Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
You can find free RD Sharma class 12 chapter 3 Exercise 3.6 solution here. For Inverse Trigonometric Functions, all RD Sharma Book Solutions are listed here, exercise by exercise. RD Sharma Solutions can assist you with preparing for a variety of competitive exams in high school, graduate school, and undergraduate education. In addition, it has been proven that practicing questions with RD Sharma Class 12th Exercise 3.6 Solution improves math skills.
Inverse Trigonometric Function Exercise 3.6 Question 1 (i).
Answer:$\frac{5\pi }{6}$Inverse Trigonometric Function Exercise 3.6 Question 1 (ii).
Answer:$\frac{\pi }{6}$Inverse Trigonometric Function Exercise 3.6 Question 1 (iii).
Answer:$\frac{2\pi }{3}$Inverse Trigonometric Function Exercise 3.6 Question 1 (iv).
Answer:$\frac{3\pi }{4}$
Hint: The $\cot ^{-1}$ function is defined as a function whose domain R and the principal value branch of the function $\cot ^{-1}$ is $(0, \pi ).$ Thus $cot ^{-1}: R \rightarrow (0,\pi )$
First we will convert $tan\frac{3\pi }{4}$ into $\cot$
Given: $cot^{-1}\left ( \tan \frac{3\pi }{4} \right )$
Solution:
Let $y= cot^{-1}\left ( \tan \frac{3\pi }{4} \right )$ $\cdot \cdot \cdot 1$
$cot\: y= \tan \frac{3\pi }{4}$
$cot\: y = cot (\frac{\pi }{2}- \frac{3\pi }{2} ) \; \; \; \; \; \; \left [ \because tan\theta = \cot \left ( \frac{\pi }{2}-\theta\right ) \right ]$
$cot\: y = cot ( \frac{-\pi }{4} )$
$cot\: y = - cot \left ( \frac{\pi }{4} \right ) \; \; \; \; [ \because cot\left ( -\theta \right ) = - cot\: \theta ]$
$cot\: y = cot \left ( \pi -\frac{\pi }{4} \right ) \; \; \; \; \; \; \; \; [ cot\left ( \pi -\theta \right ) = - cot\: \theta ]$
$cot\: y = cot \left ( \frac{3\pi }{4} \right )$
$y = \frac{3\pi }{4}$
$cot^{-1}\left ( tan\frac{3\pi }{4}\right ) = \frac{3\pi }{4}$ (From equation 1)
$\because$ The principal value branch of the function $cot^{-1}$ is $(0, \pi )$
$cot^{-1}\left ( tan\frac{3\pi }{4} \right ) =\frac{3\pi }{4}\: \epsilon \: (0, \pi )$
Hence the principal value of $cot^{-1}\left ( tan\frac{3\pi }{4} \right )$ is $\frac{3\pi }{4}$
Inverse Trigonometric Function Exercise 3.6 Question 2.
Answer:$R - \left \{ n\pi , n \: \epsilon \: Z \right \}$Inverse Trigonometric Function Exercise 3.6 Question 3 (i).
Answer:$\frac{2\pi }{3}$Inverse Trigonometric Function Exercise 3.6 Question 3 (ii).
Answer:$\frac{\pi }{4}$Inverse Trigonometric Function Exercise 3.6 Question 3 (iii).
Answer: $\frac{\pi }{6}$Inverse Trigonometric Function Exercise 3.6 Question 3 (iv).
Answer:$\frac{-\pi }{12}$
Hints: First we will find principal values of $\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ),\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \: and\: \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )$
Given: $\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )$
Solution:
$\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )$ $\cdot \cdot \cdot \cdot (i)$
Let $x=\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ) \cdot \cdot \cdot \cdot (ii)$
$\begin{aligned} &\tan x=-\frac{1}{\sqrt{3}} \\ &\tan x=-\tan \frac{\pi}{6} \\ &\tan x=\tan \left(\frac{-\pi}{6}\right) \\ &x=\frac{-\pi}{6} \end{aligned}$
$\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ) = \frac{-\pi }{6}$ [from equation]
The range of principal value branch of $\tan^{-1}$ is $\left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]$
$\because \tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )= \frac{-\pi }{6} \: \epsilon \: \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]$
Hence principal value of $\tan^{-1} \left ( \frac{-1}{\sqrt{3}} \right ) =\frac{-\pi }{6} \cdot \cdot \cdot \cdot (iii)$
Now let us solve for $\tan^{-1} \left (- \frac{1}{\sqrt{3}} \right )$
Let $y = \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \cdot \cdot \cdot (iv)$
$\cot\: x= \frac{1}{\sqrt{3}}$
$\cot\: x= \cot \left ( \frac{\pi }{3} \right ) \; \; \; \; \; \; \left [ \cot \frac{\pi }{3}= \frac{1}{\sqrt{3}} \right ]$
$x =\frac{\pi }{3}$
$\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3}$ {from equation (iv)}
The principal value branch of $\cot^{-1}$ is $(0, \pi )$
$\because \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3} \: \epsilon \: (0, \pi )$
Therefore principal value of $\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \: is\: \frac{\pi }{3}$
Now let us solve for $\tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right )\right )$
Let $z= \tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right ) \right )\cdot \cdot \cdot \left ( vi \right )$
$\tan\: z= \sin\left ( \frac{-\pi }{2} \right )$
$\tan\: z = - sin\left ( \frac{\pi }{2} \right ) \; \; \; \; \; \; \; \; \; \left [ \sin \left ( \frac{-\pi }{2} \right )= 1 \right ]$
$\begin{aligned} &\begin{array}{l} \tan z= -1 \\ \tan z=-\tan \frac{\pi}{4} \end{array} \\ &\tan z=\tan \frac{-\pi}{4} \\ &z=\frac{-\pi}{4} \end{aligned}$
$\tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right ) \right )= \frac{-\pi }{4}$
The range of principal value branch of $\tan^{-1}\: is\: \left [ \frac{-\pi }{2}, \frac{\pi }{2} \right ]$
$\because \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right ) = \frac{-\pi }{4} \: \epsilon \: \left [ \frac{-\pi }{2}, \frac{\pi }{2} \right ]$
$\because$ The principal value of $\tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right ) is \frac{-\pi }{4} \cdot \cdot \cdot \cdot \cdot (vii)$
Now from equation (i)
$\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )$
Putting the value of$\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ),\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \; and\: \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )$ from equations (iii), (v) and (vii) respectively.
$\begin{aligned} &=\frac{-\pi}{6}+\frac{\pi}{3}+\left(\frac{-\pi}{4}\right) \\ &=\frac{-\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4} \\ &=\frac{-2 \pi+4 \pi-3 \pi}{12} \end{aligned}$
$= \frac{-\pi }{12}$
Class 12 RD Sharma Chapter 3 Exercise 3.6 solution has nine questions, including subparts, which cover questions regarding the principal value, domain, and range of inverse trigonometric functions, as well as several key qualities that can aid you in solving inverse trigonometric function problems. RD Sharma Class 12th Exercise 3.6, inverse trigonometric functions can be used to calculate the angle from any trigonometric ratio. All of these proportions have applications in various domains, including engineering, geometry, and physics.
Experts in the field create answers based on the students' comprehension abilities. Thus, it aids students in honing their logical reasoning abilities, which are critical for exam success. The inverse of the cotangent function is the sole topic of this practice. RD Sharma Class 12 solution Inverse Trigonometric Function Ex 3.6 PDF can be used as a study aid by students who desire to do well on the exam.
Chapter-wise RD Sharma Class 12 Solutions
RD Sharma solutions are the best option for exam preparation as they are accurate and updated to the latest version.
It is extremely simple to obtain the RD Sharma class 12 solution chapter 3 exercise 3.6 solution for class 12 students. All you have to do is go to Career360's website and get the book's free ebook.
The RD Sharma Class 12th Exercise 3.6 material is available for free on Career360’s website. They require no additional charges and are meant to help students prepare well in exams.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE