RD Sharma Class 12 Exercise 3.12 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 3.12 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 11:37 AM IST

The best set of solution books that every student who is preparing for their public exams must possess is the RD Sharma books. When it comes to mathematics, not every student naturally has the talent to solve mathematical solutions. Many students need a triggering point to make mathematics seem attractive to them. Most of the students would struggle to solve the inverse trigonometry chapter, and hence the RD Sharma Class 12th exercise 3.12 books lend them a helping hand.

RD Sharma Class 12 Solutions Chapter 3 Inverse Trigonometric Functions - Other Exercise

Inverse Trigonometric Functions Excercise: 3.12

Inverse Trigonometric Function Exercise 3.12 Question 1 .

Answer:\frac{33}{65}
Given:
\cos \left ( \sin^{-1}\frac{3}{5}+\sin^{-1}\frac{5}{13} \right )
Hint: We will use the formula
\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]
Solution: Using the formula
\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]
Substituting the value we get,
\begin{aligned} &\cos ^{-1}\left[\sin ^{-1}\left(\frac{3}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}+\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{3}{5} \times \frac{12}{13}+\frac{5}{13} \times \frac{4}{5}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{36}{65}+\frac{20}{65}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{56}{65}\right)\right] \end{aligned}
Again, we know that
\sin^{-1}x= \cos^{-1}\sqrt{1-x^{2}}
Now, substituting we get
\begin{aligned} &=\cos \left[\cos ^{-1} \sqrt{1-\left(\frac{56}{65}\right)^{2}}\right] \\ &=\cos \left[\cos ^{-1} \sqrt{\left(\frac{33}{65}\right)}\right] \end{aligned}
= \frac{33}{65}\; \; \; \; \; \; \; \; \; \left [ \because \cos \left ( \cos^{-1} \right )= x \right ]
Hence \cos \left ( \sin^{-1}\frac{3}{5}+\sin^{-1}\frac{5}{13} \right )= \frac{33}{65}

Inverse Trigonometric Function Exercise 3.12 Question 2 (i)

To Prove:\sin^{-1}\frac{63}{65}= \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}
Hint: Using R.H.S term, here first we will we will convert \sin^{-1}x and \cos^{-1}x then use formula.
\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}} +y\sqrt{1-x^{2}}\right ]
Solution: Taking R.H.S
R.H.S = \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}
== \sin^{-1}\frac{5}{13}+\sin^{-1}\frac{4}{5} \; \; \; \; \; \; \; \; \; [\because \cos^{-1}x=\sin^{-1}\sqrt{1-x^{2}}]
Then we will use the formula
\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}} +y\sqrt{1-x^{2}}\right ]
\begin{aligned} &= \sin ^{-1}\left[\frac{5}{13} \sqrt{1-\left(\frac{4}{5}\right)^{2}}+\frac{4}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}\right] \\ &= \sin ^{-1}\left(\frac{5}{13} \times \frac{3}{5}+\frac{4}{5} \times \frac{12}{13}\right) \\ &= \sin ^{-1}\left(\frac{15}{65}+\frac{48}{65}\right) \end{aligned}
= \sin^{-1}\left ( \frac{63}{65} \right )
= L.H.S
Hence \sin^{-1}\frac{63}{65}= \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}

Inverse Trigonometric Function Exercise 3.12 Question 2 (ii) .

To prove:\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}= \tan^{-1}\frac{63}{16}
Hint: First we will convert \sin^{-1}x and \cos^{-1}x then we will use the formula of
\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]
Solution: Taking L.H.S
\begin{aligned} \text { L.H.S } &=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5} \\ &=\sin ^{-1} \frac{5}{13}+\sin ^{-1} \sqrt{1-\left(\frac{3}{5}\right)^{2}} \quad\left[\because \cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}\right] \\ &=\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{4}{5} \end{aligned}
Now, using the formula we have,
\begin{aligned} \text { L. } H . S &=\sin ^{-1}\left[\frac{5}{13} \sqrt{1-\left(\frac{4}{5}\right)^{2}}+\frac{4}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}\right] \\ &=\sin ^{-1}\left(\frac{5}{13} \times \frac{3}{5}+\frac{4}{5} \times \frac{12}{13}\right) \\ &=\sin ^{-1}\left(\frac{15}{65}+\frac{48}{65}\right) \\ &=\sin ^{-1}\left(\frac{63}{65}\right) \end{aligned}
\begin{aligned} &=\tan ^{-1}\left(\frac{63 / 65}{1-\left(\frac{63}{65}\right)^{2}}\right) \quad\left[\sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}\right] \\ \end{aligned}
= \tan^{-1}\left ( \frac{\frac{63}{65}}{\frac{16}{65}} \right )
\tan^{-1}\left ( \frac{63}{16} \right )= R.H.S
Hence \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}= \tan^{-1}\frac{63}{16}

Inverse Trigonometric Function Exercise 3.12 Question 2 (iii) .

To prove: \frac{9\pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )
Hint: First we take the common in the question then we proceed.
Solution: Taking L.H.S.
L.H.S = \frac{9 \pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}
= \frac{9}4\left [ \frac{\pi }{2}-\sin^{-1}\frac{1}{3}\right ]
= \frac{9}{4}\left [ \cos^{-1}\left ( \frac{1}{3} \right ) \right ]\; \; \; \; \left [ \because \frac{\pi }{2}-\sin^{-1}x=\cos^{-1}x \right ]
= \frac{9}{4}\left [ \sin^{-1}\left ( 1-\sqrt{\left ( \frac{1}{3} \right )^{2}} \right ) \right ]\; \; \; \; \; \; \left [ \because \cos^{-1}x= \sin^{-1}\sqrt{1-x^{2}} \right ]
= \frac{9}{4}\sin^{-1}\sqrt{\frac{9-1}{9}}
= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )
= R.H.S
Hence,
\frac{9\pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )

Inverse Trigonometric Function Exercise 3.12 Question 3 (i) .

Answer: x= +\frac{1}{2}\sqrt{\frac{3}{7}}
Given: \sin^{-1}x+\sin^{-1}2x= \frac{\pi }{3}
Hint: Using the formula \sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
Solution: We know that \sin^{-1}\left ( \frac{\sqrt{3}}2{} \right )= \frac{\pi }{3}
\Rightarrow \sin^{-1}2x=\sin^{-1}\frac{\sqrt{3}}{2}-\sin^{-1}x
Using the formula, \sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
\Rightarrow \sin^{-1}2x= \sin^{-1}\left [ \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}-x\sqrt{1-\left ( \frac{1}{\sqrt{3}} \right )^{2}} \right ]
\Rightarrow 2x=\frac{\sqrt{3}}{2}\sqrt{1-x^{2}}-\frac{x}{2}
\Rightarrow 2x+\frac{x}{2}= \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}
\Rightarrow \frac{5x}{2}= \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}
\Rightarrow 5x= \sqrt{3}\sqrt{1-x^{2}}
Squaring on both sides, we get
\Rightarrow 25x^{2}= 3\left ( 1-x^{2} \right )
\Rightarrow 25x^{2}= 3-3x^{2}
\Rightarrow 28x^{2}= 3x= \pm \frac{1}{2}\sqrt{\frac{3}{7}}
As x= - \frac{1}{2}\sqrt{\frac{3}{7}}is not satisfying the equation
Hence x= +\frac{1}{2}\sqrt{\frac{3}{7}}

Inverse Trigonometric Function Exercise 3.12 Question 3 (ii) .

Answer:x= 1
Given:\cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0
Hint: \sin^{-1}\left (\frac{1}{2} \right )= \frac{\pi }{6}
\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
Solution: We have \cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0
\Rightarrow \left ( \frac{\pi }{2}-\sin^{-1} x\right )+\sin^{-1}\frac{x}{2}-\frac{ \pi }{6}= 0
\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{2}-\frac{ \pi }{6}= 0
\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{3}= 0
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}x-\sin^{-1}\frac{\sqrt{3}}{2}\; \; \; \; \; \; \left [ \because \sin \frac{\pi }{3}= \frac{\sqrt{3}}{2} \right ]
Using the formula,
\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{\sqrt{3}}{2} \right )^{2}}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{3}{4} \right )}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]
\Rightarrow \frac{x}{2}= \frac{x}{2}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}}
\Rightarrow \sqrt{1-x^{2}}= 0
Squaring on both sides, we get
\Rightarrow 1-x^{2}= 0
\Rightarrow x= \pm 1 [ As x=-1 is not satisfying the equation]
Hence x=1is the required answer.

Inverse Trigonometric Function Exercise 3.12 Question 3 (iii) .

Answer: +13
Given:\sin^{-1}\frac{5}{x}+\sin^{-1}\frac{12}{x}= \frac{\pi }{2}
Hint: Here we will use \frac{\pi }{2}-\sin^{-1}x= \cos^{-1}x
Solution: Here we have
\sin^{-1}\frac{5}{x}+\sin^{-1}\frac{12}{x}= \frac{\pi }{2}
\sin^{-1}\frac{5}{x}= \frac{\pi }{2}-\sin^{-1}\frac{12}{x}
\Rightarrow \sin^{-1}\frac{5}{x}= \cos^{-1}\frac{12}{x} \; \; \; \; \left [ \because \frac{\pi }{2}-\sin^{-1}x= \cos^{-1}x \right ]
\Rightarrow \sin^{-1}\frac{5}{x}=\sin^{-1}\left ( \sqrt{1-\left ( \frac{12}{x} \right )^{2}} \right ) \; \; \; \; \; \; \; \; \; \; [\cos^{-1}x=\sin^{-1}\sqrt{1-x^{2}}]
\Rightarrow \left ( \frac{5}{x}\right )^{2} =\sqrt{1-\left ( \frac{12}{x} \right )^{2}}
Squaring on both sides, we get
\Rightarrow \left ( \frac{5}{x}\right )^{2} =1-\left ( \frac{12}{x} \right )^{2}
\Rightarrow \left ( \frac{25}{x^{2}} \right )+\left ( \frac{144}{x^{2}} \right )= 1
\Rightarrow x^{2}= 169
\Rightarrow x=\pm 13 [ As -13 is not satisfying the equation]
Hence x= 13 is the result

The 3rd chapter in mathematics, Inverse Trigonometry for Class 12, has the concepts like solving sine, cosine, tangent, cotangent, secant, and cosecant. In addition, the students will be asked to find the angle of various trigonometry ratios. Exercise 3.12 contains seven questions, including the subparts. The students who find it hard to solve these questions can use the RD Sharma Class 12 Chapter 3 Exercise 3.12 solutions book.

RD Sharma Class 12th exercise 3.12 solutions provided in this book are given and verified by experts in the educational field. Moreover, the solutions given in the RD Sharma books are based on the NCERT pattern. Hence, the CBSE board students can utilize the book to the fullest to prepare for their examinations.

Students cannot look out for a tutor or a school teacher to help them clear their doubts in mathematics throughout the day. The presence of Class 12 RD Sharma Chapter 3 Exercise 3.12 Solutions will be a sound support system for them. As a student, you will start crossing your benchmark score effortlessly.

Not every student would find a particular method easy to solve. The capability of the students differs. Keeping this into consideration, the experts have provided every solution in various possible ways. Depending on how easy it is, students can choose the method that they find comfort in solving. The RD Sharma Class 12 Solutions Inverse Trigonometry Ex 3.12 will make it easier.

The RD Sharma books help prepare for tests and exams, but the students can also work on their homework and assignments with the help of it. Moreover, as the RD Sharma books are used by many students and are authorized material, the chances of asking questions for the public exam from this book are high.

You can find the complete set for free on top websites like Career 360. An abundance of students has benefitted from the RD Sharma Class 12 Solutions Chapter 3 ex 3.12 material. Download the RD Sharma solutions now and start preparing for your public exams from Day 1. If so, nobody can prevent you from achieving high scores in the final exam.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Questions (FAQs)

1. How can I access the RD Sharma Class 12th exercise 3.12 solutions for mathematics?

Visit the Career 360 website and search for a particular subject. You can look for the solutions in a particular chapter and exercise too. Then, you can download the RD Sharma Class 12th exercise 3.12 solutions in an instance for free of cost.

2. What is the best solution to solve the doubts regarding the inverse trigonometry chapter for class 12?

Many students of class 12 find the Inverse Trigonometry chapter a bit hard to work out. However, they can use the RD Sharma Class 12th exercise 3.12 solutions book to understand this chapter quickly. It makes them understand the mathematical concepts effectively.

3. Is the RD Sharma solution book enough for Class 12 students to prepare for their public exams?

The RD Sharma books help the students do their homework and assignments, but it also sharpens their minds in preparing for their public examination. Hence, the students who are preparing for their exams can solely depend on the solutions provided in this book

4. What material can I refer to if I am unable to solve the Inverse Trigonometry chapter of class 12?

The RD Sharma Class 12 Chapter 3 Exercise 3.12 will help you understand the Inverse Trigonometry chapter and provides various methods of solving the problems. You can very well use this material to make the concepts in the Inverse Trigonometry chapter familiar to you.

5. Can an average student use the RD Sharma solutions book for reference?

The RD Sharma books provide solutions in various ways. It allows the students to choose which method to follow. Be it a topper, average, or slow-learner student; anyone can use this book for their reference.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top