RD Sharma Class 12 Exercise 3.1 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online
  • Schools
  • RD Sharma Solutions
  • RD Sharma Class 12 Exercise 3.1 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 3.1 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

Updated on 21 Jan 2022, 11:30 AM IST

RD Sharma is considered the best book for students studying in CBSE schools. It is highly informative, has many examples, and is easy to understand. Many teachers prefer this material for their lectures, and students refer to them for exam preparation. This is the most fundamental material that CBSE students should have for maths.

RD Sharma Class 12 Solutions Inverse Trigonometric Functions Exercise 3.1 has 14 questions, including subparts of Level 1 difficulty. However, these questions are fundamental concept-based and can be completed relatively quickly if you have gone through the theorems.

Inverse Trigonometric Functions Excercise: 3.1

RD Sharma Class 12 Solutions Chapter 3 Inverse Trigonometric Functions - Other Exercise

Inverse Trigonometric Function Exercise 3.1 Question 1 (i)

Answer:
$\frac{-\pi }{3}$
Hint:
$f\! \left ( x \right )=y$
$f\! ^{-1}\left ( y \right )=x$
Given:
$Find\: principal\: value\: o\! f \sin ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )$
Solution:
$Let,\sin ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )= y$
$\Rightarrow \sin y= \frac{-\sqrt{3}}{2}$
$\Rightarrow \sin y= -\sin \left ( \frac{\pi }{3} \right )= \sin \left ( \frac{-\pi }{3} \right )$
$Range\: o\! f\: principal \: value\: o\! f\: \sin ^{-1} is\left ( \frac{-\pi }{2},\frac{\pi }{2} \right )\: and \: \sin \left ( \frac{-\pi }{3} \right )= \frac{-\sqrt{3}}{2}$
$There\! f\! ore, principal \: value\: o\! f\: \sin ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )is\: \frac{-\pi }{3}$

Answer:
$\frac{-\pi }{6}$
Hint:
$\cos \left ( 90^{\circ}+x \right )= -\sin x$
Given:
$Find\: principal\: value\: o\! f \sin^{-1}\left ( \cos \frac{2\pi }{3} \right )$
Solution:
$Let, \sin^{-1}\left ( \cos \frac{2\pi }{3} \right )= y$
$\Rightarrow \sin y= \left ( \cos \frac{2\pi }{3} \right )$
$\Rightarrow \sin y=\cos \frac{2\pi }{3}= \cos \left ( \frac{\pi }{2}+\frac{\pi }{6} \right )= -\sin\left ( \frac{\pi }{6} \right )$
$W\! e\, know\, principal\, value\, o\! f \sin^{-1} is\, \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ] and -\sin \sin \left ( \frac{\pi }{6} \right )= \cos \cos \left ( \frac{2\pi }{3} \right )$
$Therefore, principal\, value\, o\! f \, \sin^{-1}\left [ \cos \left ( \frac{2\pi }{3} \right ) \right ] is\, \frac{-\pi }{6}.$

Inverse Trigonometric Function Exercise 3.1 Question 1 (iii)

Answer:
$\frac{\pi }{12}$
Hint:
$Separate\, and\,\, reorganize \,\, the\, values$
Given:
$Find \: principal\: value\: o\! f \: \sin^{-1}\left ( \frac{\sqrt{3}-1}{2\sqrt{2}} \right )$
Solution:
$\sin^{-1}\left ( \frac{\sqrt{3}-1}{2\sqrt{2}} \right )$$= \sin^{-1}\left ( \frac{\sqrt{3}}{2\sqrt{2}} -\frac{1}{2\sqrt{2}}\right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2}\times \frac{1}{\sqrt{2}} -\frac{1}{2}\times \frac{1}{\sqrt{2}}\right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2}\times \sqrt{1-\left ( \frac{1}{\sqrt{2}} \right )^{2}}-\frac{1}{\sqrt{2}}\times \sqrt{1-\left ( \frac{\sqrt{3}}{2} \right )^{2}} \right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2} \right )-\sin^{-1}\left ( \frac{1}{\sqrt{2}} \right )$
$= \frac{\pi }{3}-\frac{\pi }{4}$
$=\frac{\pi }{12}$
$There\! fore, principal \: value\: o\! f \: \sin^{-1}\left ( \frac{\sqrt{3}-1}{2\sqrt{2}} \right ) is\: \frac{\pi }{2}.$

Inverse Trigonometric Function Exercise 3.1 Question 1 (iv)

Answer:
$\frac{7\pi }{12}$
Hint:
$Separate\: and\: reorganize\: the\: values$
Given:
$Find\: principal\: value\: o\! f \sin^{-1}\left ( \frac{\sqrt{3}+1}{2\sqrt{2}} \right )$
Solution:
$\sin^{-1}\left ( \frac{\sqrt{3}+1}{2\sqrt{2}} \right )$$= \sin^{-1}\left ( \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} \right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2}\times \frac{1}{\sqrt{2}}\right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2} \times \sqrt{1-\left ( \frac{1}{\sqrt{2}} \right )^{2}}+\frac{1}{\sqrt{2}}\times \sqrt{1-\left ( \frac{\sqrt{3}}{2} \right )^{2}}\right )$
$= \sin^{-1}\left ( \frac{\sqrt{3}}{2} \right )+\sin^{-1}\left ( \frac{1}{\sqrt{2}} \right )$
$= \frac{\pi }{3}+\frac{\pi }{4}$
$= \frac{7\pi }{2}$
$Therefore, principal\: value\: o\! f \: \sin^{-1}\left ( \frac{\sqrt{3}+1}{2\sqrt{2}} \right ) is = \frac{7\pi }{2}.$

Inverse Trigonometric Function Exercise 3.1 Question 1 (v)

Answer:
$\frac{-\pi }{4}$
Hint:
$\cos x= - \cos \left ( 180^{\circ}-x \right )$
Given:
$Find\: principal\: value\: o\! f \sin^{-1}\left ( \cos \left ( \frac{3\pi }{4} \right ) \right )$
Solution:
$Let, \sin^{-1}\left ( \cos \left ( \frac{3\pi }{4} \right ) \right )= y$
$\Rightarrow\sin y = \cos \left ( \frac{3\pi }{4} \right )$
$\Rightarrow \sin y= \cos \frac{3\pi }{4}= \cos\left ( \pi -\frac{\pi }{4} \right )= - \cos\left ( \frac{\pi }{4} \right )$
$Principal\: value \: o\! f \cos^{-1}\: is\: \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]\: and\: -\cos \cos\left ( \frac{\pi }{4} \right ) = \cos \cos\left ( \frac{3\pi }{4} \right )$
$There\! f\! ore, principal\: value\: o\! f \sin^{-1}\left ( \cos \left ( \frac{3\pi }{4} \right ) \right ) is \frac{-\pi }{4}.$

Inverse Trigonometric Function Exercise 3.1 Question 1 (vi)

Answer:
$\frac{\pi }{2}$
Hint:
$\tan \left ( \pi +x \right )= \tan x$

Given:
$Find\: principal\: value\: o\! f \sin^{-1}\left ( \tan \left ( \frac{5\pi }{4} \right ) \right )$

Solution:
$Let , y= \sin^{-1}\left ( \tan \left ( \frac{5\pi }{4} \right ) \right )$
$\sin y= \tan \left ( \frac{5\pi }{4} \right )$
$\sin y= \tan \left (\pi + \frac{\pi }{4} \right )$
$= \tan \left ( \frac{\pi }{4} \right )$
$=1$
$= \sin \left ( \frac{\pi }{2} \right )$
$Range\: Principal\: value\: o\! f \sin^{-1} is \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ] and \: \sin \left ( \frac{\pi }{2} \right )= \tan \left ( \frac{5\pi }{4} \right )$
$There\! f\! ore, principal\: value\: o\! f \sin^{-1}\left ( \tan \left ( \frac{5\pi }{4} \right ) \right ) is \: \frac{\pi }{2}.$



Answer:
$\frac{-\pi }{3}$
Hint:
$2\sin^{-1}x= \sin^{-1}\left ( 2x\sqrt{1-x^{2}} \right )$
Given:
$Find\, principal \, value\, o\! f \sin^{-1}\frac{1}{2}-2\sin^{-1}\frac{1}{\sqrt{2}}$
Solution:
$\sin^{-1}\frac{1}{2}-2\sin^{-1}\frac{1}{\sqrt{2}}$
$= \sin^{-1}\frac{1}{2}-\sin^{-1}\left ( 2\times \frac{1}{\sqrt{2}}\sqrt{1-\left ( \frac{1}{\sqrt{2}} \right )^{2}} \right )$
$= \sin^{-1}\frac{1}{2}-\sin^{-1}1$
$= \frac{\pi }{6}-\frac{\pi }{2}$
$= \frac{-\pi }{3}$
$There\! fore, principal\, value\, o\! f \sin^{-1}\frac{1}{2}-2\sin^{-1}\frac{1}{\sqrt{2}} \, is = \frac{-\pi }{3}.$

Inverse Trigonometric Function Exercise 3.1 Question 2 (ii)

Answer:
$\frac{\pi }{6}$
Hint:
$\sin^{-1}x= y$
$\sin y= x$
Given:
$Find\: principal\, value \, o\! f \sin^{-1}\left \{ \cos \left ( \sin^{-1}\left ( \frac{\sqrt{3}}{2} \right ) \right ) \right \}$
Solution:
$\sin^{-1}\left \{ \cos \left ( \sin^{-1}\left ( \frac{\sqrt{3}}{2} \right ) \right ) \right \}$
$= \sin^{-1}\left [ \cos \left ( \frac{\pi }{3} \right ) \right ] \; \; \; \; \; \; \; \; \left [ \because \left ( \frac{\sqrt{3}}{2} \right ) = \frac{\pi }{3}\right ]$
$= \left ( \frac{1}{2} \right )\; \; \; \; \; \; \; \; \left [ \because \cos \frac{\pi }{3}= \frac{1}{2} \right ]$
$Let , \left ( \frac{1}{2} \right )= y$
$\sin \sin y =\frac{1}{2}$
$Range\, o\! f \sin^{-1} is \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ] and \, \sin \sin \left ( \frac{\pi }{6} \right ) =\frac{1}{2}$
$Therefore, principal \, value\, o\! f \, \sin^{-1}\left \{ \cos \left ( \sin^{-1}\left ( \frac{\sqrt{3}}{2} \right ) \right ) \right \} is \, \frac{\pi }{6}.$

Inverse Trigonometric Function Exercise 3.1 Question 3 (i)

Answer:
$\left [ -1,1 \right ]$
Hint:
$The\: domain\: o\! f \sin^{-1}x \: is \left [ -1,1 \right ]$
Given:
$\sin^{-1}x^{2}$
Explanation:
$Let \: f\! \left ( x \right )= \left ( x^{2} \right )$
$\! \! \! \! \! \! \! \! \! \! \! \! The\, domain \, o\! f \sin^{-1} is \left [ -1,1 \right ] which\, implies\, that \, the\, value\, o\! f \, x\, lies\, between -1 and\, 1$
$i.e; -1\leq x\leq 1$
$but\: here\: we\: have\: the\: f\! unction \: x^{2}$
$so,-1\leq x^{2}\leq 1\; \; \; \; \; \; \; [As\, x^{2}\: is\: always\: positive]$
$\Rightarrow 0\leq x^{2}\leq 1$
$\Rightarrow\left | x \right | \leq 1$
$\Rightarrow x\leq 1\: and x\geq -1\: \: \: \: \: \: \: \: \: \: \: \left [ \because a^{2}-b^{2}=\left ( a+b \right )\left ( a-b \right ) \right ]$
$Hence, the\: domain\: o\! f \sin^{-1}x^{2} \: is \left [ -1,1 \right ].$

Answer:
$\left [ -1,1 \right ]$
Hint:
$The\: domain \: o\! f \sin^{-1}x \: is \left [ -1,1 \right ] and\: the\: domain\: o\! f \sin x\: is \: R .$
Given:
$f\! \left ( x \right )= \sin^{-1}x+\sin x$
Explanation:
$W\! hen \, we\, f\! ind\, the\, domain\, o\! f \, the \, f\! unction\, which \, is \, f\! urther\, the\, sum \, o\! f \, two\, di\! f\! f\! erent \, f\! unctions\, then\, we\, take\, the\, intersection \, o\! f \, thei\, r respective\, domains.$ $\left [-1,1 \right ]\cap R$
$= \left [ -1,1 \right ]\cap \left ( -\infty ,\infty \right )$
$= \left [ -1,1 \right ]$
Hence, the domain of $\sin^{-1}x+\sin x$ is $\left [ -1,1 \right ]$.

Inverse Trigonometric Function Exercise 3.1 Question 3 (iii)

Answer:
$\left [ -\sqrt{2},1 \right ]\cup \left [ 1,\sqrt{2} \right ]$
Hint:
$The\: domain \: o\! f \sin^{-1}x \: is \left [ -1,1 \right ].$
Given:
$f\! \left ( x \right )= \sin^{-1}\sqrt{x^{2}-1}$
Explanation:
$-1\leq \sqrt{x^{2}-1}\leq 1$
$x^{2}-1\leq 1 \: [Squaring\: both \: sides]$
$x^{2}-1+1\leq 1+1$
$x^{2}\leq 2$
$-\sqrt{2}\leq x\leq \sqrt{2} \cdot \cdot \cdot \cdot (i)$
$Also, x^{2}-1\geq 0$
$x^{2}\geq 1$
$\Rightarrow x\leq -1 \: and \: x\geq 1 \cdot \cdot \cdot \cdot (ii)$
$From (i) and (ii), the\: value\: o\! f \: x \: lies\: between$
$1\leq x\leq\sqrt{2} \: and \: -\sqrt{2}\leq x\leq -1$
$The \: domain \: o\! f \sin^{-1}\sqrt{x^{2}-1} \: is \left [ -\sqrt{2,}-1 \right ]\cup \left [ 1,\sqrt{2} \right ]$

Answer:
$\left [ \frac{-1}{2} ,\frac{1}2{}\right ]$
Hint:
$The \, domain\, o\! f \sin^{-1}x \, is \left [ -1,1 \right ].$
Given:
$f\! \left ( x \right )= \sin^{-1}x+\sin^{-1}2x$
Explanation:
$Now, we\, f\! ind\, the\, domain\, o\! f \sin^{-1}2x$
$-1\leq 2x\leq 1$
$\frac{-1}{2}\leq x\leq \frac{1}{2}$
$The\, domain\, o\! f \, f\! \left ( x \right ) is\, the\, inter\! section \, o\! f\, domains\, o\! f \sin^{-1}x\, and \, \sin^{-1}2x.$
$\left [ \frac{-1}2,\frac{1}2{}{} \right ]\cap \left [ -1,1 \right ]$
$= \left [ \frac{-1}2,\frac{1}2{}{} \right ]$
Answer:
$4$
Given:
$\sin^{-1}x+\sin^{-1}y+\sin^{-1}z+\sin^{-1}t= 2\pi \: then\, f\! ind\: x^{2}+y^{2}+z^{2}+t^{2}$
Hint:
$We \: know \: that\: the\: range\: o\! f \sin^{-1} is \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]$
$\sin^{-1}x\leq \frac{\pi }{2},\sin^{-1}y\leq \frac{\pi }{2},\sin^{-1}z\leq \frac{\pi }{2},\sin^{-1}t\leq \frac{\pi }{2}$
Solution:
$\sin^{-1}x+\sin^{-1}y+\sin^{-1}z+\sin^{-1}t\leq 2\pi \: and\: it \: is\: given\: that \: L.H.S \: is\: 2\pi.$
$So\: it\: is\: possible\: only\: when$
$\sin^{-1}x= \frac{\pi }{2},\sin^{-1}y= \frac{\pi }{2},\sin^{-1}z= \frac{\pi }{2},\sin^{-1}t= \frac{\pi }{2}$
$x= 1,y= 1,z= 1,t= 1$
$\therefore x^{2}+y^{2}+z^{2}+t^{2}= 4$

Inverse Trigonometric Function Exercise 3.1 Question 5

Answer:
$3$
Given:
$\left ( \sin^{-1}x \right )^{2}+\left (\sin^{-1}y \right )^{2}+\left ( \sin^{-1}z \right )^{2}= \frac{3}{4}\pi ^{2} \,\, then\, find \,\, x^{2}+y^{2}+z^{2}.$
Hint:
$We\, know\, that \, the\, range\, o\! f \, \sin^{-1} is \left [ \frac{-\pi }{2} ,\frac{\pi }{2}\right ]$
$\sin^{-1}x\leq \frac{\pi }{2},\sin^{-1}y \leq \frac{\pi}{2}, \sin^{-1}z\leq \frac{\pi}{2}$
$\left ( \sin^{-1}x \right )^{2}\leq \frac{\pi ^{2}}{4},\left (\sin^{-1}y \right )^{2}\leq \frac{\pi ^{2}}{4},\left ( \sin^{-1}z \right )^{2}\leq \frac{\pi ^{2}}{4}$
$\left ( \sin^{-1}x \right )^{2}+\left (\sin^{-1}y \right )^{2}+\left ( \sin^{-1}z \right )^{2}\leq \frac{3}{4}\pi ^{2} \, \, and \, it\, is\, given\, that\, L.H.S\, is \,\, \frac{3}{4}\pi ^{2}.$
$So\: it\: is\: possible\: only\: when$
$\sin^{-1}x= \frac{\pi }{2},\sin^{-1}y= \frac{\pi}{2}, \sin^{-1}z= \frac{\pi}{2}$
$x= 1,y= 1,z= 1$$\therefore x^{2}+y^{2}+z^{2}= 3$

The concepts used in this exercise are:

  • Evaluating the Inverse of Sin and Cos functions

  • Finding the domain of inverse functions

  • Finding values of variables assigned to inverse equations

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

Students facing problems in understanding the RD Sharma textbook can use RD Sharma Class 12th Exercise 3.1 solutions to study for their exams.

RD Sharma Solutions can help you prepare for 12 board exams and other entrance exams involving Maths. Using RD Sharma Class 12 Solutions Chapter 3 Exercise 3.1 to practice questions has been shown to improve math skills.

Expert Mathematics faculties have solved RD Sharma Class 12th Solution Inverse Trigonometric Function Exercise 3.1. All the important questions that may be asked in competitive exams such as JEE are included in the solutions. Exercise Questions with Solutions from RD Sharma Class 12th Exercise 3.1 might help you revise the entire syllabus and get more marks.

Both trigonometry and Inverse trigonometric functions are vast chapters that contain hundreds of sums. However, if you divide the sums and practice daily, you can easily cover this chapter with maximum output.

As RD Sharma Class 12th Exercise 3.1 material complies with the CBSE syllabus, students can refer to it as a follow-up for their classes. Moreover, teachers obviously can't cover hundreds of sums in their lectures, so you can use this as a reference for the questions in RD Sharma books. Moreover, as this is expert-created material, it is ensured that the sums are accurate and informative.

You must discover the principal value of several trigonometric functions given in the questions in RD Sharma Class 12 Chapter 3 Exercise 3.1. Then, you may put these answers into practice and work on their problem-solving skills, which will help them gradually gain confidence. If you find other chapters difficult, you can use the links provided to get help with those.

Chapter-wise RD Sharma Class 12 Solutions

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)