The best set of solution books that every student who is preparing for their public exams must possess is the RD Sharma books. When it comes to mathematics, not every student naturally has the talent to solve mathematical solutions. Many students need a triggering point to make mathematics seem attractive to them. Most of the students would struggle to solve the inverse trigonometry chapter, and hence the RD Sharma Class 12th exercise 3.12 books lend them a helping hand.
RD Sharma Class 12 Solutions Chapter 3 Inverse Trigonometric Functions - Other Exercise
Inverse Trigonometric Functions Excercise: 3.12
Inverse Trigonometric Function Exercise 3.12 Question 1 .
Answer:$\frac{33}{65}$Given: $\cos \left ( \sin^{-1}\frac{3}{5}+\sin^{-1}\frac{5}{13} \right )$Hint: We will use the formula
$\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]$Solution: Using the formula
$\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]$Substituting the value we get,
$\begin{aligned} &\cos ^{-1}\left[\sin ^{-1}\left(\frac{3}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}+\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{3}{5} \times \frac{12}{13}+\frac{5}{13} \times \frac{4}{5}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{36}{65}+\frac{20}{65}\right)\right] \\ &=\cos ^{-1}\left[\sin ^{-1}\left(\frac{56}{65}\right)\right] \end{aligned}$Again, we know that
$\sin^{-1}x= \cos^{-1}\sqrt{1-x^{2}}$Now, substituting we get
$\begin{aligned} &=\cos \left[\cos ^{-1} \sqrt{1-\left(\frac{56}{65}\right)^{2}}\right] \\ &=\cos \left[\cos ^{-1} \sqrt{\left(\frac{33}{65}\right)}\right] \end{aligned}$$= \frac{33}{65}\; \; \; \; \; \; \; \; \; \left [ \because \cos \left ( \cos^{-1} \right )= x \right ]$Hence
$\cos \left ( \sin^{-1}\frac{3}{5}+\sin^{-1}\frac{5}{13} \right )= \frac{33}{65}$Inverse Trigonometric Function Exercise 3.12 Question 2 (i)
To Prove:$\sin^{-1}\frac{63}{65}= \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$Hint: Using R.H.S term, here first we will we will convert
$\sin^{-1}x$ and
$\cos^{-1}x$ then use formula.
$\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}} +y\sqrt{1-x^{2}}\right ]$Solution: Taking R.H.S
R.H.S =
$\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$=
$= \sin^{-1}\frac{5}{13}+\sin^{-1}\frac{4}{5} \; \; \; \; \; \; \; \; \; [\because \cos^{-1}x=\sin^{-1}\sqrt{1-x^{2}}]$Then we will use the formula
$\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}} +y\sqrt{1-x^{2}}\right ]$$\begin{aligned} &= \sin ^{-1}\left[\frac{5}{13} \sqrt{1-\left(\frac{4}{5}\right)^{2}}+\frac{4}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}\right] \\ &= \sin ^{-1}\left(\frac{5}{13} \times \frac{3}{5}+\frac{4}{5} \times \frac{12}{13}\right) \\ &= \sin ^{-1}\left(\frac{15}{65}+\frac{48}{65}\right) \end{aligned}$$= \sin^{-1}\left ( \frac{63}{65} \right )$$= L.H.S$Hence
$\sin^{-1}\frac{63}{65}= \sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$Inverse Trigonometric Function Exercise 3.12 Question 2 (ii) .
To prove:$\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}= \tan^{-1}\frac{63}{16}$Hint: First we will convert
$\sin^{-1}x$ and
$\cos^{-1}x$ then we will use the formula of
$\sin^{-1}x+\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} \right ]$Solution: Taking L.H.S
$\begin{aligned} \text { L.H.S } &=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5} \\ &=\sin ^{-1} \frac{5}{13}+\sin ^{-1} \sqrt{1-\left(\frac{3}{5}\right)^{2}} \quad\left[\because \cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}\right] \\ &=\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{4}{5} \end{aligned}$Now, using the formula we have,
$\begin{aligned} \text { L. } H . S &=\sin ^{-1}\left[\frac{5}{13} \sqrt{1-\left(\frac{4}{5}\right)^{2}}+\frac{4}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}\right] \\ &=\sin ^{-1}\left(\frac{5}{13} \times \frac{3}{5}+\frac{4}{5} \times \frac{12}{13}\right) \\ &=\sin ^{-1}\left(\frac{15}{65}+\frac{48}{65}\right) \\ &=\sin ^{-1}\left(\frac{63}{65}\right) \end{aligned}$$\begin{aligned} &=\tan ^{-1}\left(\frac{63 / 65}{1-\left(\frac{63}{65}\right)^{2}}\right) \quad\left[\sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}\right] \\ \end{aligned}$$= \tan^{-1}\left ( \frac{\frac{63}{65}}{\frac{16}{65}} \right )$$\tan^{-1}\left ( \frac{63}{16} \right )= R.H.S$Hence
$\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}= \tan^{-1}\frac{63}{16}$Inverse Trigonometric Function Exercise 3.12 Question 2 (iii) .
To prove: $\frac{9\pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )$Hint: First we take the common in the question then we proceed.
Solution: Taking L.H.S.
L.H.S =
$\frac{9 \pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}$=
$\frac{9}4\left [ \frac{\pi }{2}-\sin^{-1}\frac{1}{3}\right ]$=
$\frac{9}{4}\left [ \cos^{-1}\left ( \frac{1}{3} \right ) \right ]\; \; \; \; \left [ \because \frac{\pi }{2}-\sin^{-1}x=\cos^{-1}x \right ]$=
$\frac{9}{4}\left [ \sin^{-1}\left ( 1-\sqrt{\left ( \frac{1}{3} \right )^{2}} \right ) \right ]\; \; \; \; \; \; \left [ \because \cos^{-1}x= \sin^{-1}\sqrt{1-x^{2}} \right ]$$= \frac{9}{4}\sin^{-1}\sqrt{\frac{9-1}{9}}$$= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )$= R.H.S
Hence,
$\frac{9\pi}{8}-\frac{9}{4}\sin ^{-1}\frac{1}{3}= \frac{9}{4}\sin^{-1}\left ( \frac{2\sqrt{2}}{3} \right )$Inverse Trigonometric Function Exercise 3.12 Question 3 (i) .
Answer: $x= +\frac{1}{2}\sqrt{\frac{3}{7}}$Given: $\sin^{-1}x+\sin^{-1}2x= \frac{\pi }{3}$Hint: Using the formula
$\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]$Solution: We know that
$\sin^{-1}\left ( \frac{\sqrt{3}}2{} \right )= \frac{\pi }{3}$$\Rightarrow \sin^{-1}2x=\sin^{-1}\frac{\sqrt{3}}{2}-\sin^{-1}x$Using the formula,
$\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]$$\Rightarrow \sin^{-1}2x= \sin^{-1}\left [ \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}-x\sqrt{1-\left ( \frac{1}{\sqrt{3}} \right )^{2}} \right ]$$\Rightarrow 2x=\frac{\sqrt{3}}{2}\sqrt{1-x^{2}}-\frac{x}{2}$$\Rightarrow 2x+\frac{x}{2}= \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}$$\Rightarrow \frac{5x}{2}= \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}$$\Rightarrow 5x= \sqrt{3}\sqrt{1-x^{2}}$Squaring on both sides, we get
$\Rightarrow 25x^{2}= 3\left ( 1-x^{2} \right )$$\Rightarrow 25x^{2}= 3-3x^{2}$$\Rightarrow 28x^{2}= 3$$x= \pm \frac{1}{2}\sqrt{\frac{3}{7}}$As
$x= - \frac{1}{2}\sqrt{\frac{3}{7}}$is not satisfying the equation
Hence
$x= +\frac{1}{2}\sqrt{\frac{3}{7}}$Inverse Trigonometric Function Exercise 3.12 Question 3 (ii) .
Answer:$x= 1$Given:$\cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0$Hint: $\sin^{-1}\left (\frac{1}{2} \right )= \frac{\pi }{6}$$\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]$Solution: We have
$\cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0$$\Rightarrow \left ( \frac{\pi }{2}-\sin^{-1} x\right )+\sin^{-1}\frac{x}{2}-\frac{ \pi }{6}= 0$$\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{2}-\frac{ \pi }{6}= 0$$\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{3}= 0$$\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}x-\sin^{-1}\frac{\sqrt{3}}{2}\; \; \; \; \; \; \left [ \because \sin \frac{\pi }{3}= \frac{\sqrt{3}}{2} \right ]$Using the formula,
$\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]$$\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{\sqrt{3}}{2} \right )^{2}}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]$$\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{3}{4} \right )}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]$$\Rightarrow \frac{x}{2}= \frac{x}{2}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}}$$\Rightarrow \sqrt{1-x^{2}}= 0$Squaring on both sides, we get
$\Rightarrow 1-x^{2}= 0$$\Rightarrow x= \pm 1$ [ As
$x=-1$ is not satisfying the equation]
Hence
$x=1$is the required answer.
Inverse Trigonometric Function Exercise 3.12 Question 3 (iii) .
Answer: +13
Given:$\sin^{-1}\frac{5}{x}+\sin^{-1}\frac{12}{x}= \frac{\pi }{2}$Hint: Here we will use
$\frac{\pi }{2}-\sin^{-1}x= \cos^{-1}x$Solution: Here we have
$\sin^{-1}\frac{5}{x}+\sin^{-1}\frac{12}{x}= \frac{\pi }{2}$$\sin^{-1}\frac{5}{x}= \frac{\pi }{2}-\sin^{-1}\frac{12}{x}$$\Rightarrow \sin^{-1}\frac{5}{x}= \cos^{-1}\frac{12}{x} \; \; \; \; \left [ \because \frac{\pi }{2}-\sin^{-1}x= \cos^{-1}x \right ]$$\Rightarrow \sin^{-1}\frac{5}{x}=\sin^{-1}\left ( \sqrt{1-\left ( \frac{12}{x} \right )^{2}} \right ) \; \; \; \; \; \; \; \; \; \; [\cos^{-1}x=\sin^{-1}\sqrt{1-x^{2}}]$$\Rightarrow \left ( \frac{5}{x}\right )^{2} =\sqrt{1-\left ( \frac{12}{x} \right )^{2}}$Squaring on both sides, we get
$\Rightarrow \left ( \frac{5}{x}\right )^{2} =1-\left ( \frac{12}{x} \right )^{2}$$\Rightarrow \left ( \frac{25}{x^{2}} \right )+\left ( \frac{144}{x^{2}} \right )= 1$$\Rightarrow x^{2}= 169$$\Rightarrow x=\pm 13$ [ As -13 is not satisfying the equation]
Hence
$x= 13$ is the result
The 3rd chapter in mathematics, Inverse Trigonometry for Class 12, has the concepts like solving sine, cosine, tangent, cotangent, secant, and cosecant. In addition, the students will be asked to find the angle of various trigonometry ratios. Exercise 3.12 contains seven questions, including the subparts. The students who find it hard to solve these questions can use the RD Sharma Class 12 Chapter 3 Exercise 3.12 solutions book.
RD Sharma Class 12th exercise 3.12 solutions provided in this book are given and verified by experts in the educational field. Moreover, the solutions given in the RD Sharma books are based on the NCERT pattern. Hence, the CBSE board students can utilize the book to the fullest to prepare for their examinations.
Students cannot look out for a tutor or a school teacher to help them clear their doubts in mathematics throughout the day. The presence of Class 12 RD Sharma Chapter 3 Exercise 3.12 Solutions will be a sound support system for them. As a student, you will start crossing your benchmark score effortlessly.
Not every student would find a particular method easy to solve. The capability of the students differs. Keeping this into consideration, the experts have provided every solution in various possible ways. Depending on how easy it is, students can choose the method that they find comfort in solving. The RD Sharma Class 12 Solutions Inverse Trigonometry Ex 3.12 will make it easier.
The RD Sharma books help prepare for tests and exams, but the students can also work on their homework and assignments with the help of it. Moreover, as the RD Sharma books are used by many students and are authorized material, the chances of asking questions for the public exam from this book are high.
You can find the complete set for free on top websites like Career 360. An abundance of students has benefitted from the RD Sharma Class 12 Solutions Chapter 3 ex 3.12 material. Download the RD Sharma solutions now and start preparing for your public exams from Day 1. If so, nobody can prevent you from achieving high scores in the final exam.
Chapter-wise RD Sharma Class 12 Solutions