left(\frac{\pi}{3}\right)=2$
\begin{aligned} &\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\frac{\pi}{3} \\ &\sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\} \end{aligned}
Hence, $\sec ^{-1}\left(\sec -\frac{7 \pi}{3}\right)=\frac{\pi}{3}$

ma class 12 chapter Inverse Trignometric Functions exercise 3.7 question 4 (vi)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left\{\sec \left(-\frac{7 \pi}{3}\right)\right\}$

Inverse Trignometric Functions exercise 3.7 question 4 (vii)

Answer: $\frac{3\pi }{4}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{13 \pi}{4}\right)$
Explanation:
First we solve $\sec \left(\frac{13 \pi}{4}\right)$
$\sec \left(\frac{13 \pi}{4}\right)=\sec \left(4 \pi-\frac{3 \pi}{4}\right)$
As we know $[\sec 2 \pi-\theta]=\sec \theta$
But here after subtract $\frac{3\pi }{4}$ it comes in III quadrant where sec is negative
\begin{aligned} &\sec \left(4 \pi-\frac{3 \pi}{4}\right)=-\sec \left(\frac{3 \pi}{4}\right) \\ &\therefore \sec \frac{3 \pi}{4}=\sqrt{2} \\ &-\sec \left(\frac{3 \pi}{4}\right)=-\sqrt{2} \end{aligned}
By substituting these values in $\sec ^{-1}\left(\sec \frac{13 \pi}{4}\right)$ we get,
$\sec ^{-1}(-\sqrt{2})$
Now, $\text { let } y=\sec ^{-1}(-\sqrt{2})$
\begin{aligned} &\sec y=-\sqrt{2} \\ &-\sec y=\sqrt{2} \\ &-\sec \left(\frac{\pi}{4}\right)=\sqrt{2} \\ &\sec \left(\pi-\frac{\pi}{4}\right)=\sqrt{2} \\ &\sec \left(\frac{3 \pi}{4}\right)=-\sqrt{2} \end{aligned}
The range of the principle value of $\sec ^{-1} \text { is }[0, \pi]-\left\{\frac{\pi}{2}\right\} \text { and } \sec \left(\frac{3 \pi}{4}\right)=-\sqrt{2}$
$\sec ^{-1}\left(\sec \frac{3 \pi}{4}\right)=\frac{3 \pi}{4}$
$\therefore \sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$

Inverse Trignometric Functions exercise 3.7 question 4 (viii)

Answer: $\frac{\pi }{6}$
Hint: The range of principal value of $\sec ^{-1}$ is $\left [ 0,\pi \right ]-\left [ \frac{\pi }{2} \right ]$
Given: $\sec ^{-1}\left(\sec \frac{25 \pi}{6}\right)$
Explanation:
First we solve $\sec \frac{25 \pi}{6}$
$\sec \left(\frac{25 \pi}{6}\right)=\sec \left(4 \pi+\frac{\pi}{6}\right)$
As we know $\sec [2 \pi+\theta]=\sec \theta$
$\sec \left(4 \pi+\frac{\pi}{6}\right)=\sec \left(\frac{\pi}{6}\right)$
As we know $\sec \left(\frac{\pi}{6}\right)=\frac{2 \sqrt{3}}{3}$
By substituting these value in $\sec ^{-1}\left(\sec \frac{25 \pi}{6}\right)$ we get,
$\sec ^{-1}\left(\frac{2 \sqrt{3}}{3}\right)$
Now, $\text { let } y=\sec ^{-1}\left(\frac{2 \sqrt{3}}{3}\right)$
\begin{aligned} &\sec y=\frac{2 \sqrt{3}}{3} \\ &\sec \left(\frac{\pi}{6}\right)=\frac{2 \sqrt{3}}{3} \end{aligned}
The range of principal value of $\sec ^{-1} \text { is }[0, \pi]-\left\{\frac{\pi}{2}\right\} \text { and } \sec \left(\frac{\pi}{6}\right)=\frac{2 \sqrt{3}}{3}$
\begin{aligned} &\sec ^{-1}\left(\sec \frac{25 \pi}{6}\right)=\frac{\pi}{6} \\ &\sec ^{-1}(\sec x)=x, x \in[0, \pi]-\left\{\frac{\pi}{2}\right\} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 5sub question (i)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)$
Explanation:
As we know,
$\operatorname{cosec}^{-1}(\operatorname{cosec} x)=x \text { when } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
By applying this situation we get,
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)=\frac{\pi}{4}$

Inverse Trignometric Functions exercise 3.7 question 5 (ii)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{3 \pi}{4}\right)$
Explanation:
First we solve $\operatorname{cosec}\left(\frac{3 \pi}{4}\right)$
$\operatorname{cosec}\left(\frac{3 \pi}{4}\right)=\operatorname{cosec}\left(\pi-\frac{\pi}{4}\right)$
As we know, $[\operatorname{cosec}(\pi-\theta)=\operatorname{cosec} \theta]$
\begin{aligned} &\operatorname{cosec}\left(\pi-\frac{\pi}{4}\right)=\operatorname{cosec}\left(\frac{\pi}{4}\right) \\ &\operatorname{cosec}\left(\frac{\pi}{4}\right)=\sqrt{2} \end{aligned}
By substituting these values in $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{3 \pi}{4}\right)$ we get,
$\operatorname{cosec}^{-1}(\sqrt{2})$
Let, $y=\operatorname{cosec}^{-1}(\sqrt{2})$
\begin{aligned} &\operatorname{cosec} y=\sqrt{2} \\ &\operatorname{cosec}\left(\frac{\pi}{4}\right)=\sqrt{2} \end{aligned}
The range of the principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\} \text { and } \operatorname{cosec}\left(\frac{\pi}{4}\right)=\sqrt{2}$
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)=\frac{\pi}{4}$
Hence, $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{3 \pi}{4}\right)=\frac{\pi}{4}$

Inverse Trignometric Functions exercise 3.7 question 5 (iii)

Answer: $-\frac{\pi }{5}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{6 \pi}{5}\right)$
Explanation:
First we solve $\operatorname{cosec}\left(\frac{6 \pi}{5}\right)$
$\operatorname{cosec}\left(\frac{6 \pi}{5}\right)=\operatorname{cosec}\left(\pi+\frac{\pi}{5}\right)$
As we know, $\operatorname{cosec}(\pi+\theta)=-\operatorname{cosec} \theta$
Then, $\operatorname{cosec}\left(\pi+\frac{\pi}{5}\right)=-\operatorname{cosec}\left(\frac{\pi}{5}\right)$
$-\operatorname{cosec}\left(\frac{\pi}{5}\right)=\operatorname{cosec}\left(-\frac{\pi}{5}\right)$
As $\operatorname{cosec}(-x)=-\operatorname{cosec} x$
By substituting this value in $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{6 \pi}{5}\right)$ we get,
$\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(-\frac{\pi}{5}\right)\right)$
As we know, $\operatorname{cosec}^{-1}(\operatorname{cosec} x)=x \text { when } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{6 \pi}{5}\right)=-\frac{\pi}{5}$

Inverse Trignometric Functions exercise 3.7 question 5 (iv)

Answer: $-\frac{\pi }{6}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{11 \pi}{6}\right)$
Explanation:
First we solve $\operatorname{cosec}\left(\frac{11 \pi}{6}\right)$
$\operatorname{cosec}\left(\frac{11 \pi}{6}\right)=\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)$
As we know, $\operatorname{cosec}(2 \pi-\theta)=-\operatorname{cosec}(\theta)$
$\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec}\left(\frac{\pi}{6}\right)$
As we know, $\operatorname{cosec}\left(\frac{\pi}{6}\right)=2$
$-\operatorname{cosec}\left(\frac{\pi}{6}\right)=-2$
By substituting these values in $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{11 \pi}{6}\right)$ we get,
$\operatorname{cosec}^{-1}(-2)$
Let, $y=\operatorname{cosec}^{-1}(-2)$
\begin{aligned} &\operatorname{cosec} y=-2 \\ &-\operatorname{cosec} y=2 \\ &-\operatorname{cosec}\left(\frac{\pi}{6}\right)=2 \end{aligned}
As we know $\operatorname{cosec}(-\theta)=-\operatorname{cosec} \theta$
$-\operatorname{cosec} \frac{\pi}{6}=\operatorname{cosec}\left(-\frac{\pi}{6}\right)$
The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\} \text { and } \operatorname{cosec}\left(-\frac{\pi}{6}\right)=-2$
$\therefore \operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{11 \pi}{6}\right)\right) \mathrm{is}-\frac{\pi}{6}$

Inverse Trignometric Functions exercise 3.7 question 5 (v)

Answer: $\frac{\pi }{6}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{13 \pi}{6}\right)$
Explanation:
First we solve
$\operatorname{cosec}\left(\frac{13 \pi}{6}\right)=\operatorname{cosec}\left(2 \pi+\frac{\pi}{6}\right)$
As we know $\operatorname{cosec}(2 \pi+\theta)=\operatorname{cosec} \theta$
$\csc (2\pi+\frac{\pi}{6})=\csc (\frac{\pi}{6})=2$
By substituting these value in $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{13 \pi}{6}\right)$ we get,
$\operatorname{cosec}^{-1}(2)$
Now, $\text { let } y=\operatorname{cosec}^{-1}(2)$
\begin{aligned} &\operatorname{cosec} y=2 \\ &\operatorname{cosec}\left(\frac{\pi}{6}\right)=2 \end{aligned}
The range of the principal value in $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\} \text { and } \operatorname{cosec}\left(\frac{\pi}{6}\right)=2$
\begin{aligned} &\therefore \operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{13 \pi}{6}\right) \text { is } \frac{\pi}{6} \\ &\therefore \operatorname{cosec}^{-1}(\operatorname{cosec} x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\} \end{aligned}

Question:5.6

Inverse Trignometric Functions exercise 3.7 question 5 (vi)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\operatorname{cosec}^{-1} \text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Given: $\operatorname{cosec}^{-1}\left\{\operatorname{cosec}\left(-\frac{9 \pi}{4}\right)\right\}$
Explanation:
First we solve $\operatorname{cosec}\left(-\frac{9 \pi}{4}\right)$
As we know $\operatorname{cosec}(-\theta)=-\operatorname{cosec} \theta$
\begin{aligned} &\operatorname{cosec}\left(-\frac{9 \pi}{4}\right)=-\operatorname{cosec}\left(\frac{9 \pi}{4}\right) \\ &-\operatorname{cosec}\left(\frac{9 \pi}{4}\right)=-\operatorname{cosec}\left(2 \pi+\frac{\pi}{4}\right) \\ &-\operatorname{cosec}\left(2 \pi+\frac{\pi}{4}\right)=-\operatorname{cosec}\left(\frac{\pi}{4}\right) \end{aligned}
As we know
\begin{aligned} &-\operatorname{cosec}(\theta)=\operatorname{cosec}(-\theta) \\ &-\operatorname{cosec}\left(\frac{\pi}{4}\right)=\operatorname{cosec}\left(-\frac{\pi}{4}\right) \end{aligned}
Now it becomes $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{-\pi}{4}\right)$
\begin{aligned} &\therefore \operatorname{cosec}^{-1}(\operatorname{cosec} x)=x \text { provide } \mathrm{d} x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\} \\ &\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{\pi}{4}\right)\right)=-\frac{\pi}{4} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 6 (i)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\cot ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left(\cot \frac{\pi}{3}\right)$
Explanation:
As we know
$\cot ^{-1}(\cot x)=x \text { provided } \mathrm{} x \in[0, \pi]$
By apply this situation we get,
$\cot ^{-1}\left(\cot \frac{\pi}{3}\right)=\frac{\pi}{3}$

Inverse Trignometric Functions exercise 3.7 question 6 (ii)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\cot ^{-1}$$x$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left(\cot \frac{4\pi}{3}\right)$
Explanation:
First we solve $\cot \frac{4 \pi}{3}$
$\cot \left(\frac{4 \pi}{3}\right)=\cot \left(\pi+\frac{\pi}{3}\right)$
As we know $\cot (\pi+\theta)=\cot \theta$
\begin{aligned} &\cot \left(\pi+\frac{\pi}{3}\right)=\cot \frac{\pi}{3} \\ &\therefore \cot \frac{\pi}{3}=\frac{\sqrt{3}}{3} \end{aligned}
By substituting these value $\cot ^{-1}\left(\cot \frac{4 \pi}{3}\right)$ we get,
$\cot ^{-1}\left(\frac{\sqrt{3}}{3}\right)$
Now, $\text { let } y=\cot ^{-1}\left(\frac{\sqrt{3}}{3}\right)$
\begin{aligned} &\cot y=\frac{\sqrt{3}}{3} \\ &\cot \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{3} \end{aligned}
The range of the principal value of $\cot ^{-1} \text { is }[0, \pi]$
\begin{aligned} &\cot ^{-1}\left(\cot \frac{4 \pi}{3}\right)=\frac{\pi}{3} \\ &\therefore \cot ^{-1}(\cot x)=x, x \in[0, \pi] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 6 (iii)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\cot ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left(\cot \frac{9\pi}{4}\right)$
Explanation:
First we solve $\cot \frac{9 \pi}{4}$
\begin{aligned} &\cot \frac{9 \pi}{4}=\cot \left(2 \pi+\frac{\pi}{4}\right) \\ &\therefore \cot (2 \pi+\theta)=\cot \theta \\ &\cot \left(2 \pi+\frac{\pi}{4}\right)=\cot \frac{\pi}{4} \\ &\therefore \cot \frac{\pi}{4}=1 \end{aligned}
By substituting these value in $\cot ^{-1}\left(\cot \frac{9 \pi}{4}\right)$ we get,
$\cot ^{-1}(1)$
Now, $\text { let } y=\cot ^{-1}(1)$
\begin{aligned} &\cot y=1 \\ &\cot \left(\frac{\pi}{4}\right)=1 \end{aligned}
The range of principal value of $\cot ^{-1} \text { is }[0, \pi] \text { and } \cot \left(\frac{\pi}{4}\right)=1$
\begin{aligned} &\therefore \cot ^{-1}\left(\cot \frac{\pi}{4}\right)=\frac{\pi}{4} \\ &\cot ^{-1}(\cot x)=x, x \in[0, \pi] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 6 (iv)

Answer: $\frac{\pi }{6}$
Hint: The range of principal value of $\cot ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left(\cot \frac{19\pi}{6}\right)$
Explanation:
First we solve $\cot \left(\frac{19 \pi}{6}\right)$
$\cot \left(\frac{19 \pi}{6}\right)=\cot \left(3 \pi+\frac{\pi}{6}\right)$
As we know, $\cot (n \pi+\theta)=\cot \theta$
\begin{aligned} &\cot \left(3 \pi+\frac{\pi}{6}\right)=\cot \frac{\pi}{6} \\ &\cot \frac{\pi}{6}=\sqrt{3} \end{aligned} $\left[\because \cot 30^{\circ}=\sqrt{3}\right]$
By substituting these value in $\cot ^{-1}\left(\cot \frac{19 \pi}{6}\right)$ we get,
$\cot ^{-1}(\sqrt{3})$
Now, $\text { let } y=\cot ^{-1}(\sqrt{3})$
\begin{aligned} &\cot y=\sqrt{3} \\ &\cot \left(\frac{\pi}{6}\right)=\sqrt{3} \end{aligned}
The range of the principal value of $\cot ^{-1} \text { is }[0, \pi] \text { and } \cot \left(\frac{\pi}{6}\right)=\sqrt{3}$
$\therefore \cot ^{-1}\left(\cot \frac{\pi}{6}\right)=\frac{\pi}{6}$
As we know, $\cot ^{-1}(\cot x)=x, x \in[0, \pi]$

Inverse Trignometric Functions exercise 3.7 question 6 (v)

Answer: $\frac{\pi }{3}$
Hint: The range of principal value of $\cot ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left\{\cot \left(-\frac{8 \pi}{3}\right)\right\}$
Explanation:
First we solve $\cot \left(-\frac{8 \pi}{3}\right)$
As we know $\cot (-\theta)=-\cot \theta$
\begin{aligned} &\cot \left(-\frac{8 \pi}{3}\right)=-\cot \left(\frac{8 \pi}{3}\right) \\ &-\cot \left(\frac{8 \pi}{3}\right)=-\cot \left(3 \pi-\frac{\pi}{3}\right) \end{aligned}
As we know, $\cot (2 \pi-\theta)=-\cot \theta$
\begin{aligned} -\cot \left(3 \pi-\frac{\pi}{3}\right) &=-\cot \left(-\frac{\pi}{3}\right) \\ &=\cot \left(\frac{\pi}{3}\right) \\ \cot \left(\frac{\pi}{3}\right) &=\frac{1}{\sqrt{3}} \end{aligned}
By substituting these values in $\cot ^{-1}\left(\cot \left(-\frac{8 \pi}{3}\right)\right)$ we get,
$\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
Now,
Let $y=\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
\begin{aligned} &\cot y=\frac{1}{\sqrt{3}} \\ &\cot \left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}} \end{aligned}
The range of the principal value of $\cot ^{-1} \text { is }[0, \pi]$
\begin{aligned} &\cot ^{-1}\left(\cot \frac{\pi}{3}\right)=\frac{\pi}{3} \\ &\therefore \cot ^{-1}(\cot x)=x, \text { where } x \in[0, \pi] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 6 (vi)

Answer: $\frac{\pi }{4}$
Hint: The range of principal value of $\cot ^{-1}$ is $\left [ 0,\pi \right ]$
Given: $\cot ^{-1}\left\{\cot \left(\frac{21 \pi}{4}\right)\right\}$
Explanation:
First we solve $\cot \left(\frac{21 \pi}{4}\right)$
$\cot \left(\frac{21 \pi}{4}\right)=\cot \left(5 \pi+\frac{\pi}{4}\right)$
As we know $\cot (n \pi+\theta)=\cot \theta \text { where } n \text { is }(1,2,3, \ldots)$
$\cot \left(5 \pi+\frac{\pi}{4}\right)=\cot \left(\frac{\pi}{4}\right) \quad\left[\because \cot \frac{\pi}{4}=1\right]$
$\cot \left(\frac{\pi}{4}\right)=1$
By substituting these values in $\cot ^{-1}\left\{\cot \left(\frac{21 \pi}{4}\right)\right\}$ we get,
$\cot ^{-1}(1)$
Now , $\text { let } y=\cot ^{-1}(1)$
\begin{aligned} &\cot y=1 \\ &\cot \left(\frac{\pi}{4}\right)=1 \end{aligned}
The range of principal value of $\cot ^{-1} \text { is }[0, \pi] \text { and } \cot \left(\frac{\pi}{4}\right)=1$
\begin{aligned} &\therefore \cot ^{-1}\left(\cot \frac{\pi}{4}\right)=\frac{\pi}{4} \\ &\cot ^{-1}(\cot x)=x, x \in[0, \pi] \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (i)

Answer: $\sec ^{-1} \frac{x}{a}$
Hint: The range of principal value of $\cot ^{-1} \text { is }[0, \pi]$
Given: $\cot ^{-1}\left\{\frac{a}{\sqrt{x^{2}-a^{2}}}\right\},|x|>a$
Explanation:
Let $x=a \sec \theta$
Now, we put value of $x$ in given question.
\begin{aligned} &\cot ^{-1}\left\{\frac{a}{\sqrt{(a \sec \theta)^{2}-a^{2}}}\right\} \\ &\cot ^{-1}\left\{\frac{a}{\sqrt{a^{2} \sec ^{2} \theta-a^{2}}}\right\} \\ &\cot ^{-1}\left\{\frac{a}{\sqrt{a^{2}\left(\sec ^{2} \theta-1\right)}}\right\} \end{aligned}
As we know $1+\tan ^{2} \theta=\sec ^{2} \theta$
\begin{aligned} &\sec ^{2} \theta-1=\tan ^{2} \theta \\ &\cot ^{-1}\left\{\frac{a}{\sqrt{a^{2} \tan ^{2} \theta}}\right\} \end{aligned}
Now we remove square root
\begin{aligned} &\cot ^{-1}\left\{\frac{a}{a \tan \theta}\right\} \\ &\cot ^{-1}\left\{\frac{1}{\tan \theta}\right\} \end{aligned}
As we know, $\cot \theta=\frac{1}{\tan \theta}$
$\cot ^{-1}(\cot \theta)=\theta$
As we know, $\cot ^{-1}(\cot \theta), \theta \in[0, \pi]$
\begin{aligned} &x=a \sec \theta \\ &\theta=\sec ^{-1} \frac{x}{a} \end{aligned}
Hence, $\cot ^{-1}\left\{\frac{a}{\sqrt{x^{2}-a^{2}}}\right\},|x|>a \text { is } \sec ^{-1} \frac{x}{a}$

Inverse Trignometric Functions exercise 3.7 question 7 (ii)

Answer: $\frac{\pi}{2}-\frac{1}{2} \cot ^{-1} x$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1}\left\{x+\sqrt{1+x^{2}}\right\}, x \in R$
Explanation:
Let $x=\cot \theta ; \theta=\cot ^{-1} x$
Now ,
$\tan ^{-1}\left\{x+\sqrt{1+x^{2}}\right\}=\tan ^{-1}\left\{\cot \theta+\sqrt{1+\cot ^{2} \theta}\right\}$
As we know, $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
\begin{aligned} &\tan ^{-1}\left\{\cot \theta+\sqrt{\operatorname{cosec}^{2} \theta}\right\} \\ &\tan ^{-1}\{\cot \theta+\operatorname{cosec} \theta\} \end{aligned}
As we know, $\cot \theta=\frac{\cos \theta}{\sin \theta^{\prime}} \sin \theta=\frac{1}{\operatorname{cosec} \theta}$
\begin{aligned} &\tan ^{-1}\left\{\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}\right\} \\ &\tan ^{-1}\left\{\frac{\cos \theta+1}{\sin \theta}\right\} \end{aligned}
As we know, $\sin 2 \theta=2 \sin \theta \cos \theta$
\begin{aligned} &1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right) \\ &\tan ^{-1}\left\{\frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right\} \end{aligned}
\begin{aligned} &\tan ^{-1}\left\{\frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right\} \\ &\tan ^{1}\left\{\cot \frac{\theta}{2}\right\} \end{aligned}
As we know $\tan \theta=\cot \left(\frac{\pi}{2}-\theta\right)$
$\tan ^{-1}\left\{\tan \left(\frac{\pi}{2}-\frac{\theta}{2}\right)\right\}$
As we know $\tan ^{-1}(\tan x)=x \text { where } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \quad\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$
Now put value of θ
$\Rightarrow \quad \frac{\pi}{2}-\frac{\cot ^{-1} x}{2}$

Inverse Trignometric Functions exercise 3.7 question 7 (iii)

Answer: $\frac{1}{2} \cot ^{-1} x$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1}\left\{\sqrt{1+x^{2}}-x\right\}, x \in R$

Explanation:
Let $x=\cot \theta ; \theta=\cot ^{-1} x$
Now,
$\tan ^{-1}\left\{\sqrt{1+x^{2}}-x\right\}=\tan ^{-1}\left\{\sqrt{1+\cot ^{2} \theta}-\cot \theta\right\}$
As we know, $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
\begin{aligned} &\tan ^{-1}\left\{\sqrt{\operatorname{cosec}^{2} \theta}-\cot \theta\right\} \\ &\tan ^{-1}\{\operatorname{cosec} \theta-\cot \theta\} \end{aligned}
As we know, $\cot \theta=\frac{\cos \theta}{\sin \theta}, \operatorname{cosec} \theta=\frac{1}{\sin \theta}$
\begin{aligned} &\tan ^{-1}\left\{\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right\} \\ &\tan ^{-1}\left\{\frac{1-\cos \theta}{\sin \theta}\right\} \end{aligned}
$\\ \\ \hspace{0.5cm}\because 1-\cos x=2\sin^2\frac{x}{2}\\ \\ \hspace{0.5cm}\because \sin x=2sin \frac{x}{2} \cdot \cos \frac{x}{2}$
\begin{aligned} &\tan ^{-1}\left\{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta }{2}}\right\} \\ &\tan ^{-1}\left[\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right] \\ &\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \end{aligned}
As we know, the principal range of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
$\tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\begin{array}{ll} \Rightarrow & \frac{\theta}{2} \end{array}$
$\Rightarrow \; \; \; \; \frac{1}{2} \cot ^{-1} x$

Inverse Trignometric Functions exercise 3.7 question 7 (iv)

Answer: $\frac{1}{2} \tan ^{-1} x$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1}\left\{\frac{\sqrt{1+x^{2}}-1}{x}\right\}, x \neq 0$
Explanation:
Let $x=\tan \theta, \text { then } \theta=\tan ^{-1} x$
$\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)$
As we know, $1+\tan ^{2} \theta=\sec ^{2} \theta$
\begin{aligned} &\tan ^{-1}\left(\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right) \\ &\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \end{aligned}
$\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right) \quad \because\left[\sec \theta=\frac{1}{\cos \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
$\tan ^{-1}\left(\frac{\frac{1-\cos \theta}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}}\right)$
$\tan ^{-1}\left(\frac{1-\cos \theta}{\cos \theta} \times \frac{\cos \theta}{\sin \theta}\right)$
$\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$
$\tan ^{-1}\left[\frac{2 \sin^{2} \frac{ \theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right] \quad \because\left[\begin{array}{c} \sin 2 \theta=2 \sin \theta \cos \theta \\ 1-\cos \theta=2 \sin ^{2} \frac{\theta}{2} \end{array}\right]$
\begin{aligned} &\tan ^{-1}\left[\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right] \\ &\tan ^{-1}\left[\tan \frac{\theta}{2}\right] \end{aligned}
As we know $\tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\tan ^{-1}\left[\tan \frac{\theta}{2}\right]=\frac{\theta}{2}$
Now putting the value of θ
$\Rightarrow \quad \frac{1}{2} \tan ^{-1} x$

Inverse Trignometric Functions exercise 3.7 question 7 (v)

Answer: $\frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1}\left\{\frac{\sqrt{1+x^{2}}+1}{x}\right\}, x \neq 0$
Explanation:
Put $x=\tan \theta, \text { then } \theta=\tan ^{-1} x$
$\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+1}{x}\right)=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}+1}{\tan \theta}\right)$
As we know, $1+\tan ^{2} \theta=\sec ^{2} \theta$
\begin{aligned} &\tan ^{-1}\left(\frac{\sqrt{\sec ^{2} \theta}+1}{\tan \theta}\right) \\ &\tan ^{-1}\left(\frac{\sec \theta+1}{\tan \theta}\right) \end{aligned}
$\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}+1}{\frac{\sin \theta}{\cos \theta}}\right) \quad \because\left[\sec \theta=\frac{1}{\cos \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$
\begin{aligned} &\tan ^{-1}\left(\frac{\frac{1+\cos \theta}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}}\right) \\ &\tan ^{-1}\left(\frac{1+\cos \theta}{\cos \theta} \times \frac{\cos \theta}{\sin \theta}\right) \\ &\tan ^{-1}\left(\frac{1+\cos \theta}{\sin \theta}\right) \end{aligned}
$\tan ^{-1}\left[\frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right] \quad \because\left[\begin{array}{c} \sin 2 \theta=2 \sin \theta \cos \theta \\ 1+\cos \theta=2 \cos ^{2} \frac{\theta}{2} \end{array}\right]$
$\tan ^{-1}\left[\cot \frac{\theta}{2}\right]$
\begin{aligned} &\therefore \tan \theta=\cot \left(\frac{\pi}{2}-\theta\right) \\ &\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-\frac{\theta}{2}\right)\right) \end{aligned}
As we know the range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$
\begin{aligned} & \tan ^{-1}(\tan x)=x, x \in\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\} \\ \Rightarrow & \frac{\pi}{2}-\frac{\theta}{2} \\ \Rightarrow & \frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (vi)

Answer: $\frac{1}{2} \cos ^{-1} \frac{x}{a}$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1} \sqrt{\frac{a-x}{a+x}},-a
Explanation:
Let $x=a \cos \theta$
then $\theta=\cos ^{-1} \frac{x}{a}$
Now,
$\tan ^{-1} \sqrt{\frac{a-x}{a+x}}=\tan ^{-1} \sqrt{\frac{a-a \cos \theta}{a+a \cos \theta}}$
\begin{aligned} &\tan ^{-1} \sqrt{\frac{a(1-\cos \theta)}{a(1+\cos \theta)}} \\ &\tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \end{aligned}
$\tan ^{-1} \sqrt{\frac{2 \sin \frac{2}{2}}{2 \cos ^{2} \frac{\theta}{2}}} \quad\left[\begin{array}{l} \left.\because \begin{array}{l} 1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right) \\ 1-\cos x=2 \sin ^{2}\left(\frac{x}{2}\right) \end{array}\right] \end{array}\right.$
$\tan ^{-1} \sqrt{\tan ^{2} \frac{\theta}{2}} \quad \because \frac{\sin \theta}{\cos \theta}=\tan \theta$
$\tan ^{-1}\left(\tan \frac{\theta}{2}\right)$
As we know, $\tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
\begin{aligned} &\Rightarrow \quad \frac{\theta}{2} \\ &\Rightarrow \quad \frac{1}{2} \cos ^{-1} \frac{x}{a} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (vii)

Answer: $\frac{1}{2} \sin ^{-1} \frac{x}{a}$
Hint: The range of principal value of $\tan ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\tan ^{-1}\left[\frac{x}{a+\sqrt{a^{2}-x^{2}}}\right],-a
Explanation:
Put $x=a \sin \theta, \text { then } \theta=\sin ^{-1} \frac{x}{a}$
$\tan ^{-1}\left[\frac{a \sin \theta}{a+\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right]$
$\tan ^{-1}\left[\frac{a \sin \theta}{a+\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}}\right] \quad \because\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
\begin{aligned} &\tan ^{-1}\left[\frac{a \sin \theta}{a+\sqrt{a^{2} \cos ^{2} \theta}}\right] \\ &\tan ^{-1}\left[\frac{a \sin \theta}{a+a \cos \theta}\right] \end{aligned}
\begin{aligned} &\tan ^{-1}\left[\frac{a \sin \theta}{a(1+\cos \theta)}\right] \\ &\tan ^{-1}\left[\frac{\sin \theta}{1+\cos \theta}\right] \end{aligned}
$\because \left[\begin{array}{l} \sin 2 \theta=2 \sin \theta \cos \theta \\ \cos 2 x=2 \cos ^{2} x-1 \end{array}\right]$
$\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{1+2 \cos ^{2} \frac{\theta}{2}-1}\right\}$
\begin{aligned} &\tan ^{-1}\left[\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right] \\ &\tan ^{-1}\left[\tan \frac{\theta}{2}\right] \end{aligned}
As we know, $\tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
\begin{aligned} &\Rightarrow \quad \frac{\theta}{2} \\ &\Rightarrow \quad \frac{1}{2} \sin ^{-1} \frac{x}{a} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (viii)

Answer: $\frac{\pi}{4}+\sin ^{-1} x$
Hint: The range of principal value of $\sin ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\sin ^{-1}\left[\frac{x+\sqrt{1+x^{2}}}{\sqrt{2}}\right], \frac{1}{2}
Explanation:
Let $x=\sin \alpha$
Then $\alpha=\sin ^{-1} x$
\begin{aligned} &\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}=\frac{\sin \alpha+\sqrt{1-\sin ^{2} \alpha}}{\sqrt{2}} \\ &\therefore \sin ^{2} \alpha+\cos ^{2} \alpha=1 \end{aligned}
Then, $1-\sin ^{2} \alpha=\cos ^{2} \alpha$
\begin{aligned} &=\frac{\sin \alpha+\sqrt{\cos ^{2} \alpha}}{\sqrt{2}} \\ &=\frac{\sin \alpha+\sqrt{\cos ^{2} \alpha}}{\sqrt{2}} \end{aligned}
\begin{aligned} &=\left(\sin \alpha \cdot \frac{1}{\sqrt{2}}+\cos \alpha \cdot \frac{1}{\sqrt{2}}\right) \\ &\therefore \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \end{aligned}
\begin{aligned} &=\sin \alpha \cdot \cos \left(\frac{\pi}{4}\right)+\cos \alpha \cdot \sin \left(\frac{\pi}{4}\right) \\ &\therefore \sin A \cos B+\cos A \sin B=\sin (A+B) \end{aligned}
$\sin \alpha \cos \left(\frac{\pi}{4}\right)+\cos \alpha \sin \left(\frac{\pi}{4}\right)=\sin \left(\alpha+\frac{\pi}{4}\right)$
Then put value of $\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}=\sin \left(\alpha+\frac{\pi}{4}\right)$
$\sin ^{-1}\left(\sin \left(\alpha+\frac{\pi}{4}\right)\right)$
As we know, $\sin ^{-1}(\sin x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
\begin{aligned} &=\alpha+\frac{\pi}{4} \\ &=\sin ^{-1} x+\frac{\pi}{4} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (ix)

Answer: $\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x$
Hint: The range of principal value of $\sin ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\sin ^{-1}\left[\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right], 0
Explanation:
Let $x=\cos \theta$
Then
$\theta=\cos ^{-1} x$
Now,
$\sin ^{-1}\left[\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]=\sin ^{-1}\left[\frac{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}{2}\right]$
$\therefore 1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right) \& 1-\cos x=2 \sin ^{2}\left(\frac{x}{2}\right)$
\begin{aligned} &\sin ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \frac{\theta}{2}}+\sqrt{2 \sin ^{2} \frac{\theta}{2}}}{2}\right\} \\ &\sin ^{-1}\left\{\frac{\sqrt{2} \cos \frac{\theta}{2}+\sqrt{2} \sin \frac{\theta}{2}}{2}\right\} \end{aligned}
\begin{aligned} &\sin ^{-1}\left\{\frac{\sqrt{2}\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)}{2}\right\} \\ &\therefore\{\sqrt{2} \times \sqrt{2}=2\} \end{aligned}
\begin{aligned} &\sin ^{-1}\left\{\frac{\sqrt{2}\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)}{\sqrt{2} \times \sqrt{2}}\right\} \\ &\sin ^{-1}\left\{\frac{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}{\sqrt{2}}\right\} \\ &\sin ^{-1}\left\{\frac{1}{\sqrt{2}} \sin \frac{\theta}{2}+\frac{1}{\sqrt{2}} \cos \frac{\theta}{2}\right\} \end{aligned}
\begin{aligned} &\sin ^{-1}\left\{\sin \left(\frac{\theta}{2}+\frac{\pi}{4}\right)\right\} \\ &\sin ^{-1}(\sin \theta)=\theta, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{aligned}
\begin{aligned} &=\frac{\theta}{2}+\frac{\pi}{2} \\ &=\frac{\cos ^{-1} x}{2}+\frac{\pi}{4} \\ &\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}=\frac{\cos ^{-1} x}{2}+\frac{\pi}{4} \end{aligned}

Inverse Trignometric Functions exercise 3.7 question 7 (x

Answer: $\sqrt{1-x^{2}}$
Hint: The range of principal value of $\sin ^{-1}$ is $\left [ -\frac{\pi }{2} ,\frac{\pi }{2}\right ]$

Given: $\sin \left[2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right]$
Explanation:
First we solve $2 \tan ^{-} \sqrt{\frac{1-x}{1+x}}$
Let $x=\cos 2 A$
Therefore,
$2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}=2 \tan ^{-1} \sqrt{\frac{1-\cos 2 A}{1+\cos 2 A}}$
$\left[1-\cos 2 x=2 \sin ^{2} x \& 1+\cos 2 A=2 \cos ^{2} A\right]$
$=2 \tan ^{-1} \sqrt{\frac{2 \sin ^{2} A}{2 \cos ^{2} A}}$
\begin{aligned} &=2 \tan ^{-1} \sqrt{\tan ^{2} A} \\ &=2 \tan ^{-1}(\tan A) \end{aligned}
As we know, $\tan ^{-1}(\tan x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$=2 \tan ^{-1}(\tan A)=2 A$
Therefore,
$\sin \left[2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right]$
$=\sin 2 A \quad \therefore\left(1-\sin ^{2} \theta=\cos ^{2} \theta\right)$
$=\sqrt{1-\cos ^{2} 2 A}$
Now put value of $\cos 2 A=x$
$\sqrt{1-\cos ^{2} 2 A}=\sqrt{1-x^{2}}$

In Chapter 3, Inverse Trigonometry for Class 12 Mathematics, about 14 exercises in total. In Exercise 3.7, there are many different functions that the students are asked to work out. The concepts include solving sine, cosine, tangent, cotangent, secant, and cosecant functions. There are fifty-six questions, including the subparts in exercise 3.7. And the RD Sharma Class 12 Solution Chapter 3 Exercise 3.7 book will make your work effortless.

As experts create the solutions provided in this book, you need not worry whether the given answers are correct or not. Moreover, the number of practice questions given in the RD Sharma Class 12 Chapter 3 Exercise 3.7 solutions book will make the students well-versed with the concepts. Hence, it ultimately leads to preparing for the examinations in a better way.

RD Sharma Class 12th exercise 3.7 solutions in this book are given in the same order as the textbooks. For example, the Class 12 RD Sharma Chapter 3 Exercise 3.7 Solution part can be referred to work out the sums on Inverse Trigonometry of ex 3.7. Every solution is provided in different methods that make the students understand effectively.

The RD Sharma Class 12 solution Inverse Trigonometric Function Ex 3.7 will help the students do their homework, assignments, and tests. And no student is required to spend money to utilize this best resource. Every student can find it online on top websites like Career 360 for free of cost.

The other benefit of using an RD Sharma Class 12 Solutions Chapter 3 ex 3.7 solutions book is that you can also expect the same questions in your public exams. As many students use RD Sharma, there were multiple times when questions were asked from this book during public examinations. Therefore, you not only clear your doubts using it but also prepare for your general exam simultaneously.

As the questions and solutions are also based on the NCERT pattern, the understanding ability of the students rises to a zenith level while they use it. An abundance of students has benefitted by using the RD Sharma solutions book for Mathematics. Even you can make a higher shot once you start using this book.

Chapter-wise RD Sharma Class 12 Solutions

1. What are the benefits that students can acquire using RD Sharma books?

The solutions are created by experts and are elaborated thoroughly. Therefore, it is a one-stop solution for all questions given in the textbooks. And the students will be able to access it free of cost.

2. Are the solutions in RD Sharma Class 12th exercise 3.7 updated?

Every solution in the RD Sharma Class 12th exercise 3.7 is updated according to the syllabus. The changes are also made according to the questions each year.

3. Who can access the RD Sharma Solutions book?

The RD Sharma Solution books can be accessed by every teacher and student to make the teaching and grasping easier among the students.

4. Where can a Class 12 student refer to understand the concepts of Inverse Trigonometry easily?

The RD Sharma Class 12 Chapter 3 Exercise 3.7 solutions will help the students clear their doubts and become familiar with the concept of Inverse Trigonometry.

5. Are the solutions provided in the RD Sharma Class 12th exercise 3.7 solutions at a basic level or high-end?

The solutions given in the RD Sharma books are elucidated so that every type of student can understand. Be it a topper or an average student; everyone can see the changes in their performance once they start using this book.

Upcoming School Exams

National Means Cum-Merit Scholarship

Application Date:05 August,2024 - 20 September,2024

National Rural Talent Scholarship Examination

Application Date:05 September,2024 - 20 September,2024

Meghalaya Board of Secondary School Leaving Certificate Examination

Application Date:05 September,2024 - 23 September,2024

National Institute of Open Schooling 12th Examination

Admit Card Date:13 September,2024 - 07 October,2024

National Institute of Open Schooling 10th examination

Admit Card Date:13 September,2024 - 07 October,2024

Get answers from students and experts