Careers360 Logo
RD Sharma Class 12 Exercise 3.14 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 3.14 Inverse Trigonometric Functions Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 11:49 AM IST

The RD Sharma Class 12 Chapter 3 Solutions are the best to buy. The chapters and exercises in RD Sharma Class 12 may be difficult for a student to grasp. They will find it easier with RD Sharma Class 12th Exercise 3.14. Students can now use these solutions to solve any Relationship problem. The questions and answers are written in a way that students can easily understand. These solutions lay the groundwork for students' understanding of mathematics. The concepts are now easily understood by the students.

Many students find mathematics a difficult subject. These solutions will make students happy because they will learn all of the concepts quickly and easily. With these solutions, the approach to learning and understanding topics will be forever altered. RD Sharma Solutions is here to ensure that every student excels in mathematics, so the book includes various tricks and tips.

RD Sharma Class 12 Solutions Chapter 3 Inverse Trigonometric Functions - Other Exercise

Inverse Trigonometric Functions Excercise: 3.14

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Inverse Trigonometric Functions Exercise 3.14 Question 1(i)

Answer: \frac{-7}{17}
Hints: First we will solve for 2 \tan ^{-1} \frac{1}{5} and we use the formula
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),-1<x<1
Given: \tan \left\{2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right\}
Explanation:
\tan \left\{2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right\} ..............(1)
Let us first solve for 2 \tan ^{-1} \frac{1}{5}
2 \tan ^{-1} \frac{1}{5}=\tan ^{-1}\left\{\frac{2 \times \frac{1}{5}}{1-\left(\frac{1}{5}\right)^{2}}\right\} \left[\because-1<\frac{1}{5}<1\right]
=\tan ^{-1}\left\{\frac{\frac{2}{5}}{1-\left(\frac{1}{25}\right)}\right\}
=\tan ^{-1}\left\{\frac{\frac{2}{5}}{\left(\frac{24}{25}\right)}\right\}
=\tan ^{-1}\left\{\frac{2}{5} \times \frac{25}{24}\right\}
2 \tan ^{-1} \frac{1}{5}=\tan ^{-1}\left(\frac{5}{12}\right)................(2)
Now, we know that \tan \frac{\pi}{4}=1
\frac{\pi}{4}=\tan ^{-1}(1)
Now from equation (1), (2) and (3)
We get \tan \left\{2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right\}
=\tan \left\{\tan ^{-1}\left(\frac{5}{12}\right)-\tan ^{-1}(1)\right\}
=\tan \left\{\tan ^{-1}\left(\frac{\frac{5}{12}-1}{1+\frac{5}{12} \times 1}\right)\right\} \left[\begin{array}{l} \because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \\ \text { forxy }>-1 \end{array}\right]
=\tan \left\{\tan ^{-1}\left(\frac{\frac{-7}{12}}{\frac{17}{12}}\right)\right\}
=\tan \left\{\tan ^{-1}\left(\frac{-7}{12} \times \frac{12}{17}\right)\right\}
=\tan \left\{\tan ^{-1}\left(\frac{-7}{17}\right)\right\} \left[\because \tan \left(\tan ^{-1} \theta\right)=\theta\right]=\frac{-7}{17}



Answer: \frac{4-\sqrt{7}}{3}
Hints: First we will convert \sin ^{-1}\left(\frac{3}{4}\right) into \tan ^{-1}
Given: \tan \left(\frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)\right)
Explanation:
Let\sin ^{-1}\left(\frac{3}{4}\right)=\theta ......(1)
\sin \theta=\frac{3}{4}=\frac{A B}{A C}
In\triangle A B C
A B^{2}+B C^{2}=A C^{2}(By using Pythagoras theorem)
\begin{aligned} &3^{2}+B C^{2}=4^{2} \\ &9+B C^{2}=16 \\ &B C^{2}=16-9 \\ &B C^{2}=7 \\ &B C=\sqrt{7} \end{aligned}
\begin{aligned} &\cos \theta=\frac{B C}{A C} \\ &\cos \theta=\frac{\sqrt{7}}{4} \end{aligned}
Now
\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}
\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\frac{\sqrt{7}}{4}}{1+\frac{\sqrt{7}}{4}}}
\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{\frac{4-\sqrt{7}}{4}}{\frac{4+\sqrt{7}}{4}}}
\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}
\frac{\theta}{2}=\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)
\frac{1}{2} \sin ^{-1} \frac{3}{4}=\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right) from equation (1)
Now, \tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)
=\tan \left(\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)\right) from equation (2)
=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}
On rationalizing we get,
\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]
=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}} \times \frac{4-\sqrt{7}}{4-\sqrt{7}}}
=\sqrt{\frac{(4-\sqrt{7})^{2}}{16-7}}
\begin{aligned} &=\sqrt{\frac{(4-\sqrt{7})^{2}}{9}} \\ &=\frac{(4-\sqrt{7})}{3} \end{aligned}


Answer: \frac{1}{\sqrt{10}}
Hint: First we will convert \cos ^{-1} \frac{4}{5} into \sin ^{-1}
Given: \sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)
Explanation:
Let\cos ^{-1} \frac{4}{5}=\theta
\cos \theta=\frac{4}{5}
we know that
\begin{aligned} &\cos \theta=1-2 \sin ^{2} \frac{\theta}{2} \\ &2 \sin ^{2} \frac{\theta}{2}=1-\cos \theta \\ &\sin ^{2} \frac{\theta}{2}=\frac{1-\cos \theta}{2} \\ &\sin \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{2}} \end{aligned}
\begin{aligned} &\sin \frac{\theta}{2}=\sqrt{\frac{1-\frac{4}{5}}{2}} \\ &\sin \frac{\theta}{2}=\sqrt{\frac{\frac{1}{5}}{2}} \\ &\sin \frac{\theta}{2}=\sqrt{\frac{1}{10}} \\ &\sin \frac{\theta}{2}=\frac{1}{\sqrt{10}} \\ &\frac{\theta}{2}=\sin ^{-1} \frac{1}{\sqrt{10}} \end{aligned} from equation (1)
\frac{1}{2} \cos ^{-1} \frac{4}{5}=\sin ^{-1} \frac{1}{\sqrt{10}} ......(2)
Now
\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right) from equation (2)
=\sin \left(\sin ^{-1} \frac{1}{\sqrt{10}}\right)
=\sin \left(\sin ^{-1} \frac{1}{\sqrt{10}}\right) \left[\because \sin \left[\sin ^{-1}(\theta)\right]=\theta\right]
=\frac{1}{\sqrt{10}}

Answer: \frac{37}{26}
Hints: we will convert 2 \tan ^{-1} \frac{2}{3} into \sin ^{-1} and \tan ^{-1} \sqrt{3} into \cos ^{-1}
Given: \sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)
Solution:
\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right) ..................(1)
First we will solve for 2 \tan ^{-1} \frac{2}{3}
We know that 2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \quad-1<x<1
\tan ^{-1} \frac{2}{3}=\sin ^{-1}\left(\frac{2 \times \frac{2}{3}}{1+\left(\frac{2}{3}\right)^{2}}\right) -1<\frac{2}{3}<1
\begin{aligned} &=\sin ^{-1}\left(\frac{\frac{4}{3}}{1+\frac{4}{9}}\right) \\ &=\sin ^{-1}\left(\frac{\frac{4}{3}}{\frac{13}{9}}\right) \\ &=\sin ^{-1}\left(\frac{4}{3} \times \frac{9}{13}\right) \end{aligned}
2 \tan ^{-1} \frac{2}{3}=\sin ^{-1}\left(\frac{12}{13}\right) .................(2)
Now Let \tan ^{-1} \sqrt{3}=\theta .................(3)
\tan \theta=\frac{\sqrt{3}}{1}=\frac{P}{B}
By Pythagoras theorem:
\begin{aligned} &H^{2}=P^{2}+B^{2} \\ &=\sqrt{3}^{2}+1^{2} \\ &=3+1 \\ &=4 \\ &H=\sqrt{4} \\ &H=2 \\ &\cos \theta=\frac{B}{H} \\ &\cos \theta=\frac{1}{2} \end{aligned}
\theta=\cos ^{-1}\left(\frac{1}{2}\right) from equation.........(2)
\tan ^{-1} \sqrt{3}=\cos ^{-1}\left(\frac{1}{2}\right) ..................(4)
Now from equation (1)
\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)
Putting the value of 2 \tan ^{-1} \frac{2}{3} and \tan ^{-1} \sqrt{3} from equations (2) and (4) respectively
\begin{aligned} &=\sin \left(\sin ^{-1} \frac{12}{13}\right)+\cos \left(\cos ^{-1} \frac{1}{2}\right) \\ &=\frac{12}{13}+\frac{1}{2} \\ &=\frac{24+13}{26} \\ &=\frac{37}{26} \end{aligned}



Answer: 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}
Hints: First we will convert \sin ^{-1} \frac{3}{5} into \tan ^{-1} and after that we use the formula of 2 \tan ^{-1} x
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \quad-1<x<1
Given: 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}
Explanation:
2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}
First we will solve for \sin ^{-1} \frac{3}{5}
let \sin ^{-1} \frac{3}{5}=\theta ........................(1)
\sin \theta=\frac{3}{5}=\frac{P}{H}
By Pythagoras theorem
\begin{aligned} &H^{2}=P^{2}+B^{2} \\ &5^{2}=3^{2}+B^{2} \\ &25=9+B^{2} \\ &B^{2}=25-9 \\ &B^{2}=16 \\ &B=\sqrt{16} \\ &B=4 \end{aligned}
\tan \theta=\frac{P}{B}
\tan \theta=\frac{3}{4} \quad \theta=\tan ^{-1} \frac{3}{4}
From Equation (1)
\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4} ..............(2)
Now L.H.S:
2 \sin ^{-1} \frac{3}{5}
=2 \tan ^{-1} \frac{3}{4} from equation (2)
=\tan ^{-1}\left[\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right] \left[-1<\frac{3}{4}<1\right.
=\tan ^{-1}\left[\frac{\frac{3}{2}}{1-\frac{9}{16}}\right]
=\tan ^{-1}\left[\frac{\frac{3}{2}}{\frac{7}{16}}\right]
\begin{aligned} &=\tan ^{-1}\left[\frac{3}{2} \times \frac{16}{7}\right] \\ &=\tan ^{-1}\left[\frac{24}{7}\right] \\ &=R \cdot H . S \end{aligned}
Hence 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 2

Answer: \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}=\frac{1}{2} \sin ^{-1} \frac{4}{5}
Hints: First we will solve for \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9} then we will convert it into \cos ^{-1} \text { and } \sin ^{-1} respectively.
Given:
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}=\frac{1}{2} \sin ^{-1} \frac{4}{5}
First we will solve for \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\left(\frac{1}{4}\right)\left(\frac{2}{9}\right)}\right)
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{9+8}{36}}{1-\frac{1}{18}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) \\ &=\tan ^{-1}\left(\frac{17}{36} \times \frac{18}{17}\right) \end{aligned}
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\tan ^{-1} \frac{1}{2}
=\frac{1}{2} \times 2 \tan ^{-1} \frac{1}{2} (On multiplying and dividing by 2)
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \times \cos ^{-1}\left(\frac{1-\left(\frac{1}{2}\right)^{2}}{1+\left(\frac{1}{2}\right)^{2}}\right) \quad\left(\begin{array}{l} \because 2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\ 0 \leq x<\infty \end{array}\right)
\begin{aligned} &=\frac{1}{2} \cos ^{-1}\left(\frac{1-\frac{1}{4}}{1+\frac{1}{4}}\right) \\ &=\frac{1}{2} \cos ^{-1}\left(\frac{\frac{3}{4}}{\frac{5}{4}}\right) \end{aligned}
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right) .......................(1)
Now,let \cos ^{-1} \frac{3}{5}=\theta ....................(2)
\begin{aligned} &\cos \theta=\frac{3}{5} \\ &\therefore \sin \theta=\sqrt{1-\cos ^{2} \theta} \end{aligned} \left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)
\begin{aligned} \sin \theta &=\sqrt{1-\cos ^{2} \theta} \\ \sin \theta &=\sqrt{1-\left(\frac{3}{5}\right)^{2}} \\ &=\sqrt{1-\frac{9}{25}} \\ &=\sqrt{\frac{25-9}{25}} \\ &=\sqrt{\frac{16}{25}} \end{aligned}
\begin{aligned} &\sin \theta=\frac{4}{5} \\ &\theta=\sin ^{-1} \frac{4}{5} \end{aligned}
from equation (2)
\cos ^{-1} \frac{3}{5}=\sin ^{-1} \frac{4}{5} .........(3)
From equation (1) and (2) we get
\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}=\frac{1}{2} \sin ^{-1} \frac{4}{5}




Answer: \tan ^{-1} \frac{2}{3}=\frac{1}{2} \tan ^{-1} \frac{12}{5}
Hint: First we will multiply in numerator and denominator by 2 in L.H.S so that we can use the formula of 2 \tan ^{-1} x
Given: \tan ^{-1} \frac{2}{3}=\frac{1}{2} \tan ^{-1} \frac{12}{5}
Explanation:
L.H.S:\tan ^{-1} \frac{2}{3}
On multiply in numerator and denominator by 2.
=\frac{1}{2} \times 2 \tan ^{-1} \frac{2}{3}
=\frac{1}{2} \times \tan ^{-1}\left(\frac{2 \times \frac{2}{3}}{1-\left(\frac{2}{3}\right)^{2}}\right) \left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \\ -1<\frac{2}{3}<1 \end{array}\right]
\begin{aligned} &=\frac{1}{2} \times \tan ^{-1}\left(\frac{\frac{4}{3}}{1-\frac{4}{9}}\right) \\ &=\frac{1}{2} \times \tan ^{-1}\left(\frac{\frac{4}{3}}{\frac{5}{9}}\right) \\ &=\frac{1}{2} \times \tan ^{-1}\left(\frac{4}{3} \times \frac{9}{5}\right) \\ &=\frac{1}{2} \tan ^{-1}\left(\frac{12}{5}\right) \end{aligned}
Hence it is proved.

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 4

Answer: \tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}=\frac{\pi}{4}
Hints: First we will use the formula of 2 \tan ^{-1} x.
Given: \tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}=\frac{\pi}{4}
Explanation:
\left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \\ -1<\frac{1}{3}<1 \end{array}\right]
L.H.S:\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}
=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}\right)
\begin{aligned} &=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{\frac{2}{3}}{1-\frac{1}{9}}\right) \\ &=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) \\ &=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{3} \times \frac{9}{8}\right) \end{aligned}
\left[\begin{array}{l} \because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \\ x y<1 \\ \frac{3}{28}<1 \end{array}\right]
=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{3}{4}\right)
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{3}{4}}{1-\left(\frac{1}{7}\right)\left(\frac{3}{4}\right)}\right) \\ &=\tan ^{-1}\left(\frac{\frac{4+21}{28}}{\frac{28-3}{28}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) \\ &=\tan ^{-1}(1) \\ &=\frac{\pi}{4} \end{aligned} \left[\begin{array}{l} \because \tan \frac{\pi}{4}=1 \\ \tan ^{-1}(1)=\frac{\pi}{4} \end{array}\right]
Hence it is proved that \tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}=\frac{\pi}{4}

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 5

Answer: \sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2}
Hints: First we will convert 2 \tan ^{-1}\left(\frac{1}{3}\right)in \sin ^{-1}
Given: \sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2}
Explanation:
L.H.S:\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right) \left[\because 2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right]
=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{2 \times \frac{1}{3}}{1+\left(\frac{1}{3}\right)^{2}}\right) \left[\begin{array}{c} -1 \leq x \leq 1 \\ -1 \leq \frac{1}{3} \leq 1 \end{array}\right]
\begin{aligned} &=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{\frac{2}{3}}{1+\frac{1}{9}}\right) \\ &=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{\frac{2}{3}}{\frac{10}{9}}\right) \\ &=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{2}{3} \times \frac{9}{10}\right) \\ &=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{3}{5}\right) \end{aligned}
\left[\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right\}\right]
\text { [if } \left.x, y \geq 0 \text { and } x^{2}+y^{2} \leq 1\right]
\left[\begin{array}{l} \frac{4}{5}, \frac{3}{5} \geq 0,\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2} \\ \frac{16}{25}+\frac{9}{25}=\frac{25}{25}=1 \leq 1 \end{array}\right]
\begin{aligned} &=\sin ^{-1}\left\{\frac{4}{5} \sqrt{1-\left(\frac{3}{5}\right)^{2}}+\frac{3}{5} \sqrt{1-\left(\frac{4}{5}\right)^{2}}\right\} \\ &=\sin ^{-1}\left(\frac{4}{5} \sqrt{1-\frac{9}{25}}+\frac{3}{5} \sqrt{1-\frac{16}{25}}\right) \\ &=\sin ^{-1}\left(\frac{4}{5} \sqrt{\frac{16}{25}}+\frac{3}{5} \sqrt{\frac{9}{25}}\right) \\ &=\sin ^{-1}\left(\frac{4}{5} \times \frac{4}{5}+\frac{3}{5} \times \frac{3}{5}\right) \\ &=\sin ^{-1}\left(\frac{16}{25}+\frac{9}{25}\right) \\ &=\sin ^{-1}\left(\frac{25}{25}\right) \end{aligned}
\left[\begin{array}{l} \because \sin \frac{\pi}{2}=1 \\ \sin ^{-1}(1)=\frac{\pi}{2} \end{array}\right]
\begin{aligned} &=\sin ^{-1}(1) \\ &=\frac{\pi}{2} \end{aligned}
Hence it is proved that\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2}



Answer: 2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}
Hint: First we will convert \sin ^{-1}\left(\frac{3}{5}\right) into \tan ^{-1}.
Given: 2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}
Explanation:
Let us solve for \sin ^{-1}\left(\frac{3}{5}\right)
Let \sin ^{-1}\left(\frac{3}{5}\right)=\theta ............(1)
\begin{aligned} &\sin \theta=\left(\frac{3}{5}\right)=\frac{P}{H} \\ &H^{2}=P^{2}+B^{2} \\ &5^{2}=3^{2}+B^{2} \\ &25=9+B^{2} \\ &B^{2}=25-9 \\ &B^{2}=16 \\ &B=\sqrt{16} \\ &B=4 \end{aligned}
Now,
\begin{aligned} &\tan \theta=\frac{P}{B} \\ &\tan \theta=\frac{3}{4} \\ &\theta=\tan ^{-1}\left(\frac{3}{4}\right) \end{aligned}
From equation (1)
\sin ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{3}{4}\right) .............(2)
L.H.S:
2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
from Equation (2)
=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]
=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \left[\begin{array}{c} -1<x<1 \\ -1<\frac{3}{4}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{3}{2}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\ &=\tan ^{-1}\left(\frac{\frac{3}{2}}{\frac{7}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\ &=\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\ &=\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \end{aligned}
\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right]
=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right) \left[\begin{array}{l} x \cdot y>-1 \\ \frac{24}{7} \times \frac{17}{31}=\frac{408}{217}>-1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{408}{217}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{744-119}{217}}{\frac{625}{217}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{625}{217}}{\frac{625}{217}}\right) \end{aligned}
\left[\begin{array}{l} \tan \frac{\pi}{4}=1 \\ \tan ^{-1}(1)=\frac{\pi}{4} \end{array}\right]
\begin{aligned} &=\tan ^{-1}(1) \\ &=\frac{\pi}{4} \end{aligned}
Hence it is Prove that 2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 7 .
Answer:

2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\tan ^{-1} \frac{4}{7}
Hint: First we will solve for 2 \tan ^{-1} \frac{1}{5}
Given: 2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\tan ^{-1} \frac{4}{7}
Explanation:
L.H.S:
2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}
=\tan ^{-1}\left(\frac{\frac{2}{5}}{1-\left(\frac{1}{5}\right)^{2}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \\ -1<\frac{1}{5}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{2}{5}}{1-\left(\frac{1}{25}\right)}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\ &=\tan ^{-1}\left(\frac{\frac{2}{5}}{\frac{24}{25}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\ &=\tan ^{-1}\left(\frac{2}{5} \times \frac{25}{24}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\ &=\tan ^{-1}\left(\frac{5}{12}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \end{aligned}
\left[\begin{array}{l} \because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \\ x y<1 \\ \frac{5}{12} \times \frac{1}{8}=\frac{5}{96}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{1}{8}}{1-\frac{5}{12} \times \frac{1}{8}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{10+3}{24}}{1-\frac{5}{96}}\right) \end{aligned}
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{13}{24}}{\frac{91}{96}}\right) \\ &=\tan ^{-1}\left(\frac{13}{24} \times \frac{96}{91}\right) \\ &=\tan ^{-1}\left(\frac{4}{7}\right) \end{aligned}
Hence it is proved that 2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\tan ^{-1} \frac{4}{7}

Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 8 .

Answer:

2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}
Hint: First we will solve for 2 \tan ^{-1} \frac{3}{4}
Given: 2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}
Explanation:
L.H.S:
2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31} \left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \\ -1<\frac{3}{4}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{3}{2}}{1-\frac{9}{16}}\right)-\tan ^{-1} \frac{17}{31} \\ &=\tan ^{-1}\left(\frac{\frac{3}{2}}{\frac{7}{16}}\right)-\tan ^{-1} \frac{17}{31} \\ &=\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right)-\tan ^{-1} \frac{17}{31} \\ &=\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1} \frac{17}{31} \end{aligned}
=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right) \left[\begin{array}{l} \because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right), x y>-1 \\ \frac{24}{7} \times \frac{17}{31}>-1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{744-119}{217}}{1+\frac{408}{217}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{625}{217}}{\frac{625}{217}}\right) \end{aligned}
\begin{aligned} &=\tan ^{-1}(1) \\ &=\frac{\pi}{4} \end{aligned} \left[\begin{array}{l} \tan \frac{\pi}{4}=1 \\ \tan ^{-1}(1)=\frac{\pi}{4} \end{array}\right]
Hence it is proved that
2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}




Answer: 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}
Hint: First we will solve for 2 \tan ^{-1} \frac{1}{2}
Given: 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}
Explanation:
2 \tan ^{-1} \frac{1}{2}=\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}\right) \left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{1}{1-\left(\frac{1}{4}\right)}\right) \\ &=\tan ^{-1}\left(\frac{1}{3}{4}\right) \end{aligned}
2 \tan ^{-1} \frac{1}{2}=\tan ^{-1}\left(\frac{4}{3}\right) ...................(1)
L.H.S:
2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}
From equation (1)
=\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)
=\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \times \frac{1}{7}}\right) \left[\begin{array}{l} \because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \\ x y<1 \\ \frac{4}{3} \times \frac{1}{7}=\frac{4}{21}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{28+3}{21}}{1-\frac{4}{21}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{31}{21}}{\frac{17}{21}}\right) \\ &=\tan ^{-1}\left(\frac{31}{21} \times \frac{21}{17}\right) \\ &=\tan ^{-1}\left(\frac{31}{17}\right) \end{aligned}
Hence it is proved that 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}

Inverse Trigonomeric Functions Exercise 3.14 Question 2 Sub Question 10.

Answer: 4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}=\frac{\pi}{4}
Hints: First we will solve for 4 \tan ^{-1} \frac{1}{5}
Split into 2 \times 2 \tan ^{-1} \frac{1}{5} and solve it
Given: 4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}=\frac{\pi}{4}
Explanation: Let us first solve 4 \tan ^{-1} \frac{1}{5}
4 \tan ^{-1} \frac{1}{5}=2 \times 2 \tan ^{-1} \frac{1}{5}
=2 \tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\left(\frac{1}{5}\right)^{2}}\right) \left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<x<1 \\ -1<\frac{1}{5}<1 \end{array}\right]
\begin{aligned} 4 \tan ^{-1} \frac{1}{5} &=2 \tan ^{-1}\left(\frac{\frac{2}{5}}{1-\frac{1}{25}}\right) \\ &=2 \tan ^{-1}\left(\frac{2}{5} \times \frac{25}{24}\right) \\ &=2 \tan ^{-1}\left(\frac{5}{12}\right) \end{aligned}
=\tan ^{-1}\left(\frac{2 \times \frac{5}{12}}{1-\left(\frac{5}{12}\right)^{2}}\right) \quad\left[\begin{array}{l} \because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ -1<\frac{5}{12}<1 \end{array}\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{5}{6}}{1-\frac{25}{144}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{5}{6}}{\frac{119}{144}}\right) \\ &=\tan ^{-1}\left(\frac{5}{6} \times \frac{144}{119}\right) \end{aligned}
4 \tan ^{-1} \frac{1}{5}=\tan ^{-1}\left(\frac{120}{119}\right) ......(1)
Now
L.H.S:
\begin{aligned} &4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239} \\ &=\tan ^{-1}\left(\frac{120}{119}\right)-\tan ^{-1}\left(\frac{1}{239}\right) \\ &=\tan ^{-1}\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119} \times \frac{1}{239}}\right) \end{aligned} \left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{\frac{28680-119}{28441}}{\frac{28441+120}{28441}}\right) \\ &=\tan ^{-1}\left(\frac{\frac{28561}{28441}}{\frac{28561}{28441}}\right) \end{aligned}
\begin{aligned} &=\tan ^{-1}(1) \\ &=\frac{\pi}{4} \end{aligned} \left[\begin{array}{l} \tan \frac{\pi}{4}=1 \\ \tan ^{-1}(1)=\frac{\pi}{4} \end{array}\right]
Hence it is proved that 4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}=\frac{\pi}{4}

Inverse Trigonomeric Functions Exercise 3.14 Question 3 .

Answer: \sin ^{-1} \frac{2 a}{1+a^{2}}-\cos \frac{1-b^{2}}{1+b^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}} \text { then } x=\frac{a-b}{1+a b}
Hints: First we will convert whole L.H.S part in \tan ^{-1}
Given:\sin ^{-1} \frac{2 a}{1+a^{2}}-\cos \frac{1-b^{2}}{1+b^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}
Explanation:
As we know that
\begin{aligned} &2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}, 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\ &2 \tan ^{1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \end{aligned}
Now \sin ^{-1} \frac{2 a}{1+a^{2}}-\cos \frac{1-b^{2}}{1+b^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}
\begin{aligned} &2 \tan ^{-1} a-2 \tan ^{-1} b=\tan ^{-1} \frac{2 x}{1-x^{2}} \\ &2\left(\tan ^{-1} a-\tan ^{-1} b\right)=\tan ^{-1} \frac{2 x}{1-x^{2}} \\ &2 \tan ^{-1}\left(\frac{a-b}{1+a b}\right)=\tan ^{-1} \frac{2 x}{1-x^{2}} \\ &2 \tan ^{-1}\left(\frac{a-b}{1+a b}\right)=2 \tan ^{-1} x \\ &\tan ^{-1}\left(\frac{a-b}{1+a b}\right)=\tan ^{-1} x \\ &\frac{a-b}{1+a b}=\tan \left(\tan ^{-1} x\right) \\ &\frac{a-b}{1+a b}=x \\ &x=\frac{a-b}{1+a b} \end{aligned}
Hence it is proved that x=\frac{a-b}{1+a b}

Inverse Trigonomeric Functions Exercise 3.14 Question 4 Sub Question 1 .

Answer: \tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{2}
Hint: First we will convert \cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right) into \tan ^{-1}
Given: \tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{2}
Explanation:
L.H.S:
\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)
=\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \left[\because \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)\right]
=\tan ^{-1}\left[\frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{1-\left(\frac{1-x^{2}}{2 x}\right)\left(\frac{2 x}{1-x^{2}}\right)}\right] \left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]
\begin{aligned} &=\tan ^{-1}\left[\frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{1-1}\right] \\ &=\tan ^{-1}\left[\frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{0}\right] \end{aligned} \left(\frac{a}{0}=\infty\right)
=\tan ^{-1}(\infty) \left(\begin{array}{l} \because \tan \frac{\pi}{2}=\infty \\ \tan ^{-1}(\infty)=\frac{\pi}{2} \end{array}\right)
=\frac{\pi}{2}
Hence it is Proved that \tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{2}

Inverse Trigonomeric Functions Exercise 3.14 Question 4 Sub Question 2.

Answer: \sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right\}=1
Hint: First we will convert \cos ^{-1} \frac{1-x^{2}}{1+x^{2}} into \tan ^{-1}
Given: \sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right\}=1
Explanation:
L.H.S:
\sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right\}
=\sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+2 \tan ^{-1} x\right\} \left[\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x\right]
=\sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+\tan ^{-1} \frac{2 x}{1-x^{2}}\right\} \left[\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right]
\begin{aligned} &=\sin \left\{\tan ^{-1} \frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{1-\left(\frac{1-x^{2}}{2 x}\right)\left(\frac{2 x}{1-x^{2}}\right)}\right\} \\ &=\sin \left\{\tan ^{-1} \frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{1-1}\right\} \\ &=\sin \left\{\tan ^{-1} \frac{\frac{1-x^{2}}{2 x}+\frac{2 x}{1-x^{2}}}{0}\right\} \end{aligned} \left(\frac{a}{0}=\infty\right)
=\sin \left\{\tan ^{-1}(\infty)\right\} \left(\begin{array}{l} \because \tan \frac{\pi}{2}=\infty \\ \tan ^{-1}(\infty)=\frac{\pi}{2} \end{array}\right)
\begin{aligned} &=\sin \left(\frac{\pi}{2}\right) \\ &=1 \end{aligned}
Hence it is proved that \sin \left\{\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right\}=1



Answer: \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1
Hints: We will first convert 2 x \sqrt{1-x^{2}} into sin
Given: \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x
x=\sin \theta
Let \sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} \theta}=\sqrt{\cos ^{2} \theta}=\cos \theta \left[\begin{array}{l} \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \cos ^{2} \theta=1-\sin ^{2} \theta \end{array}\right]
Now
\begin{aligned} &\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \\ &=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\ &=\sin ^{-1}(2 \sin \theta \cos \theta) \end{aligned} [2 \sin \theta \cos \theta=\sin 2 \theta]
\begin{aligned} &=2 \theta \\ &=2 \sin ^{-1} x \end{aligned} \left[\begin{array}{l} \because \sin ^{-1}(\sin \theta)=\theta \\ x=\sin \theta \\ \theta=\sin ^{-1} x \end{array}\right]
Hence it is proved that \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x


Answer: \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} xto prove x=\frac{a+b}{1-a b}
Hints: First we will convert L.H.S of the question in \tan ^{-1}
Given: \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x
Explanation:
\begin{aligned} &\sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x \\ &\because 2 \tan ^{-1} a=\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right) \\ &\therefore \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x \end{aligned}
\begin{aligned} &2 \tan ^{-1} a+2 \tan ^{-1} b=2 \tan ^{-1} x \\ &2\left(\tan ^{-1} a+\tan ^{-1} b\right)=2 \tan ^{-1} x \\ &\tan ^{-1} a+\tan ^{-1} b=\tan ^{-1} x \end{aligned}
\tan ^{-1}\left(\frac{a+b}{1-a b}\right)=\tan ^{-1} x \left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]
\begin{aligned} &\frac{a+b}{1-a b}=\tan \left(\tan ^{-1} x\right) \\ &\frac{a+b}{1-a b}=x \end{aligned}
Hence it is proved that x=\frac{a+b}{1-a b}

Inverse Trigonomeric Functions Exercise 3.14 Question 6.

Answer: \pi
Hint: First we will convert \sin ^{-1} \frac{2 x}{1+x^{2}} into \tan ^{-1}
Given: 2 \tan ^{-1} x+\sin ^{-1} \frac{2 x}{1+x^{2}}for x \geq 1
Explanation:
2 \tan ^{-1} x+\sin ^{-1} \frac{2 x}{1+x^{2}} \left[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}\right]
\begin{aligned} &=2 \tan ^{-1} x+2 \tan ^{-1} x \\ &=4 \tan ^{-1} x \quad(x \geq 1) \end{aligned}
Let x=1
\left[\begin{array}{l} \because \tan \frac{\pi}{4}=1 \\ \tan ^{-1}(1)=\frac{\pi}{4} \end{array}\right]
\begin{aligned} &=4 \tan ^{-1}(1) \\ &=4 \times \frac{\pi}{4} \\ &=\pi \end{aligned}
Hence the constant value for x \geq 1 is \pi

Inverse Trigonomeric Functions Exercise 3.14 Question 7 Sub Question 1.

Answer:

\frac{\pi}{4}
Given: Given that \tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}
Hint: First we solve 2 \sin ^{-1} \frac{1}{2} Since \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
Solution: We have,
\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}
=\tan ^{-1}\left\{2 \cos \left(2 \times \frac{\pi}{6}\right)\right\} \left[\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}\right]
\begin{aligned} &=\tan ^{-1}\left\{2 \cos \frac{\pi}{3}\right\} \\ &=\tan ^{-1}\left\{2 \times \frac{1}{2}\right\} \end{aligned} \left[\cos \frac{\pi}{3}=\frac{1}{2}\right]
\begin{aligned} &=\tan ^{-1}(1) \\ &=\frac{\pi}{4} \end{aligned} \left[\tan ^{-1}(1)=\frac{\pi}{4}\right]
This is the required solution.

Inverse Trigonomeric Functions Exercise 3.14 Question 7 Sub Question 2.

Answer: 0
Given: \cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right),|x| \geq 1
Hint: Since \sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}applying it.
Solution: We have,
\begin{aligned} &\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right) \\ &=\cos \left(\frac{\pi}{2}\right) \end{aligned} \left[\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}\right]
=0 \left[\cos \frac{\pi}{2}=0\right]
Hence, \cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)=0

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 1.

Answer: x=\frac{-461}{9}
Given: \tan ^{-1}\left(\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4}
Hint: Use formula
\text { 1. } \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\text { 2. } 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
Solution: We have,
\tan ^{-1}\left(\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4}
\Rightarrow \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\left(\frac{1}{5}\right)^{2}}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4}
\left[2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]
\Rightarrow \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{5}{12}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4}
We know that \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\begin{aligned} &\Rightarrow \tan ^{-1}\left(\frac{\frac{1}{4}+\frac{5}{12}}{1-\frac{1}{4} \times \frac{5}{12}}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4} \\ &\Rightarrow \tan ^{-1}\left(\frac{\frac{8}{12}}{\frac{43}{48}}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4} \\ &\Rightarrow \tan ^{-1}\left(\frac{32}{43}\right)+\tan ^{-1}\left(\frac{1}{6}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4} \end{aligned}
\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]
\Rightarrow \tan ^{-1}\left(\frac{\frac{32}{43}+\frac{1}{6}}{1-\frac{32}{43} \times \frac{1}{6}}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4} \left[\tan ^{-1} \frac{\pi}{4}=1\right]
\Rightarrow \tan ^{-1}\left(\frac{\frac{235}{258}}{\frac{226}{258}}\right)+\tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\tan ^{-1}(1)
\begin{aligned} &\Rightarrow \tan ^{-1}\left(\frac{235}{226}\right)+\tan ^{-1}\left(\frac{1}{x}\right)=\tan ^{-1}(1) \\ &\Rightarrow \tan ^{-1}\left(\frac{\frac{235}{226}+\frac{1}{x}}{1-\left(\frac{235}{226}\right) \times \frac{1}{x}}\right)=\tan ^{-1}(1), \frac{235}{226} x<1 \end{aligned}
\begin{aligned} &\Rightarrow \frac{235 x+226}{226 x-235}=1, x>\frac{235}{226} \\ &\Rightarrow 235 x+226=226 x-235, x>\frac{235}{226} \\ &\Rightarrow 235 x-226 x=-235-226 \\ &\Rightarrow 9 x=-461 \\ &\Rightarrow x=\frac{-461}{9} \end{aligned}
Hence x=\frac{-461}{9}is required answer

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 2.

Answer:

x=\frac{1}{\sqrt{3}}
Given: 3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}
Hint: Using formula since,
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
Solution: We have,
3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}
We know that 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
\begin{aligned} &\Rightarrow 3\left(2 \tan ^{-1} x\right)-4\left(2 \tan ^{-1} x\right)+2\left(2 \tan ^{-1} x\right)=\frac{\pi}{3} \\ &\Rightarrow 6 \tan ^{-1} x-8 \tan ^{-1} x+4 \tan ^{-1} x=\frac{\pi}{3} \\ &\Rightarrow 2 \tan ^{-1} x=\frac{\pi}{3} \\ &\Rightarrow \tan ^{-1} x=\frac{\pi}{6} \end{aligned}
\Rightarrow \tan ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \left[\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}\right]
\Rightarrow x=\frac{1}{\sqrt{3}}
This is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 3.

Answer: x=\frac{1}{\sqrt{3}}
Given: \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{2 \pi}{3}, x>0
Hint: Use
\text { 1. } \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x \text { and }
\text { 2. } \cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x
Solution: We have,
\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{2 \pi}{3}
We know that,
\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x and convert \cot ^{-1}into \tan ^{-1}
\Rightarrow 2 \tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3} \left[\cot \theta=\frac{1}{\tan \theta}\right]
\Rightarrow 2 \tan ^{-1} x+2 \tan ^{-1} x=\frac{2 \pi}{3} \left[\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x\right]
\begin{aligned} &\Rightarrow 4 \tan ^{-1} x=\frac{2 \pi}{3} \\ &\Rightarrow \tan ^{-1} x=\frac{2 \pi}{12} \\ &\Rightarrow x=\tan \frac{\pi}{6} \end{aligned} \left[\tan ^{-1} x=\frac{\pi}{6} \Rightarrow x=\tan \frac{\pi}{6}\right]
\Rightarrow x=\frac{1}{\sqrt{3}} \left[\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}\right]

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 4.

Answer: \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathrm{Z}
Given: 2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sec x), x \neq \frac{\pi}{2}
Hint: Using 2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
Solution: We have,
2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sec x)
We know that
2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
\begin{aligned} &\Rightarrow \tan ^{-1}\left(\frac{2 \sin x}{1-\sin ^{2} x}\right)=\tan ^{-1}(2 \sec x) \\ &\Rightarrow \frac{2 \sin x}{\cos ^{2} x}=2 \sec x \end{aligned} \left[1-\sin ^{2} x=\cos ^{2} x\right]
\Rightarrow \frac{\sin x}{\cos x \cos x}=\frac{1}{\cos x} \left[\sec x=\frac{1}{\cos x}\right]
\Rightarrow \tan x=1 \left[\frac{\sin x}{\cos x}=\tan x\right]
\begin{aligned} &\Rightarrow x=\tan ^{-1}(1) \\ &\Rightarrow x=\frac{\pi}{4} \end{aligned} \left[\tan ^{-1}(1)=\frac{\pi}{4}\right]
Hence the principal value of x=n \pi+\frac{\pi}{4}, n \in Z

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 5.

Answer: x=\sqrt{3}
Given: \cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}
Hint: Using formula
\text { 1. } \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x
\text { 2. } \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x
Solution:
We have,
\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}
We know that,
\begin{aligned} &\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x \\ &\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x \\ &\Rightarrow \cos ^{-1}\left[\frac{-\left(1-x^{2}\right)}{1+x^{2}}\right]+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3} \end{aligned} [\cos (-\theta)=\pi-\cos \theta]
\Rightarrow \pi-\cos ^{-1}\left[\frac{\left(1-x^{2}\right)}{1+x^{2}}\right]+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}
\left[\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x\right]
\begin{aligned} &\Rightarrow \pi-2 \tan ^{-1}(x)+\tan ^{-1}(x)=\frac{2 \pi}{3} \\ &\Rightarrow \pi-\tan ^{-1} x=\frac{2 \pi}{3} \\ &\Rightarrow \tan ^{-1} x=\pi-\frac{2 \pi}{3} \\ &\Rightarrow \tan ^{-1} x=\frac{\pi}{3} \\ &\Rightarrow x=\tan \frac{\pi}{3} \end{aligned}
\Rightarrow x=\sqrt{3} \left[\tan \left(\frac{x}{3}\right)=\sqrt{3}\right]
Hence x=\sqrt{3} is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 8 Sub Question 6.

Answer: x=\sqrt{3}
Given:\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}
Hint: Using formula
\text { 1. } \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x
\text { 2. } \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x
Solution:
We have,
\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}
We know that,
\begin{aligned} &\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x \\ &\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x \\ &\Rightarrow \cos ^{-1}\left[\frac{-\left(1-x^{2}\right)}{1+x^{2}}\right]+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3} \end{aligned} [\cos (-\theta)=\pi-\cos \theta]
\begin{aligned} &\Rightarrow \pi-\cos ^{-1}\left[\frac{\left(1-x^{2}\right)}{1+x^{2}}\right]+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3} \\ &\Rightarrow \pi-2 \tan ^{-1}(x)+\frac{1}{2} \times 2 \tan ^{-1} x=\frac{2 \pi}{3} \end{aligned}
\left[\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x\right]
\begin{aligned} &\Rightarrow \pi-2 \tan ^{-1}(x)+\tan ^{-1}(x)=\frac{2 \pi}{3} \\ &\Rightarrow \pi-\tan ^{-1} x=\frac{2 \pi}{3} \\ &\Rightarrow \tan ^{-1} x=\pi-\frac{2 \pi}{3} \\ &\Rightarrow \tan ^{-1} x=\frac{\pi}{3} \\ &\Rightarrow x=\tan \frac{\pi}{3} \\ &\Rightarrow x=\sqrt{3} \end{aligned} \left[\tan \left(\frac{x}{3}\right)=\sqrt{3}\right]
Hence x=\sqrt{3} is required solution.

Inverse Trigonometric Function Exercise 3.14 Question 9.

Answer: 2 \tan ^{-1}\left[\sqrt{\frac{a-2}{a+2}} \tan \frac{\theta}{2}\right]=\cos ^{-1}\left(\frac{a \cos \theta+b}{a+b \cos \theta}\right)
Given: 2 \tan ^{-1}\left[\sqrt{\frac{a-2}{a+2}} \tan \frac{\theta}{2}\right]=\cos ^{-1}\left(\frac{a \cos \theta+b}{a+b \cos \theta}\right)
Hint: Using 2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
Solution: Let us assume
\begin{aligned} \text { L.H.S } &=2 \tan ^{-1}\left[\sqrt{\frac{a-2}{a+2}} \tan \frac{\theta}{2}\right] \\ &=\cos ^{-1}\left[\frac{1-\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2}\right)^{2}}{1+\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2}\right)^{2}}\right] \end{aligned} \left[2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right]
=\cos ^{-1}\left[\frac{1-\left(\frac{a-b}{a+b}\right) \tan ^{2} \frac{\theta}{2}}{1+\left(\frac{a-b}{a+b}\right) \tan ^{2} \frac{\theta}{2}}\right]
\begin{aligned} &=\cos ^{-1}\left[\frac{a+b-(a-b) \tan ^{2} \frac{\theta}{2}}{a+b+(a-b) \tan ^{2} \frac{\theta}{2}}\right] \\ &=\cos ^{-1}\left[\frac{a\left(1-\tan ^{2} \frac{\theta}{2}\right)+b\left(1+\tan ^{2} \frac{\theta}{2}\right)}{a\left(1+\tan ^{2} \frac{\theta}{2}\right)+b\left(1-\tan ^{2} \frac{\theta}{2}\right)}\right] \end{aligned}
Dividing numerator and denominator by \left(1+\tan ^{2} \frac{\theta}{2}\right) we get
=\cos ^{-1}\left(\frac{a\left(\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)+b}{a+b\left(\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)}\right]
=\cos ^{-1}\left[\frac{a \cos \theta+b}{a+b \cos \theta}\right] \left[\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\cos \theta\right]
= R.H.S
Hence 2 \tan ^{-1}\left[\sqrt{\frac{a-2}{a+2}} \tan \frac{\theta}{2}\right]=\cos ^{-1}\left(\frac{a \cos \theta+b}{a+b \cos \theta}\right)

Inverse Trigonometric Functions Exercise 3.14 Question 10.

Answer: \tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)+\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right)
Given: \tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)+\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)where \alpha=a x-b y \: \: \& \: \: \beta=a y+b x
Hint: Use \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
Solution: Let us assume
L.H.S:=\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)+\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)
We know that \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\begin{aligned} &=\tan ^{-1}\left[\frac{\frac{2 a b}{a^{2}-b^{2}}+\frac{2 x y}{x^{2}-y^{2}}}{1-\left(\frac{2 a b}{a^{2}-b^{2}}\right)\left(\frac{2 x y}{x^{2}-y^{2}}\right)}\right] \\ &=\tan ^{-1}\left[\frac{2 a b x^{2}-2 a b y^{2}+2 x y a^{2}-2 x y b^{2}}{a^{2} x^{2}-a^{2} y^{2}-b^{2} x^{2}+b^{2} y^{2}-4 a b x y}\right] \\ &=\tan ^{-1}\left[\frac{2\left(a b x^{2}+x y a^{2}-a b y^{2}-x y b^{2}\right)}{a^{2} x^{2}-a^{2} y^{2}-b^{2} x^{2}+b^{2} y^{2}-4 a b x y}\right] \\ &=\tan ^{-1}\left[\frac{2[a x(b x+a y)-b y(a y+b x)]}{(a x-b y)^{2}-\left(a^{2} y^{2}+b^{2} x^{2}+2 a b x y\right)}\right] \end{aligned}
=\tan ^{-1}\left[\frac{2(b x+a y)(a x-b y)}{(a x-b y)^{2}-(b x+a y)^{2}}\right] \left[(a+b)^{2}=a^{2}+2 a b+b^{2}\right]
=\tan ^{-1}\left[\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right] [\alpha=a x-b y \& \beta=a y+b x]
=R.H.S
Hence ,\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)+\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right)

Inverse Trigonomeric Functions Exercise 3.14 Question 11.

Answer: \frac{2}{3} \tan ^{-1}\left(\frac{3 a b^{2}-a^{3}}{b^{3}-3 a^{2} b}\right)+\frac{2}{3} \tan ^{-1}\left(\frac{3 x y^{2}-x^{3}}{y^{3}-3 x^{2} y}\right)=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right)
Given: For any a, b, x, y > 0
We have to prove that \frac{2}{3} \tan ^{-1}\left(\frac{3 a b^{2}-a^{3}}{b^{3}-3 a^{2} b}\right)+\frac{2}{3} \tan ^{-1}\left(\frac{3 x y^{2}-x^{3}}{y^{3}-3 x^{2} y}\right)=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right)
where,\alpha=-a x+b y \& \beta=b x+a y
Hint: First we will divide numerator and denominator of first function and second function by b^{3} and y^{3}respectively, then use \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
Solution: Let us assume
\begin{aligned} L . H . S &=\frac{2}{3} \tan ^{-1}\left(\frac{3 a b^{2}-a^{3}}{b^{3}-3 a^{2} b}\right)+\frac{2}{3} \tan ^{-1}\left(\frac{3 x y^{2}-x^{3}}{y^{3}-3 x^{2} y}\right) \\ &=\frac{2}{3} \tan ^{-1}\left[\frac{\frac{3 a b^{2}-a^{3}}{b^{3}}}{\frac{b^{3}-3 a^{2} b}{b^{3}}}\right]+\frac{2}{3} \tan ^{-1}\left[\frac{\frac{3 x y^{2}-x^{3}}{y^{3}}}{\frac{y^{3}-3 x^{2} y}{y^{3}}}\right] \end{aligned}
Dividing numerator and denominator of first function and second function by b^{3} and y^{3}respectively.
=\frac{2}{3} \tan ^{-1}\left[\frac{3\left(\frac{a}{b}\right)-\left(\frac{a}{b}\right)^{3}}{1-3\left(\frac{a}{b}\right)^{2}}\right]+\frac{2}{3} \tan ^{-1}\left[\frac{3\left(\frac{x}{y}\right)-\left(\frac{x}{y}\right)^{3}}{1-3\left(\frac{x}{y}\right)^{2}}\right]
We know that,3 \tan ^{-1} x=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)
\Rightarrow \mathrm{LH} . \mathrm{S}=\frac{2}{3}\left[3 \tan ^{-1}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)\right]+\frac{2}{3}\left[3 \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)\right]
\begin{aligned} &=2 \tan ^{-1}\left(\frac{a}{b}\right)+2 \tan ^{-1}\left(\frac{x}{y}\right) \\ &=2\left[\tan ^{-1}\left(\frac{a}{b}\right)+\tan ^{-1}\left(\frac{x}{y}\right)\right] \end{aligned}
=2 \tan ^{-1}\left[\frac{\frac{a}{b}+\frac{x}{y}}{1-\frac{a}{b} \times \frac{x}{y}}\right] \left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]
\begin{aligned} &=2 \tan ^{-1}\left[\frac{a y+b x}{b y-a x}\right] \\ &=2 \tan ^{-1}\left(\frac{\beta}{\alpha}\right) \end{aligned} [b y-a x=\alpha \& \beta=a y+b x]
=\tan ^{-1}\left(\frac{2 \times \frac{\beta}{\alpha}}{1-\left(\frac{\beta}{\alpha}\right)^{2}}\right) \left[2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]
\begin{aligned} &=\tan ^{-1}\left(\frac{2 \beta}{\alpha} \times \frac{\alpha^{2}}{\alpha^{2}-\beta^{2}}\right) \\ &=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right) \\ &=\text { R.H.S } \end{aligned}
Hence,\frac{2}{3} \tan ^{-1}\left(\frac{3 a b^{2}-a^{3}}{b^{3}-3 a^{2} b}\right)+\frac{2}{3} \tan ^{-1}\left(\frac{3 x y^{2}-x^{3}}{y^{3}-3 x^{2} y}\right)=\tan ^{-1}\left(\frac{2 \alpha \beta}{\alpha^{2}-\beta^{2}}\right) Where \alpha=-a x+b y \& \beta=b x+a y

RD Sharma Class 12 Solutions Chapter 3 Exercise 3.14 involves inverse trigonometric problems related to cosecant, secant, cosine, tangent functions. Solving these problems will make a student grasp better and perform well in exams.

In calculus, Inverse Trigonometric Functions are used to find various integrals. In addition to mathematics, inverse trigonometric functions are applied in science and engineering. Students will learn about the domain and range restrictions of trigonometric functions that ensure the existence of their inverses and how to observe their behavior using graphical representations and examples.

The specific exercise 3.14 has 31 questions, including subparts, and now a student can practice a lot and gain knowledge about the topic. In addition, this exercise will help in overall understanding of the chapter. RD Sharma Class 12 Solutions Chapter 3 Exercise 3.14 has practice questions which are to be solved and are important for exam point of view. The concepts are now easily understood by the students.

  1. Created by experts

With these solutions, the approach to learning and understanding topics will be forever altered. RD Sharma Solutions is here that has been created by a team of experts to ensure that every student excels in mathematics, which is why the book includes a variety of tricks and tips.

  1. Best solutions for preparation

RD Sharma Class 12 textbook has high-level questions which sometimes become difficult for a student to solve. The RD Sharma Class 12 Solutions makes it easy. The chapters and exercises are covered wonderfully to help students in every possible way.

Students can refer to these solutions to gain extra knowledge about the topics. It is advisable to solve the practice questions to avail the benefit of these solutions.

  1. NCERT based questions

Students can refer to these solutions to gain extra knowledge about the topics. It is advisable to solve the practice questions to avail the benefit of these solutions. The questions are set from NCERT books as teachers consider it as a standard.The students must buy RD Sharma Class 12 Solutions Chapter 1 Ex 1.2 to score well in board exams.

  1. Different ways to solve a question

As the team of experts format the solutions, there are many ways which come out to solve one question. A student gets benefit from this technique. Here the illustrated examples are also included to make the learning easy and clarify the concepts a priority.

  1. Free of cost

Career360 provides these solutions free of cost, and every student must refer to these solutions to get the benefit. Therefore, students have a golden opportunity to learn and get a lot of knowledge from these solutions. Many students have availed of the opportunity given by Career360, and now it is your turn to grab the exciting offer. If still unsure, you can also visit the website and find more expert-created answers.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Question (FAQs)

1. Why should I refer to RD Sharma Class 12 Maths Book?

RD Sharma Class 12 Maths Book is the best book for preparation for any exam. This book will take you to your goal if you want to give competitive exams like IIT JEE. RD Sharma Class 12 Maths Solutions Chapter 3 Exercise 3.10 has everything like examples, tips, tricks, and practice questions to grab a hold on the subject.k

2. Are these solutions free of cost and updated?

Yes, the solutions by Career360 are free and updated with the latest questions of the book. You can avail the benefits by going to the website. The high quality of these solutions will increase the grasp on every topic.

3. What are the benefits of these solutions?

The solutions are beneficial for every student because of the easy language and explained topics. For example, RD Sharma Class 12 Maths Solutions Chapter 3 Exercise 3.5 has everything a student requires to score well and compete better in exams.

4. What are inverse trigonometric functions?

The inverse trigonometric functions of sine, cosine, tangent, cosecant, secant and cotangent are used to find the angle of a triangle from any of the trigonometric functions.

5. What are other uses of inverse trigonometric functions?

The inverse trigonometric functions are helpful in geometry, physics and engineering too.

Articles

Get answers from students and experts
Back to top