Careers360 Logo
RD Sharma Class 12 Exercise 3.14 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 3.14 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 11:49 AM IST

The RD Sharma Class 12 Chapter 3 Solutions are the best to buy. The chapters and exercises in RD Sharma Class 12 may be difficult for a student to grasp. They will find it easier with RD Sharma Class 12th Exercise 3.14. Students can now use these solutions to solve any Relationship problem. The questions and answers are written in a way that students can easily understand. These solutions lay the groundwork for students' understanding of mathematics. The concepts are now easily understood by the students.

Many students find mathematics a difficult subject. These solutions will make students happy because they will learn all of the concepts quickly and easily. With these solutions, the approach to learning and understanding topics will be forever altered. RD Sharma Solutions is here to ensure that every student excels in mathematics, so the book includes various tricks and tips.

Background wave

RD Sharma Class 12 Solutions Chapter 3 Inverse Trigonometric Functions - Other Exercise

Inverse Trigonometric Functions Excercise: 3.14

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Inverse Trigonometric Functions Exercise 3.14 Question 1(i)

Answer: 717
Hints: First we will solve for 2tan115 and we use the formula
2tan1x=tan1(2x1x2),1<x<1
Given: tan{2tan115π4}
Explanation:
tan{2tan115π4} ..............(1)
Let us first solve for 2tan115
2tan115=tan1{2×151(15)2} [1<15<1]
=tan1{251(125)}
=tan1{25(2425)}
=tan1{25×2524}
2tan115=tan1(512)................(2)
Now, we know that tanπ4=1
π4=tan1(1)
Now from equation (1), (2) and (3)
We get tan{2tan115π4}
=tan{tan1(512)tan1(1)}
=tan{tan1(51211+512×1)} [tan1xtan1y=tan1(xy1+xy) forxy >1]
=tan{tan1(7121712)}
=tan{tan1(712×1217)}
=tan{tan1(717)} [tan(tan1θ)=θ]=717



Answer: 473
Hints: First we will convert sin1(34) into tan1
Given: tan(12sin1(34))
Explanation:
Letsin1(34)=θ ......(1)
sinθ=34=ABAC
InABC
AB2+BC2=AC2(By using Pythagoras theorem)
32+BC2=429+BC2=16BC2=169BC2=7BC=7
cosθ=BCACcosθ=74
Now
tan(θ2)=1cosθ1+cosθ
tan(θ2)=1741+74
tan(θ2)=4744+74
tan(θ2)=474+7
θ2=tan1(474+7)
12sin134=tan1(474+7) from equation (1)
Now, tan(12sin134)
=tan(tan1(474+7)) from equation (2)
=474+7
On rationalizing we get,
[(a+b)(ab)=a2b2]
=474+7×4747
=(47)2167
=(47)29=(47)3


Answer: 110
Hint: First we will convert cos145 into sin1
Given: sin(12cos145)
Explanation:
Letcos145=θ
cosθ=45
we know that
cosθ=12sin2θ22sin2θ2=1cosθsin2θ2=1cosθ2sinθ2=1cosθ2
sinθ2=1452sinθ2=152sinθ2=110sinθ2=110θ2=sin1110 from equation (1)
12cos145=sin1110 ......(2)
Now
sin(12cos145) from equation (2)
=sin(sin1110)
=sin(sin1110) [sin[sin1(θ)]=θ]
=110

Answer: 3726
Hints: we will convert 2tan123 into sin1 and tan13 into cos1
Given: sin(2tan123)+cos(tan13)
Solution:
sin(2tan123)+cos(tan13) ..................(1)
First we will solve for 2tan123
We know that 2tan1x=sin1(2x1+x2)1<x<1
tan123=sin1(2×231+(23)2) 1<23<1
=sin1(431+49)=sin1(43139)=sin1(43×913)
2tan123=sin1(1213) .................(2)
Now Let tan13=θ .................(3)
tanθ=31=PB
By Pythagoras theorem:
H2=P2+B2=32+12=3+1=4H=4H=2cosθ=BHcosθ=12
θ=cos1(12) from equation.........(2)
tan13=cos1(12) ..................(4)
Now from equation (1)
sin(2tan123)+cos(tan13)
Putting the value of 2tan123 and tan13 from equations (2) and (4) respectively
=sin(sin11213)+cos(cos112)=1213+12=24+1326=3726



Answer: 2sin135=tan1247
Hints: First we will convert sin135 into tan1 and after that we use the formula of 2tan1x
2tan1x=tan1(2x1x2)1<x<1
Given: 2sin135=tan1247
Explanation:
2sin135=tan1247
First we will solve for sin135
let sin135=θ ........................(1)
sinθ=35=PH
By Pythagoras theorem
H2=P2+B252=32+B225=9+B2B2=259B2=16B=16B=4
tanθ=PB
tanθ=34θ=tan134
From Equation (1)
sin135=tan134 ..............(2)
Now L.H.S:
2sin135
=2tan134 from equation (2)
=tan1[2×341(34)2] [1<34<1
=tan1[321916]
=tan1[32716]
=tan1[32×167]=tan1[247]=RH.S
Hence 2sin135=tan1247

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 2

Answer: tan114+tan129=12cos135=12sin145
Hints: First we will solve for tan114+tan129 then we will convert it into cos1 and sin1 respectively.
Given:
tan114+tan129=12cos135=12sin145
First we will solve for tan114+tan129
tan1x+tan1y=tan1(x+y1xy)
tan114+tan129=tan1(14+291(14)(29))
=tan1(9+8361118)=tan1(17361718)=tan1(1736×1817)
tan114+tan129=tan112
=12×2tan112 (On multiplying and dividing by 2)
tan114+tan129=12×cos1(1(12)21+(12)2)(2tan1x=cos1(1x21+x2)0x<)
=12cos1(1141+14)=12cos1(3454)
tan114+tan129=12cos1(35) .......................(1)
Now,let cos135=θ ....................(2)
cosθ=35sinθ=1cos2θ (sin2θ+cos2θ=1)
sinθ=1cos2θsinθ=1(35)2=1925=25925=1625
sinθ=45θ=sin145
from equation (2)
cos135=sin145 .........(3)
From equation (1) and (2) we get
tan114+tan129=12cos135=12sin145




Answer: tan123=12tan1125
Hint: First we will multiply in numerator and denominator by 2 in L.H.S so that we can use the formula of 2tan1x
Given: tan123=12tan1125
Explanation:
L.H.S:tan123
On multiply in numerator and denominator by 2.
=12×2tan123
=12×tan1(2×231(23)2) [2tan1x=tan1(2x1x2)1<x<11<23<1]
=12×tan1(43149)=12×tan1(4359)=12×tan1(43×95)=12tan1(125)
Hence it is proved.

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 4

Answer: tan117+2tan113=π4
Hints: First we will use the formula of 2tan1x.
Given: tan117+2tan113=π4
Explanation:
[2tan1x=tan1(2x1x2)1<x<11<13<1]
L.H.S:tan117+2tan113
=tan1(17)+tan1(2×131(13)2)
=tan1(17)+tan1(23119)=tan1(17)+tan1(2389)=tan1(17)+tan1(23×98)
[tan1x+tan1y=tan1(x+y1xy)xy<1328<1]
=tan1(17)+tan1(34)
=tan1(17+341(17)(34))=tan1(4+212828328)=tan1(25282528)=tan1(1)=π4 [tanπ4=1tan1(1)=π4]
Hence it is proved that tan117+2tan113=π4

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 5

Answer: sin1(45)+2tan1(13)=π2
Hints: First we will convert 2tan1(13)in sin1
Given: sin1(45)+2tan1(13)=π2
Explanation:
L.H.S:sin1(45)+2tan1(13) [2tan1x=sin1(2x1+x2)]
=sin1(45)+sin1(2×131+(13)2) [1x11131]
=sin1(45)+sin1(231+19)=sin1(45)+sin1(23109)=sin1(45)+sin1(23×910)=sin1(45)+sin1(35)
[sin1x+sin1y=sin1{x1y2+y1x2}]
 [if x,y0 and x2+y21]
[45,350,(45)2+(35)21625+925=2525=11]
=sin1{451(35)2+351(45)2}=sin1(451925+3511625)=sin1(451625+35925)=sin1(45×45+35×35)=sin1(1625+925)=sin1(2525)
[sinπ2=1sin1(1)=π2]
=sin1(1)=π2
Hence it is proved thatsin1(45)+2tan1(13)=π2



Answer: 2sin1(35)tan1(1731)=π4
Hint: First we will convert sin1(35) into tan1.
Given: 2sin1(35)tan1(1731)=π4
Explanation:
Let us solve for sin1(35)
Let sin1(35)=θ ............(1)
sinθ=(35)=PHH2=P2+B252=32+B225=9+B2B2=259B2=16B=16B=4
Now,
tanθ=PBtanθ=34θ=tan1(34)
From equation (1)
sin1(35)=tan1(34) .............(2)
L.H.S:
2sin1(35)tan1(1731)
from Equation (2)
=2tan1(34)tan1(1731) [2tan1x=tan1(2x1x2)]
=tan1(2×341(34)2)tan1(1731) [1<x<11<34<1]
=tan1(321916)tan1(1731)=tan1(32716)tan1(1731)=tan1(32×167)tan1(1731)=tan1(247)tan1(1731)
[tan1xtan1y=tan1(xy1+xy)]
=tan1(24717311+247×1731) [xy>1247×1731=408217>1]
=tan1(24717311+408217)=tan1(744119217625217)=tan1(625217625217)
[tanπ4=1tan1(1)=π4]
=tan1(1)=π4
Hence it is Prove that 2sin1(35)tan1(1731)=π4

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 7 .
Answer:

2tan115+tan118=tan147
Hint: First we will solve for 2tan115
Given: 2tan115+tan118=tan147
Explanation:
L.H.S:
2tan115+tan118
=tan1(251(15)2)+tan1(18) [2tan1x=tan1(2x1x2)1<x<11<15<1]
=tan1(251(125))+tan1(18)=tan1(252425)+tan1(18)=tan1(25×2524)+tan1(18)=tan1(512)+tan1(18)
[tan1x+tan1y=tan1(x+y1xy)xy<1512×18=596<1]
=tan1(512+181512×18)=tan1(10+3241596)
=tan1(13249196)=tan1(1324×9691)=tan1(47)
Hence it is proved that 2tan115+tan118=tan147

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 8 .

Answer:

2tan134tan11731=π4
Hint: First we will solve for 2tan134
Given: 2tan134tan11731=π4
Explanation:
L.H.S:
2tan134tan11731 [2tan1x=tan1(2x1x2)1<x<11<34<1]
=tan1(321916)tan11731=tan1(32716)tan11731=tan1(32×167)tan11731=tan1(247)tan11731
=tan1(24717311+247×1731) [tan1xtan1y=tan1(xy1+xy),xy>1247×1731>1]
=tan1(7441192171+408217)=tan1(625217625217)
=tan1(1)=π4 [tanπ4=1tan1(1)=π4]
Hence it is proved that
2tan134tan11731=π4




Answer: 2tan112+tan117=tan13117
Hint: First we will solve for 2tan112
Given: 2tan112+tan117=tan13117
Explanation:
2tan112=tan1(2×121(12)2) [2tan1x=tan1(2x1x2)1<x<1]
=tan1(11(14))=tan1(134)
2tan112=tan1(43) ...................(1)
L.H.S:
2tan112+tan117
From equation (1)
=tan1(43)+tan1(17)
=tan1(43+17143×17) [tan1x+tan1y=tan1(x+y1xy)xy<143×17=421<1]
=tan1(28+3211421)=tan1(31211721)=tan1(3121×2117)=tan1(3117)
Hence it is proved that 2tan112+tan117=tan13117

Inverse Trigonomeric Functions Exercise 3.14 Question 2 Sub Question 10.

Answer: 4tan115tan11239=π4
Hints: First we will solve for 4tan115
Split into 2×2tan115 and solve it
Given: 4tan115tan11239=π4
Explanation: Let us first solve 4tan115
4tan115=2×2tan115
=2tan1(2×151(15)2) [2tan1x=tan1(2x1x2)1<x<11<15<1]
4tan115=2tan1(251125)=2tan1(25×2524)=2tan1(512)
=tan1(2×5121(512)2)[2tan1x=tan1(2x1x2)1<512<1]
=tan1(56125144)=tan1(56119144)=tan1(56×144119)
4tan115=tan1(120119) ......(1)
Now
L.H.S:
4tan115tan11239=tan1(120119)tan1(1239)=tan1(12011912391+120119×1239) [tan1xtan1y=tan1(xy1+xy)]
=tan1(286801192844128441+12028441)=tan1(28561284412856128441)
=tan1(1)=π4 [tanπ4=1tan1(1)=π4]
Hence it is proved that 4tan115tan11239=π4

Inverse Trigonomeric Functions Exercise 3.14 Question 3 .

Answer: sin12a1+a2cos1b21+b2=tan12x1x2 then x=ab1+ab
Hints: First we will convert whole L.H.S part in tan1
Given:sin12a1+a2cos1b21+b2=tan12x1x2
Explanation:
As we know that
2tan1x=sin12x1+x2,2tan1x=tan1(2x1x2)2tan1x=cos1(1x21+x2)
Now sin12a1+a2cos1b21+b2=tan12x1x2
2tan1a2tan1b=tan12x1x22(tan1atan1b)=tan12x1x22tan1(ab1+ab)=tan12x1x22tan1(ab1+ab)=2tan1xtan1(ab1+ab)=tan1xab1+ab=tan(tan1x)ab1+ab=xx=ab1+ab
Hence it is proved that x=ab1+ab

Inverse Trigonomeric Functions Exercise 3.14 Question 4 Sub Question 1 .

Answer: tan1(1x22x)+cot1(1x22x)=π2
Hint: First we will convert cot1(1x22x) into tan1
Given: tan1(1x22x)+cot1(1x22x)=π2
Explanation:
L.H.S:
tan1(1x22x)+cot1(1x22x)
=tan1(1x22x)+tan1(2x1x2) [cot1x=tan1(1x)]
=tan1[1x22x+2x1x21(1x22x)(2x1x2)] [tan1x+tan1y=tan1(x+y1xy)]
=tan1[1x22x+2x1x211]=tan1[1x22x+2x1x20] (a0=)
=tan1() (tanπ2=tan1()=π2)
=π2
Hence it is Proved that tan1(1x22x)+cot1(1x22x)=π2

Inverse Trigonomeric Functions Exercise 3.14 Question 4 Sub Question 2.

Answer: sin{tan11x22x+cos11x21+x2}=1
Hint: First we will convert cos11x21+x2 into tan1
Given: sin{tan11x22x+cos11x21+x2}=1
Explanation:
L.H.S:
sin{tan11x22x+cos11x21+x2}
=sin{tan11x22x+2tan1x} [cos1(1x21+x2)=2tan1x]
=sin{tan11x22x+tan12x1x2} [2tan1x=tan12x1x2]
=sin{tan11x22x+2x1x21(1x22x)(2x1x2)}=sin{tan11x22x+2x1x211}=sin{tan11x22x+2x1x20} (a0=)
=sin{tan1()} (tanπ2=tan1()=π2)
=sin(π2)=1
Hence it is proved that sin{tan11x22x+cos11x21+x2}=1



Answer: sin1(2x1x2)=2sin1x,12x1
Hints: We will first convert 2x1x2 into sin
Given: sin1(2x1x2)=2sin1x
x=sinθ
Let 1x2=1sin2θ=cos2θ=cosθ [sin2θ+cos2θ=1cos2θ=1sin2θ]
Now
sin1(2x1x2)=sin1(2sinθ1sin2θ)=sin1(2sinθcosθ) [2sinθcosθ=sin2θ]
=2θ=2sin1x [sin1(sinθ)=θx=sinθθ=sin1x]
Hence it is proved that sin1(2x1x2)=2sin1x


Answer: sin12a1+a2+sin12b1+b2=2tan1xto prove x=a+b1ab
Hints: First we will convert L.H.S of the question in tan1
Given: sin12a1+a2+sin12b1+b2=2tan1x
Explanation:
sin12a1+a2+sin12b1+b2=2tan1x2tan1a=sin1(2a1+a2)sin12a1+a2+sin12b1+b2=2tan1x
2tan1a+2tan1b=2tan1x2(tan1a+tan1b)=2tan1xtan1a+tan1b=tan1x
tan1(a+b1ab)=tan1x [tan1x+tan1y=tan1(x+y1xy)]
a+b1ab=tan(tan1x)a+b1ab=x
Hence it is proved that x=a+b1ab

Inverse Trigonomeric Functions Exercise 3.14 Question 6.

Answer: π
Hint: First we will convert sin12x1+x2 into tan1
Given: 2tan1x+sin12x1+x2for x1
Explanation:
2tan1x+sin12x1+x2 [2tan1x=sin12x1+x2]
=2tan1x+2tan1x=4tan1x(x1)
Let x=1
[tanπ4=1tan1(1)=π4]
=4tan1(1)=4×π4=π
Hence the constant value for x1 is π

Inverse Trigonomeric Functions Exercise 3.14 Question 7 Sub Question 1.

Answer:

π4
Given: Given that tan1{2cos(2sin112)}
Hint: First we solve 2sin112 Since sin1(12)=π6
Solution: We have,
tan1{2cos(2sin112)}
=tan1{2cos(2×π6)} [sin112=π6]
=tan1{2cosπ3}=tan1{2×12} [cosπ3=12]
=tan1(1)=π4 [tan1(1)=π4]
This is the required solution.

Inverse Trigonomeric Functions Exercise 3.14 Question 7 Sub Question 2.

Answer: 0
Given: cos(sec1x+cosec1x),|x|1
Hint: Since sec1x+cosec1x=π2applying it.
Solution: We have,
cos(sec1x+cosec1x)=cos(π2) [sec1x+cosec1x=π2]
=0 [cosπ2=0]
Hence, cos(sec1x+cosec1x)=0

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 1.

Answer: x=4619
Given: tan1(14)+2tan1(15)+tan1(16)+tan1(1x)=π4
Hint: Use formula
 1. tan1x+tan1y=tan1(x+y1xy)
 2. 2tan1x=tan1(2x1x2)
Solution: We have,
tan1(14)+2tan1(15)+tan1(16)+tan1(1x)=π4
tan1(14)+tan1(2×151(15)2)+tan1(16)+tan1(1x)=π4
[2tan1x=tan1(2x1x2)]
tan1(14)+tan1(512)+tan1(16)+tan1(1x)=π4
We know that tan1x+tan1y=tan1(x+y1xy)
tan1(14+512114×512)+tan1(16)+tan1(1x)=π4tan1(8124348)+tan1(16)+tan1(1x)=π4tan1(3243)+tan1(16)+tan1(1x)=π4
[tan1x+tan1y=tan1(x+y1xy)]
tan1(3243+1613243×16)+tan1(1x)=π4 [tan1π4=1]
tan1(235258226258)+tan1(1x)=tan1(1)
tan1(235226)+tan1(1x)=tan1(1)tan1(235226+1x1(235226)×1x)=tan1(1),235226x<1
235x+226226x235=1,x>235226235x+226=226x235,x>235226235x226x=2352269x=461x=4619
Hence x=4619is required answer

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 2.

Answer:

x=13
Given: 3sin12x1+x24cos1(1x21+x2)+2tan1(2x1x2)=π3
Hint: Using formula since,
2tan1x=tan1(2x1x2)=sin12x1+x2=cos1(1x21+x2)
Solution: We have,
3sin12x1+x24cos1(1x21+x2)+2tan1(2x1x2)=π3
We know that 2tan1x=tan1(2x1x2)=sin12x1+x2=cos1(1x21+x2)
3(2tan1x)4(2tan1x)+2(2tan1x)=π36tan1x8tan1x+4tan1x=π32tan1x=π3tan1x=π6
tan1x=tan1(13) [tan1(13)=π6]
x=13
This is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 3.

Answer: x=13
Given: tan1(2x1x2)+cot1(1x22x)=2π3,x>0
Hint: Use
 1. tan1(2x1x2)=2tan1x and 
 2. cot1(1x22x)=tan1(2x1x2)=2tan1x
Solution: We have,
tan1(2x1x2)+cot1(1x22x)=2π3
We know that,
tan1(2x1x2)=2tan1x and convert cot1into tan1
2tan1x+tan1(2x1x2)=2π3 [cotθ=1tanθ]
2tan1x+2tan1x=2π3 [tan1(2x1x2)=2tan1x]
4tan1x=2π3tan1x=2π12x=tanπ6 [tan1x=π6x=tanπ6]
x=13 [tanπ6=13]

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 4.

Answer: x=nπ+π4,nZ
Given: 2tan1(sinx)=tan1(2secx),xπ2
Hint: Using 2tan1(x)=tan1(2x1x2)
Solution: We have,
2tan1(sinx)=tan1(2secx)
We know that
2tan1(x)=tan1(2x1x2)
tan1(2sinx1sin2x)=tan1(2secx)2sinxcos2x=2secx [1sin2x=cos2x]
sinxcosxcosx=1cosx [secx=1cosx]
tanx=1 [sinxcosx=tanx]
x=tan1(1)x=π4 [tan1(1)=π4]
Hence the principal value of x=nπ+π4,nZ

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 5.

Answer: x=3
Given: cos1(x21x2+1)+12tan1(2x1x2)=2π3
Hint: Using formula
 1. cos1(1x21+x2)=2tan1x
 2. tan1(2x1x2)=2tan1x
Solution:
We have,
cos1(x21x2+1)+12tan1(2x1x2)=2π3
We know that,
cos1(1x21+x2)=2tan1xtan1(2x1x2)=2tan1xcos1[(1x2)1+x2]+12tan1(2x1x2)=2π3 [cos(θ)=πcosθ]
πcos1[(1x2)1+x2]+12tan1(2x1x2)=2π3
[cos1(1x21+x2)=tan1(2x1x2)=2tan1x]
π2tan1(x)+tan1(x)=2π3πtan1x=2π3tan1x=π2π3tan1x=π3x=tanπ3
x=3 [tan(x3)=3]
Hence x=3 is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 6.

Answer: x=3
Given:cos1(x21x2+1)+12tan1(2x1x2)=2π3
Hint: Using formula
 1. cos1(1x21+x2)=2tan1x
 2. tan1(2x1x2)=2tan1x
Solution:
We have,
cos1(x21x2+1)+12tan1(2x1x2)=2π3
We know that,
cos1(1x21+x2)=2tan1xtan1(2x1x2)=2tan1xcos1[(1x2)1+x2]+12tan1(2x1x2)=2π3 [cos(θ)=πcosθ]
πcos1[(1x2)1+x2]+12tan1(2x1x2)=2π3π2tan1(x)+12×2tan1x=2π3
[cos1(1x21+x2)=tan1(2x1x2)=2tan1x]
π2tan1(x)+tan1(x)=2π3πtan1x=2π3tan1x=π2π3tan1x=π3x=tanπ3x=3 [tan(x3)=3]
Hence x=3 is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 9.

Answer: 2tan1[a2a+2tanθ2]=cos1(acosθ+ba+bcosθ)
Given: 2tan1[a2a+2tanθ2]=cos1(acosθ+ba+bcosθ)
Hint: Using 2tan1x=cos1(1x21+x2)
Solution: Let us assume
 L.H.S =2tan1[a2a+2tanθ2]=cos1[1(aba+btanθ2)21+(aba+btanθ2)2] [2tan1x=cos1(1x21+x2)]
=cos1[1(aba+b)tan2θ21+(aba+b)tan2θ2]
=cos1[a+b(ab)tan2θ2a+b+(ab)tan2θ2]=cos1[a(1tan2θ2)+b(1+tan2θ2)a(1+tan2θ2)+b(1tan2θ2)]
Dividing numerator and denominator by (1+tan2θ2) we get
=cos1(a(1tan2θ21+tan2θ2)+ba+b(1tan2θ21+tan2θ2)]
=cos1[acosθ+ba+bcosθ] [1tan2θ21+tan2θ2=cosθ]
=R.H.S
Hence 2tan1[a2a+2tanθ2]=cos1(acosθ+ba+bcosθ)

Inverse Trigonometric Functions Exercise 3.14 Question 10.

Answer: tan1(2aba2b2)+tan1(2xyx2y2)=tan1(2αβα2β2)
Given: tan1(2aba2b2)+tan1(2xyx2y2)where α=axby&β=ay+bx
Hint: Use tan1x+tan1y=tan1(x+y1xy)
Solution: Let us assume
L.H.S:=tan1(2aba2b2)+tan1(2xyx2y2)
We know that tan1x+tan1y=tan1(x+y1xy)
=tan1[2aba2b2+2xyx2y21(2aba2b2)(2xyx2y2)]=tan1[2abx22aby2+2xya22xyb2a2x2a2y2b2x2+b2y24abxy]=tan1[2(abx2+xya2aby2xyb2)a2x2a2y2b2x2+b2y24abxy]=tan1[2[ax(bx+ay)by(ay+bx)](axby)2(a2y2+b2x2+2abxy)]
=tan1[2(bx+ay)(axby)(axby)2(bx+ay)2] [(a+b)2=a2+2ab+b2]
=tan1[2αβα2β2] [α=axby&β=ay+bx]
=R.H.S
Hence ,tan1(2aba2b2)+tan1(2xyx2y2)=tan1(2αβα2β2)

Inverse Trigonomeric Functions Exercise 3.14 Question 11.

Answer: 23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=tan1(2αβα2β2)
Given: For any a, b, x, y > 0
We have to prove that 23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=tan1(2αβα2β2)
where,α=ax+by&β=bx+ay
Hint: First we will divide numerator and denominator of first function and second function by b3 and y3respectively, then use tan1x+tan1y=tan1(x+y1xy)
Solution: Let us assume
L.H.S=23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=23tan1[3ab2a3b3b33a2bb3]+23tan1[3xy2x3y3y33x2yy3]
Dividing numerator and denominator of first function and second function by b3 and y3respectively.
=23tan1[3(ab)(ab)313(ab)2]+23tan1[3(xy)(xy)313(xy)2]
We know that,3tan1x=tan1(3xx313x2)
LH.S=23[3tan1(ab)]+23[3tan1(xy)]
=2tan1(ab)+2tan1(xy)=2[tan1(ab)+tan1(xy)]
=2tan1[ab+xy1ab×xy] [tan1x+tan1y=tan1(x+y1xy)]
=2tan1[ay+bxbyax]=2tan1(βα) [byax=α&β=ay+bx]
=tan1(2×βα1(βα)2) [2tan1x=tan1(2x1x2)]
=tan1(2βα×α2α2β2)=tan1(2αβα2β2)= R.H.S 
Hence,23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=tan1(2αβα2β2) Where α=ax+by&β=bx+ay

RD Sharma Class 12 Solutions Chapter 3 Exercise 3.14 involves inverse trigonometric problems related to cosecant, secant, cosine, tangent functions. Solving these problems will make a student grasp better and perform well in exams.

In calculus, Inverse Trigonometric Functions are used to find various integrals. In addition to mathematics, inverse trigonometric functions are applied in science and engineering. Students will learn about the domain and range restrictions of trigonometric functions that ensure the existence of their inverses and how to observe their behavior using graphical representations and examples.

The specific exercise 3.14 has 31 questions, including subparts, and now a student can practice a lot and gain knowledge about the topic. In addition, this exercise will help in overall understanding of the chapter. RD Sharma Class 12 Solutions Chapter 3 Exercise 3.14 has practice questions which are to be solved and are important for exam point of view. The concepts are now easily understood by the students.

  1. Created by experts

With these solutions, the approach to learning and understanding topics will be forever altered. RD Sharma Solutions is here that has been created by a team of experts to ensure that every student excels in mathematics, which is why the book includes a variety of tricks and tips.

  1. Best solutions for preparation

RD Sharma Class 12 textbook has high-level questions which sometimes become difficult for a student to solve. The RD Sharma Class 12 Solutions makes it easy. The chapters and exercises are covered wonderfully to help students in every possible way.

Students can refer to these solutions to gain extra knowledge about the topics. It is advisable to solve the practice questions to avail the benefit of these solutions.

  1. NCERT based questions

Students can refer to these solutions to gain extra knowledge about the topics. It is advisable to solve the practice questions to avail the benefit of these solutions. The questions are set from NCERT books as teachers consider it as a standard.The students must buy RD Sharma Class 12 Solutions Chapter 1 Ex 1.2 to score well in board exams.

  1. Different ways to solve a question

As the team of experts format the solutions, there are many ways which come out to solve one question. A student gets benefit from this technique. Here the illustrated examples are also included to make the learning easy and clarify the concepts a priority.

  1. Free of cost

Career360 provides these solutions free of cost, and every student must refer to these solutions to get the benefit. Therefore, students have a golden opportunity to learn and get a lot of knowledge from these solutions. Many students have availed of the opportunity given by Career360, and now it is your turn to grab the exciting offer. If still unsure, you can also visit the website and find more expert-created answers.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Questions (FAQs)

1. Why should I refer to RD Sharma Class 12 Maths Book?

RD Sharma Class 12 Maths Book is the best book for preparation for any exam. This book will take you to your goal if you want to give competitive exams like IIT JEE. RD Sharma Class 12 Maths Solutions Chapter 3 Exercise 3.10 has everything like examples, tips, tricks, and practice questions to grab a hold on the subject.k

2. Are these solutions free of cost and updated?

Yes, the solutions by Career360 are free and updated with the latest questions of the book. You can avail the benefits by going to the website. The high quality of these solutions will increase the grasp on every topic.

3. What are the benefits of these solutions?

The solutions are beneficial for every student because of the easy language and explained topics. For example, RD Sharma Class 12 Maths Solutions Chapter 3 Exercise 3.5 has everything a student requires to score well and compete better in exams.

4. What are inverse trigonometric functions?

The inverse trigonometric functions of sine, cosine, tangent, cosecant, secant and cotangent are used to find the angle of a triangle from any of the trigonometric functions.

5. What are other uses of inverse trigonometric functions?

The inverse trigonometric functions are helpful in geometry, physics and engineering too.

Articles

Upcoming School Exams

Application Date:24 March,2025 - 23 April,2025

Admit Card Date:25 March,2025 - 21 April,2025

Admit Card Date:25 March,2025 - 17 April,2025

View All School Exams
Back to top