NCERT Solutions for Class 8 Maths Chapter 12 Factorization

NCERT Solutions for Class 8 Maths Chapter 12 Factorization

Komal MiglaniUpdated on 13 Jul 2025, 09:15 PM IST

Have you ever imagined how nice it would have been if breaking down complex algebraic expressions could be as easy as breaking a number into its prime factors? That’s exactly what we will learn in Chapter 12, Factorisation. It is one of the important topics of the NCERT Class 8 Maths. With the help of factorisation, we can break down large and complex algebraic expressions into multiple small parts, which are known as factors. For example, 6 = 2 × 3, so we can say that 2 and 3 are the factors of the number 6. This article, about NCERT Solutions for Class 8 Maths, will provide comprehensive step-by-step solutions to all the exercise problems in the chapter.

This Story also Contains

  1. Factorization Class 8 Questions And Answers PDF Free Download
  2. Factorization Class 8 NCERT Solutions
  3. Factorization Class 8 NCERT Solutions - Topics
  4. Factorization Class 8 Solutions - Important Formulae
  5. NCERT Solutions for Class 8 Maths: Chapter Wise
NCERT Solutions for Class 8 Maths Chapter 12 Factorization
NCERT Solutions for Class 8 Maths Chapter 12 Factorization

These NCERT Solutions are highly reliable as they are developed by the subject matter experts of Careers360. These solutions are of great help for the exam preparation as the students can practice the exercise problems and check the answers to evaluate their performance, and can focus on their weaker areas. Students can refer to the NCERT Solutions for Class 8 to access the subject-wise solutions for the Class.

Factorization Class 8 Questions And Answers PDF Free Download

Students who wish to access the NCERT solutions for Class 8 Maths Chapter 12, Factorization, can click on the link below to download the entire solutions in PDF format for free.

Download PDF

Factorization Class 8 NCERT Solutions

Class 8 Maths Chapter 12 Question Answer: Exercise: 12.1.1
Total Questions: 3
Page number: 147

Question:(i) Factorise:

$12 x +36$

Answer:

We have
$12x = 2 \times 2 \times 3 \times x$
$36 = 2 \times 2 \times 3 \times 3$
So, we have $2 \times 2 \times 3$ common in both
Therefore,

$12x + 36 =$ $2 \times 2 \times 3 (x + 3)$

$12x + 36 = 12(x + 3)$

Question:(ii) Factorise : 22y-32z

Answer:

We have,
$22y=$ $2 \times 11 \times y$
$33z =$ $3 \times 11 \times z$
So, we have 11 commons in both
Therefore,

$22y - 33z = 11(2y - 3z)$

Question:(iii) Factorise :

$( iii) \: \: 14 pq + 35 pqr$

Answer:

We have
$14pq =$ $2 \times 7 \times p \times q$
$35pqr =$ $5 \times 7 \times p \times q \times r$
So, we have

$7 \times p \times q$ common in both
Therefore,

$14pq + 35pqr =7pq (2 + 5r)$

Class 8 Maths Chapter 12 Question Answer: Exercise: 12.1.2
Total Questions: 3
Page number: 148-149

Question:1(i) Find the common factors of the given terms.

$(i) 12 x , 36$

Answer:

We have
$12x ={ 2 \times 2 \times 3}\times x$
$36 = { 2 \times 2 \times 3}\times 3$
So, the common factors between the two are

$2\times2\times3=12$

Question:1(ii) Find the common factors of the given terms

$(ii) 2y , 22xy$

Answer:

We have,
$2y = { 2 \times y}$
$22xy = { 2} \times 11 \times x { \times y}$
Therefore, the common factor between these two is 2y

Question:1(iii) Find the common factors of the given terms

$(iii) 14 pq, 28 p^2 q^2$

Answer:

We have,
$14pq = {2 \times 7 \times p \times q}$
$28p^2q^2 = 2 \times {2 \times 7 \times p} \times p{\times q} \times q$
Therefore, the common factor is

$2\times7\times p\times q=14pq$

Question:1(iv) Find the common factors of the given terms.

$(iv) 2x , 3x ^2 , 4$

Answer:

We have,
$2x = 2 \times x$
$3x^2 = 3 \times x \times x$
$4 = 2 \times 2$
Therefore, the common factor between these three is 1

Question:1(v) Find the common factors of the given terms

$( v ) 6 abc , 24 ab^2 , 12 a^2 b$

Answer:

We have,
$6abc ={2 \times 3 \times a \times b }\times c$
$24ab^2 = 2 \times 2\times { 2\times 3 \times a \times b} \times b$
$12a^2b = 2 \times {2\times 3 \times a} \times a{ \times b}$
Therefore, the common factor is

$2 \times 3 \times a \times b = 6ab$

Question:1(vi) Find the common factors of the given terms

$(vi)16 x ^ 3 , -4 x ^ 2 , 32 x$

Answer:

We have,
$16x^3 = 2 \times 2 \times {2 \times 2 \times x} \times x \times x$
$4x^2 = { 2 \times 2 \times x} \times x$
$32x = 2 \times 2 \times 2 \times{ 2 \times 2 \times x}$
Therefore, the common factor is

$2 \times 2 \times x = 4x$

Question:1(vii) Find the common factors of the given terms

$(vii) 10 pq , 20 qr , 30 rp$

Answer:

We have,
$10pq ={2 \times 5} \times p \times q$
$20qr = 2\times{2 \times 5 }\times q \times r$
$30rp ={ 2}\times 3{ \times 5} \times r \times p$
Therefore, the common factors between these three is

$2 \times 5 =10$

Question:1(viii) Find the common factors of the given terms

$(viii)3 x ^2 y^3 , 10 x ^3 y ^ 2 , 6 x^ 2 y^2 z$

Answer:

We have,
$3x^{2}y^{2}$ $= 3 \times { x \times x \times y \times y}$
$10x^{3}y^{2}$ $=2 \times 5 \times x \times { x\times x \times y \times y}$
$6x^{2}y^{2}z$ $=2 \times 3 \times{ x \times x \times y \times y} \times z$
Therefore, the common factors between these three are $x\times x\times y \times y =$ $x^{2}y^{2}$

Question:2(i) Factorise the following expressions

$(i)7x -42$

Answer:

We have,
$7x = 7 \times x \\ 42=7\times 2 \times 3=7\times 6\\ 7x-42=7x-7\times 6=7(x-6)$

Therefore, 7 is a common factor

Question:2(ii) Factorise the following expressions

$(ii)6 p - 12 q$

Answer:

We have,
$6p = 2 \times 3 \times p$
$12q = 2 \times 2 \times 3 \times q$
$\therefore$ on factorization

$6p -12q = (2\times 3 \times p) - (2\times 2 \times 3 \times q) = (2\times 3)(p-2q) = 6(p-2q)$

Question:2(iii) Factorise the following expressions

$(iii)7 a ^2 + 14 a$

Answer:

We have,
$7a^2 = 7 \times a \times a$
$14a = 2 \times 7 \times a$
$\therefore$ $7a^2+14a = (7\times a \times a)+(2 \times 7 \times a) = (7 \times a)(a+2)$
$= 7a(a+2)$

Question:2(iv) Factorise the following expressions

$(iv)-16 z + 20 z^3$

Answer:

We have,
$-16z = -1 \times 2 \times 2 \times 2 \times 2 \times z$
$20z^3 = 2 \times 2 \times 5 \times z \times z \times z$
$\therefore$ on factorization we get,
$-16z+20z^3 = (-1 \times 2 \times 2 \times 2 \times 2 \times z)+(2 \times 2 \times 5 \times z \times z \times z )$
$= (2\times 2 \times z)(-1 \times 2 \times 2+ 5 \times z \times z )$
$= 4z(-4+5z^2 )$

Question:2(v) Factorise the following expressions

$20 l^2 m + 30 alm$

Answer:

We have,
$20l^2m = 2 \times 2 \times 5 \times l \times l \times m$
$30alm = 2 \times 3 \times 5 \times a \times l \times m$
$\therefore$ on factorization we get,
$20l^2m+30alm =(2\times 2 \times 5 \times l \times l \times m) + (2 \times 3 \times 5 \times a \times l \times m)$
$=(2\times 5 \times l \times m)(2\times l + 3 \times a )$
$=10lm(2l+3a)$

Question:2(vi) Factorise the following expressions

$5 x^2 y - 15 xy^2$

Answer:

We have,
$5x^2y = 5 \times x\times x \times y$
$15xy^2 =3\times 5 \times x\times y \times y$
$\therefore$ on factorization we get,
$5x^2y - 15xy^2 = (5 \times x \times x \times y ) - (3\times 5 \times x \times y \times y )$
$=(5\times x \times y) ( x - 3\times y )$
$=5xy (x-3y)$

Question:2(vii) Factorise the following expressions

$10 a ^2 - 15 b^2 +20 c^2$

Answer:

We have,
$10a^2 = 2 \times 5 \times a \times a$
$15b^2 = 3 \times 5 \times b \times b$
$20c^2 = 2\times 2 \times 5 \times c \times c$
$\therefore$ on factorization we get,
$10a^2-15b^2+20c^2 = (2\times 5 \times a \times a)-(3\times 5 \times b \times b)+(2\times 2 \times 5 \times c \times c)$ $=5 (2 \times a \times a-3 \times b \times b+2\times 2 \times c \times c)$
$=5(2a^2-3b^2+4c^2)$

Question:2(viii) Factorise the following expressions

$- 4 a ^2 + 4 ab - 4ca$

Answer:

We have,
$-4a^2 = -1\times 2 \times 2 \times a\times a$
$4ab = 2 \times 2 \times a\times b$
$4ca = 2 \times 2 \times c\times a$
$\therefore$ on factorization we get,
$-4a^2+4ab-4ca = (-1 \times 2 \times 2 \times a\times a )+( 2 \times 2 \times a\times b )- (2 \times 2 \times c\times a)$

$=(2 \times 2 \times a) (-1 \times a + b - c)$
$= 4a(-a+b-c)$

Question:2(ix) Factorise the following expressions

$x^2 yz + xy^2 z + xyz^2$

Answer:

We have,
$x^2yz =x \times x \times y \times z$
$xy^2z =x \times y \times y \times z$
$xyz^2 =x \times y \times z \times z$
Therefore, on factorization we get,
$x^2yz+xy^2z+xyz^2 =(x \times x \times y \times z)+(x \times y \times y \times z)+(x \times y \times z \times z)$

$=( x \times y \times z)(x + y + z)$
$=xyz(x+y+z)$

Question:2(x) Factorise the following expressions

$a x^2 y + bxy^2 + cxyz$

Answer:

We have,
$ax^2y = a \times x \times x \times y$
$bxy^2 = b \times x \times y \times y$
$cxyz = c \times x \times y \times z$
Therefore, on factorization we get,
$ax^2y+bxy^2+cxyz = ( a \times x \times x \times y)+( b \times x \times y \times y)+(c \times x \times y \times z)$ $= (x\times y)( a \times x+ b \times y+c \times z)$

$= xy(ax+by+cz)$

Question:3(i) Factorise $x ^ 2 + xy + 8 x + 8y$

Answer:

We have,
$x^2 = x \times x$
$xy = x \times y$
$8x = 8 \times x$
$8y = 8 \times y$
Therefore, on factorization we get,
$x^2+xy+8x+8y = (x \times x)+(x\times y )+(8 \times x)+(8 \times y)$
$= x(x +y )+8(x+ y)$
$= (x+8)(x+y)$

Question:3(ii) Factorise

$15 xy -6 x +5 y -2$

Answer:

We have,
$15xy = 3 \times 5 \times x \times y$
$6x = 2 \times 3 \times x$
$5y = 5 \times y$
$2 = 2$
Therefore, on factorization we get,
$15xy - 6x +5y-2 = (3\times 5 \times x \times y)-(2 \times 3 \times x)+(5\times y)-2$
$=(5 \times y)(3\times x + 1)-2(3\times x + 1)$
$=(5y-2)(3x+1)$

Question:3(iii) Factorise

$ax + bx - ay - by$

Answer:

We have,
$ax+bx-ay-by = a(x-y)-b(x-y)$
$=(a-b)(x-y)$
Therefore, on factorization we get,
$(a-b)(x-y)$

Question:3(iv) Factorise

$15 pq + 15 + 9q + 25p$

Answer:

We have,
$15pq + 15 + 9q + 25p = 5 p(3q + 5) + 3 (3q + 5)$
$= (3q + 5)(5p + 3)$
Therefore, on factorization we get,
$(3q + 5)(5p + 3)$

Question:3(v) Factorise

$z-7 + 7 xy - xyz$

Answer:

We have,
$z - 7 + 7xy - xyz = z(1 - xy) -7(1 - xy)$
$= (1 - xy)(z - 7)$
Therefore, on factorization we get,
$(1 - xy)(z - 7)$

Class 8 Maths Chapter 12 Question Answer: Exercise: 12.2
Total Questions: 5
Page number: 151-152

Question:1(i) Factorise the following expressions

$a ^ 2 + 8a + 16$

Answer:

We have,
$a^2 + 8a + 16 = a^2+ 4a + 4a + 16$
$= a(a + 4) + 4 (a+4)$
$= (a+4)(a+4) =$ $(a+4)^{2}$
Therefore,
$a^2+8a+16 = (a+4)^2$

Question:1(ii) Factorise the following expressions

$p^2 -10 p + 25$

Answer:

We have,
$p^2 - 10p + 25 = p^2 - 5p - 5p + 25$
$= p(p - 5) -5 (p -5)$
$= (p - 5)(p - 5) =$ $(p-5)^{2}$
Therefore,
$p^2-10p+25 =(p-5)^2$

Question:1(iii) Factorise the following expressions

$25 m ^2 + 30 m + 9$

Answer:

We have,
$25m^2 + 30m + 9 = 25m^2 + 15m + 15m + 9$
$= 5m (5m + 3) +3(5m + 3)$
$= (5m + 3) (5m + 3) =$ $(5m+3)^{2}$
Therefore,
$25m^2+30m+9 = (5m+3)^2$

Question:1(iv) Factorise the following expressions

$49 y^2 + 84 yz + 36 z^2$

Answer:

We have,
$49 y^2 + 84 yz + 36 z^2$ $= 49y^2 + 42yz + 42yz + 36z^2$
$= 7y(7y + 6z) + 6z(7y + 6z)$
$= (7y + 6z)(7y + 6z) =$ $(7y+ 6z)^{2}$
Therefore,
$49y^2+84yz+36z^2=(7y+6z)^2$

Question:1(v) Factorise the following expressions

$4 x^2 - 8x + 4$

Answer:

We have,
$4 x^2 - 8x + 4$ $= 4x^2 - 4x - 4x + 4$
$= 4x(x - 1) -4(x - 1)$
$= 4(x-1)(x-1) \\\ \ \ = 4(x-1)^{2}$

Question:1(vi) Factorise the following expressions

$121 b^2 - 88 bc + 16 c^2$

Answer:

We have,
$121 b^2 - 88 bc + 16 c^2$ $= 121b^2 - 44bc - 44bc + 16c^2$
$= 11b(11b - 4c) - 4c(11b - 4c)$
$= (11b-4c)(11b-4c) =$ $(11b -4c)^{2}$
Therefore,
$121 b^2 - 88 bc + 16 c^2$ $=$ $(11b -4c)^{2}$

Question:1(vii) Factorise the following expressions

$( l+m ) ^2 - 4lm$

Answer:

We have,
$( l+m ) ^2 - 4lm$ = $l^{2} + 2ml + m^{2} - 4lm$ $(using \ (a+b)^{2} = a^{2} + 2ab + b^{2})$
= $l^{2} - 2lm + m^{2}$
= $(l-m)^{2}$ $(using \ (a-b)^{2} = a^{_2} -2ab + b^{2})$

Question:1(viii) Factorise the following expressions

$a ^4 +2 a ^2 b ^ 2 + b ^ 4$

Answer:

We have,
$a ^4 +2 a ^2 b ^ 2 + b ^ 4$ = $a^{4}$ + $a^{2}b^{2}$ + $a^{2}b^{2}$ + $b^{4}$
= $a^{2}(a^{2 }+ b^{2}) + b^{2}(a^{2}+b^{2})$ = $(a^{2}+b^{2})(a^{2}+b^{2})$ = $(a^{2}+b^{2})^{2}$

Question:2(i) Factorise :

$4 p^2 - 9 q ^2$

Answer:

This can be factorized as follows
$4 p^2 - 9 q ^2$ = $(2p)^{2} - (3q)^{2}$ $= (2p - 3q)(2p + 3q)$ $(using \ (a)^{2} - (b)^{2} = (a-b)(a+b))$

Question:2(ii) Factorise the following expressions

$63 a ^2 - 112 b ^ 2$

Answer:

We have,
$63 a ^2 - 112 b ^ 2$ $= 7$ $(9a^{2} - 16b^{2})$ $= 7$ $((3a)^{2} - (4b)^{2})$ $=7 (3a - 4b)(3a + 4b)$
$(using \ (a)^{2} - (b)^{2} = (a-b)(a+b))$

Question:2(iii) Factorise

$49 x^2 - 36$

Answer:

This can be factorised as follows
$49 x^2 - 36$ = $(7x)^{2} - (6)^{2}$ $= (7x - 6)(7x + 6)$ $(using \ (a)^{2} - (b)^{2} = (a-b)(a+b) )$

Question:2(iv) Factorise

$16 x^5 - 144 x ^ 3$

Answer:

The given question can be factorized as follows
$16 x^5 - 144 x ^ 3$ $= 16x^3(x^{2}- 9)$
$= 16x^3((x)^{2}- (3)^{2})$ $= 16x^3(x-3)(x+3)$ $(using \ (a)^{2}- (b)^{2} = (a-b)(a+b))$

Question:2(v) Factorise

$(l+m) ^ 2 - ( l- m ) ^2$

Answer:

We have,
$(l+m) ^ 2 - ( l- m ) ^2$ $= [(l + m) - (l - m)][(l + m) + (l - m)]$ (using $a^{2} - b^{2} = (a-b)(a+b)$ )
$= (l + m - l + m)(l + m + l - m)$
$= (2m)(2l) = 4ml$

Question:2(vi) Factorise

$9 x ^2 y^2 - 16$

Answer:

We have,
$9 x ^2 y^2 - 16$ = $(3xy)^{2} -(4)^{2}$ (using $(a)^{2} -(b)^{2} = (a-b) (a+b)$ )
$= (3xy - 4 )(3xy + 4)$

Question:2(vii) Factorise

$( x ^2 -2xy + y^2 ) - z ^2$

Answer:

We have,
$( x ^2 -2xy + y^2 ) - z ^2$ = $(x-y)^{2} - z^{2}$ $(using \ (a-b)^{2} = a^{2} -2ab + b^{2})$
$= (x - y - z)(x - y + z)$ $(using \ (a)^{2} - (b)^{2} = (a -b ) (a+b))$

Question:2(viii) Factorise

$25 a ^2 -4 b ^2 + 28 bc - 49 c ^2$

Answer:

We have,
$25 a ^2 -4 b ^2 + 28 bc - 49 c ^2$ = $25a^{2} - (2b-7c)^{2}$ $(using \ (a-b)^{2} = a^{2} -2ab + b^{2})$
= $(5a)^{2} - (2b-7c)^{2}$ $(using \ (a)^{2} - (b)^{2} = (a -b ) (a+b))$
$=(5a - (2b - 7c))(5a + (2b - 7c)$ )
$= (5a - 2b + 7c)(5a + 2b - 7c )$

Question:3(i) Factorise the following expressions

$ax ^2 + bx$

Answer:

We have,
$ax^2 = a \times x \times x$
$bx = b \times x$
Therefore,
$ax ^2 + bx$ $= (a \times x \times x) + (b \times x)$
$= x(a \times x + b)$
$= x(ax + b)$

Question:3(ii) Factorise the following expressions

$7p^2 + 21 q ^2$

Answer:

We have,
$7p^2 = 7 \times p \times p$
$21q^3 = 3 \times 7 \times q \times q$
Therefore,
$7p^2 + 21 q ^2$ $= (7 \times p \times p) + (3 \times 7 \times q \times q)$
$=7$ $(p^{2}+ 3q^{2})$

Question:3(iii) Factorise the following expressions

$2 x^3 + 2xy^2 + 2 xz ^2$

Answer:

We have,
$2x^3 = 2 \times x \times x \times x$
$2xy^2 = 2 \times x \times y \times y$
$2xz^2 = 2 \times x \times z \times z$
Therefore,
$2 x^3 + 2xy^2 + 2 xz ^2$ $= (2 \times x \times x \times x) + ( 2 \times x \times y \times y) + ( 2 \times x \times z \times z)$
$= (2 \times x) [(x \times x) + (y \times y ) + (z \times z)]$
$= 2x(x^2+y^2+z^2)$

Question:3(iv) Factorise the following expressions

$am^2 + bm ^2 + bn ^2 + an^2$

Answer:

We have,
$am^2 + bm ^2 + bn ^2 + an^2$ $= m^2(a + b) + n^2(a + b)$
$= (a + b)$ $(m^{2 }+n^{2})$

Question:3(v) Factorise the following expressions

$( lm + l ) + m + 1$

Answer:

We have,
$( lm + l ) + m + 1$ $= lm + l + m + 1$
$= l(m + 1) +1(m + 1)$
$= (m + 1)(l + 1)$

Question:3(vi) Factorise the following expressions

$y ( y + z ) + 9 ( y + z )$

Answer:

We have,
$y ( y + z ) + 9 ( y + z )$
Take ( y+z) common from this
Therefore,
$y ( y + z ) + 9 ( y + z )$ $= (y + z)(y + 9)$

Question:3(vii) Factorise the following expressions

$5 y ^ 2 - 20 y - 8z + 2yz$

Answer:

We have,
$5 y ^ 2 - 20 y - 8z + 2yz$ $= 5y(y - 4) + 2z(y - 4)$
$= (y - 4)(5y + 2z)$
Therefore,
$5 y ^ 2 - 20 y - 8z + 2yz$ $= (y - 4)(5y + 2z)$

Question:3(viii) Factorise

$10 ab + 4a + 5b + 2$

Answer:

We have,
$10 ab + 4a + 5b + 2$ $= 2a(5b + 2) + 1(5b + 2)$
$= (5b + 2)(2a + 1)$
Therefore,
$10 ab + 4a + 5b + 2$ $= (5b + 2)(2a + 1)$

Question:3(ix) Factorise the following expressions

$6 xy - 4 y + 6 - 9 x$

Answer:

We have,
$6 xy - 4 y + 6 - 9 x$ $= 2y(3x - 2) - 3 (3x - 2)$
$= (3x - 2)(2y - 3)$
Therefore,
$6 xy - 4 y + 6 - 9 x$ $= (3x - 2)(2y - 3)$

Question:4(i) Factorise $a ^ 4 - b ^ 4$

Answer:

We have,
$a ^ 4 - b ^ 4$ = $(a^{2})^{2} - (b^{2})^{2} = (a^{2} - b^{2})(a^{2} + b^{2}) = (a-b)(a+b)(a^{2} + b^{2})$
$using \ (x^{2} - y^{2}) = (x-y)(x+y)$

Question:4(ii) Factorise $p ^ 4 - 81$

Answer:

We have,
$p ^ 4 - 81$ =
$(p^{2})^{2} - (9)^{2} = (p^{2} - 9)(p^{2}+9) = (p^{2}-(3)^{2})(p^{2}+9) = (p-3)(p+3)(p^{2}+9)$ [$using \ a^{2} - b^{2} = (a-b)(a+b)$]

Question:4(iii) Factorise $x ^4 - ( y + z )^4$

Answer:

We have,
$x ^4 - ( y + z )^4$ =
$(x^{2})^{2} -((y+z)^{2})^{2} = (x^{2} - (y+z)^{2})(x^{2} +(y+z)^{2})\\ \Rightarrow (x-(y+z))(x+(y+z))(x^{2} +(y+z)^{2})$
$(using \ a^{2} -b^{2} = (a-b)(a+b))$

Question:4(iv) Factorise $x ^ 4 - ( x-z ) ^ 4$

Answer:

We have,
$x ^ 4 - ( x-z ) ^ 4$ = $(x^{2})^{2} - ((x-z)^{2})^{2}$ $using \ a^{2}-b^{2} = (a-b)(a+b)$
= $(x^{2} - (x-z)^{2})(x^{2}+(x-z)^{2})$
= $(x+(x-z))(x - (x-z))(x^{2}+(x-z)^{2})$
= $(2x - z)(z)$ $($ $x^{2}+(x-z)^{2}$ $)$

Question:4(v) Factorise $a ^ 4 - 2 a^2 b^2 + b ^ 4$

Answer:

We have,
$a ^ 4 - 2 a^2 b^2 + b ^ 4$ = $a^{4} - a^{2}b^{2} - a^{2}b^{2} + b^{4}$
= $a^{2}(a^{2} - b^{2}) - b^{2}(a^{2} - b^{2})$
= $(a^{2} - b^{2}) (a^{2}-b^{2})$ $using \ a^{2}-b^{2} = (a-b)(a+b)$
= $(a^{2} - b^{2})^{2}$
= $((a - b)(a+b))^{2}$
= $(a - b)^{2}(a+b)^{2}$

Question:5(i) Factorise the following expression

$p^ 2 + 6 p + 8$

Answer:

We have,
$p^ 2 + 6 p + 8$ = $p^{2} + 2p + 4p + 8$
$= p(p + 2) + 4(p + 2)$
$=(p + 2)(p + 4)$
Therefore,
$p^ 2 + 6 p + 8$ $=(p + 2)(p + 4)$

Question:5(ii) Factorise the following expression

$q ^ 2 - 10 q + 21$

Answer:

We have,
$q ^ 2 - 10 q + 21$ = $q^{2} - 7q -3q + 21$
$= q(q - 7) -3(q - 7)$
$=(q - 7)(q - 3)$
Therefore,
$q ^ 2 - 10 q + 21$ $=(q - 7)(q - 3)$

Question:5(iii) Factorise the following expression

$p^2 + 6 p - 16$

Answer:

We have,
$p^2 + 6 p - 16$ = $p^{2} + 8p - 2p - 16$
$= p(p + 8) -2(p + 8)$
$=(p - 2)(p + 8)$
Therefore,
$p^2 + 6 p - 16$ $=(p - 2)(p + 8)$

Class 8 Maths Chapter 12 Question Answer: Exercise: 12.3.1
Total Questions: 2
Page number: 153

Question:(i) Divide $24 xy^2 z^3 \: \: by \: \: 6 yz^2$

Answer:

We have,
$\frac{24xy^{2}z^{3}}{6yz^{2}} =\frac{2\times 2\times 2\times3\times y \times y \times z\times z\times z}{2\times 3 \times y \times z \times z}= 4xyz$

Question:(ii) Divide $63 a ^ 2 b^ 4 c ^6 \: \: by \: \: 7 a ^2 b^ 2 c ^3$

Answer:

We have,
$\frac{63a^{2}b^{4}c^{6}}{7a^{2}b^{2}c^{3}}=\frac{3\times 3 \times 7 \times a \times a \times b \times b\times b^2 \times c \times c \times c \times c^3}{7a^{2}b^{2}c^{3}} = 9b^{2}c^{3}$

Class 8 Maths Chapter 12 Question Answer: Exercise: 12.3
Total Questions: 5
Page number: 155

Question:1(i) Carry out the following divisions

$28 x ^ 4 \div 56 x$

Answer:

$\frac{28x^{4}}{56x} = \frac{2 \times 2 \times 7 \times x \times x \times x \times x}{2 \times 2 \times 2 \times 7 \times x} = \frac{x^{3}}{2}$

This is done using factorization.

Question:1(ii) Carry out the following divisions

$-36 y^3 \div 9 y^2$

Answer:

We have,
$-36$ $y^{3}$ $= -1 \times 2 \times 2 \times 3 \times 3 \times y \times y \times y$
$9$ $y^{2 }$ $= 3 \times 3 \times y \times y$
Therefore,

$\frac{-36y^{3}}{9y^{2}} = \frac {-1 \times 2 \times 2 \times 3 \times 3 \times y \times y \times y}{3 \times 3 \times y \times y} = -4y$

Question:1(iii) Carry out the following divisions

$66 pq^2 r ^ 3 \div 11 q r ^2$

Answer:

We have,
$66pq^2r^3 = 2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r$
$11qr^2 = 11 \times q \times r \times r$
Therefore,
$\frac{66pq^{2}r^{3}}{11qr^{2}} = \frac{2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r}{11 \times q \times r \times r} = 6pqr$

Question:1(iv) Carry out the following divisions

$34 x^ 3 y^3 z ^ 3 \div 51 x y^2 z ^ 3$

Answer:

We have,
$\therefore \frac{34x^{3}y^{3}z^{3}}{51xy^{2}z^{3}} = \frac{2 \times 17\times \ x \times x \times x \times y \times y \times y \times z\times z \times z}{3 \times 17 \times x \times y \times y \times z \times z\times z} = \frac{2x^{2}y}{3}$

Question:1(v) Carry out the following divisions

$12 a ^ 8 b^ 8 \div ( -6 a ^ 6 b ^ 4 )$

Answer:

We have,
$\frac{12a^8b^8}{-6a^4b^4}= \frac{2 \times 2 \times 3 \times a \times a \times a^{6} \times b \times b \times b \times b \times b^{4}}{-1 \times 2 \times 3 \times a^{6} \times b^{4}} = -2a^{2}b^{4}$

Question:2(i) Divide the given polynomial by the given monomial

$( 5x ^2 -6x ) \div 3x$

Answer:

We have,
$5x^2 - 6x = x(5x - 6)$
$\therefore \frac{5x^{2}-6}{3x} = \frac{x(5x-6)}{3x} = \frac{5x-6}{3}$

Question:2(ii) Divide the given polynomial by the given monomial

$( 3 y ^8 - 4 y^6 + 5 y ^4 )\div y ^ 4$

Answer:

We have,
$3y^{8} - 4y^{6} + 5y^{4} = y^{4}(3y^{4}-4y^{2} + 5)$
$\therefore \frac{y^{4}(3y^{4}-4y^{2}+5)}{y^{4}} = (3y^{4}-4y^{2}+5)$

Question:2(iii) Divide the given polynomial by the given monomial

$8 ( x ^3 y^2 z ^2 + x^2 y^3 z^2 + x ^2 y^2 z^3 ) \div 4 x ^2 y ^2 z ^2$

Answer:

We have,
$8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2} y^{2}z^{3}) = 8x^{2}y^{2}z^{2}(x+y+z)$
$\therefore \frac{8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2} y^{2}z^{3})}{4x^{2}y^{2}z^{2}} =\frac{ 8x^{2}y^{2}z^{2}(x+y+z)}{4x^{2}y^{2}z^{2}} =2(x+y+z)$

Question:2(iv) Divide the given polynomial by the given monomial

$( x^3 +2 x ^2 + 3 x ) \div 2x$

Answer:

We have,
$x^{3} + 2x^{2} + 3x = x(x^{2} + 2x + 3)$
$\therefore \frac{x^{3} + 2x^{2} + 3x}{2x} = \frac{x(x^{2} + 2x + 3)}{2x} = \frac{x^{2} + 2x + 3}{2}$

Question:2(v) Divide the given polynomial by the given monomial

$( p ^ 3 q ^6 - p ^ 6 q ^ 3 ) \div p ^3 q ^3$

Answer:

We have,
$(p^{3}q^{6} - p^{6}q^{3}) = p^{3}q^{3}(q^{3} - p^{3})$
$\therefore \frac{(p^{3}q^{6} - p^{6}q^{3})}{p^{3}q^{3}} = \frac{p^{3}q^{3}(q^{3} - p^{3})}{p^{3}q^{3}} = (q^{3} - p^{3})$

Question:3(i) workout the following divisions

$( 10 x - 25) \div 5$

Answer:

We have,
$10x -25 = 5(2x - 5)$
Therefore,
$\frac{10x-25}{5}= \frac{5(2x-5)}{5} = 2x - 5$

Question:3(ii) workout the following divisions

$( 10 x -25 ) \div ( 2x -5 )$

Answer:

We have,
$10x-25 = 5(2x - 5 )$
Therefore,
$\frac{10x-25}{2x-5} = \frac{5(2x-5)}{2x-5} = 5$

Question:3(iii) workout the following divisions

$10 y ( 6y +21 ) \div 5 ( 2y + 7 )$

Answer:

We have,
$10y(6y + 21) = 2 \times y \times 5 \times 3(2y + 7)$
Therefore,
$\frac{10y(6y+21)}{5(2y+7)} = \frac{2 \times 5 \times y \times 3(2y+7)}{5(2y+7)} = 6y$

Question:3(iv) workout the following divisions

$9 x ^2 y^2 ( 3z -24 ) \div 27 xy ( z-8 )$

Answer:

We have,
$9x^{2}y^{2}(3z-24) = 9x^{2}y^{2} \times 3(z-8) = 27x^{2}y^{2}(z-8)$
$\therefore \frac{9x^{2}y^{2}(3z-24)}{27xy(z-8)} = \frac{27x^{2}y^{2}(z-8)}{27xy(z-8)} = xy$

Question:3(v) workout the following divisions

$96 abc ( 3a -12 ) ( 5 b -30 ) \div 144 (a-4 ) ( b- 6 )$

Answer:

We have,
$96abc(3a - 12)(5b - 30) = 2 \times 48abc \times 3(a - 4) \times 5(b - 6)$
$= 2 \times144abc (a - 4) \times 5(b - 6)$
Therefore,
$\frac{96abc(3a-12)(5b-30)}{144(a-4)(b-6)} = \frac{2 \times 144abc (a-4) \times 5 (b - 6)}{144(a-4)(b-6)} = 10abc$

Question:4(i) Divide as directed

$5 ( 2x +1 ) ( 3x +5 ) \div ( 2x +1)$

Answer:

We have,
$\frac{5(2x+1)(3x+5)}{2x+1} = 5(3x+5)$

Question:4(ii) Divide as directed

$26 xy ( x+5 ) ( y-4) \div 13 x ( y-4 )$

Answer:

We have,
$\frac{26xy(x+5)(y-4)}{13x(y-4)} = \frac{2 \times 13xy(x+5)(y-4)}{13x(y-4)} =2y(x+5)$

Question:4(iii) Divide as directed

$52 pqr ( p+ q ) ( q+ r ) ( r +p)\div 104 pq ( q+r ) ( r + p )$

Answer:

We have,
$\frac{52pqr(p+q)(q+r)(r+p)}{104pq(q+r)(r+p)} = \frac{r(p+q)}{2}$

Question:4(iv) Divide as directed

$20 ( y+4 ) ( y^2 + 5 y + 3 ) \div 5 (y +4 )$

Answer:

We have,
$\frac{20(y+4)(y^{2}+5y+3)}{5(y+4)} =\frac{4 \times 5(y+4)(y^{2}+5y+3)}{5(y+4)} = 4(y^{2}+5y+3)$

Question:4(v) Divide as directed

$x ( x+1 ) ( x+2 ) ( x+3 ) \div x ( x+1 )$

Answer:

We have,
$\frac{x(x+1)(x+2)(x+3)}{x(x+1)} = (x+2)(x+3)$

Question:5(i) Factorise the expression and divide then as directed

$( y ^ 2 + 7 y + 1 0 ) \div ( y + 5 )$

Answer:

We have,
$\frac{y^{2}+7y+10}{y+5} = \frac{y^{2}+2y +5y +10}{y+5} =\frac{y(y+2)+5(y+2)}{y+5}\\ \\ \Rightarrow \frac{(y+5)(y+2)}{(y+5)} = (y+2)$

Question:5(ii) Factorise the expression and divide then as directed

$( m^2 - 14 m -32 ) \div ( m +2 )$

Answer:

We have,
$\frac{m^{2}-14m-32}{m+2} = \frac{m^{2}+2m-16m-32}{m+2} = \frac{m(m+2)-16(m+2)}{m+2}\\ \\\Rightarrow \frac{(m-16)(m+2)}{m+2} = m-16$

Question:5(iii) Factorise the expression and divide then as directed

$( 5 p^2 -25p + 20 ) \div ( p-1 )$

Answer:

We have,
$\frac{5p^{2}-25p+20}{p-1} = \frac{5p^{2} -5p -20p +20}{p-1} = \frac{5p(p-1)-20(p-1)}{p-1}\\ \\ \frac{(5p-20)(p-1)}{p-1} = 5p-20$

Question:5(iv) Factorise the expression and divide then as directed

$4 yz ( z^2 + 6z -16 ) \div 2y ( z+8 )$

Answer:

We first simplify our numerator
So,
$4yz( z^2+ 6z - 16)$
Add and subtract 64 $\Rightarrow$ $4yz( z^2- 64 + 6z - 16 + 64)$
$= 4yz(z^2-8^2 + 6z + 48)$
$= 4yz((z + 8)(z - 8) + 6(z + 8))$ $using \ a^{2} -b^{2} = (a - b)(a + b)$
$= 4yz (z + 8)(z - 8 + 6)$
$= 4yz(z + 8)(z - 2)$
Now,
$\frac{4yz(z^{2}+6z-16)}{2y(z+8)} = \frac{4yz(z+8)(z-2)}{2y(z+8)}= 2z(z-2)$

Question:5(v) Factorise the expression and divide then as directed

$5 pq ( p^2 - q ^ 2 ) \div 2 p ( p + q )$

Answer:

We have,
$\frac{5pq(p^{2} - q^{2})}{2p(p+q)} = \frac{5pq(p-q)(p+q)}{2p(p+q)} \ \ \ \ \ \ \ \ \ \ \ \ \ using \ a^{2}-b^{2}= (a-b)(a+b)$ $= \frac{5q(p-q)}{2}$

Question:5(vi) Factorise the expression and divide then as directed

$12 xy ( 9 x^2 - 16 y^2 ) \div 4 xy ( 3 x + 4 y )$

Answer:

We first simplify our numerator,
$12xy$ ( $9x^{2} -16y^{2}$ ) = $12xy$ $(3x)^{2} -(4y)^{2}$

Using $(a)^{2} -(b)^{2} = (a-b)(a+b)$
$= 12xy((3x - 4y)(3x + 4y))$
Now,
$\frac{12xy(9x^{2} - 16y^{2})}{4xy(3x + 4y)} = \frac{12xy(3x+4y)(3x-4y)}{4xy(3x+4y)} = 3(3x-4y)$

Question:5(vii) Factorise the expression and divide then as directed

$39 y^2 ( 50 y^2 - 98 ) \div 26 y^2 ( 5y +7 )$

Answer:

We first simplify our numerator,
$39y^{2}(50y^{2} -98) = 39y^{2} \times 2(25y^{2} - 49)$ using $(a)^{2} -(b)^{2} = (a-b)(a+b)$
= $78y^{2} ((5y)^{2} - (7)^{2})$
= $78y^{2} (5y - 7)(5y+7)$
Now,
$\frac{39y^{2}(50y^{2}-98)}{26y^{2}(5y +7)} = \frac{78y^{2}(5y-7)(5y+7)}{26y^{2}(5y+7)} = 3(5y-7)$

Factorization Class 8 NCERT Solutions - Topics

The topics discussed in the NCERT Solutions for class 8, chapter 12, Factorization, are:

  • What is Factorisation?
  • Division of Algebraic Expressions
  • Division of Algebraic Expressions Continued (Polynomial ÷ Polynomial)

Factorization Class 8 Solutions - Important Formulae

Factorization: Factorization is the process of expressing an algebraic equation as a product of its components. These components can be numbers, variables, or algebraic expressions.

Irreducible Factor: An irreducible factor is a component that cannot be further factored into a product of factors.

Method to Do Factorization:

The common factor approach involves three steps:

Write each term of the statement as a product of irreducible elements.

Look for and separate similar components.

Combine the remaining elements in each term using the distributive law.

The regrouping approach involves grouping terms in a way that brings out a common factor across the groups.

Common Factor Identity: Certain factorable expressions take the form of:

  • a2 + 2ab + b2 = (a + b)2

  • a2 - 2ab + b2 = (a - b)2

  • a2 - b2 = (a + b)(a - b)

  • x2 + (a + b)x + ab = (x + a)(x + b)

Dividing a Polynomial by a Monomial: When dividing a polynomial by a monomial, you can divide each term of the polynomial by the monomial or use the common factor technique.

Division of Algebraic Expressions: In the division of algebraic expressions, you factor both the dividend and the divisor, then cancel common factors.

Division Formula: Dividend = Divisor × Quotient or Dividend = Divisor × Quotient + Remainder.

NCERT Solutions for Class 8 Maths: Chapter Wise

Given below are all the chapter-wise NCERT class 8 maths solutions given in one place for ease of access:

NCERT Solutions for Class 8 - Subject Wise

The NCERT Subject-wise Solutions for Class 8 is an essential study resource that helps students get trustworthy solutions for each subject to make the exam preparation easier. Students can refer to those solutions using the links below.

NCERT Books and NCERT Syllabus

Students can also refer to the NCERT Books and the NCERT Syllabus using the links below:

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)