Careers360 Logo
RD Sharma Class 12 Exercise 23.2 Scalar and dot product Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 23.2 Scalar and dot product Solutions Maths - Download PDF Free Online

Edited By Lovekush kumar saini | Updated on Jan 27, 2022 05:09 PM IST

The Class 12 RD Sharma chapter 23 exercise 23.2 solution is helpful inside and out and is additionally exam-arranged, basic, and fundamental. The RD Sharma class 12th exercise 23.2 can be utilized for self-practice and assessment of imprints.

Also Read - RD Sharma Solutions For Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter23 Scaler and dot product - Other Exercise

Scalar or Dot Products Excercise: 23.2

Scaler and dot product exercise 23.2 question 1

Answer: O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}
Hint: Use \Delta O A B
Given: \text { In } \Delta O A B, \angle A O B=90^{\circ} \text { and if } P \; \& \; Qare points of trisection of AB-PT
O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}
Solution:

\overrightarrow{O A}, \overrightarrow{O B}
\begin{aligned} &\overrightarrow{O A}, \overrightarrow{O B}=0 \\\\ &\overrightarrow{A B} \cdot \overrightarrow{A B}=\overrightarrow{O A} \cdot \overrightarrow{O B} \\\\ &\overrightarrow{O P}=\overrightarrow{O B}-\frac{2}{3} \overrightarrow{A B} \\\\ &\overrightarrow{O Q}=\overrightarrow{O B}-\frac{1}{3} \overrightarrow{A B} \end{aligned}
\begin{aligned} &\overrightarrow{O P}=\overrightarrow{O B}-\frac{2}{3}(\overrightarrow{O B}-\overrightarrow{O A}) \\\\ &\overrightarrow{O P}=\frac{\overrightarrow{O B}}{3}+\frac{2}{3} \overrightarrow{O A} \\\\ &\overrightarrow{O Q}=\overrightarrow{O B}-\frac{1}{3}(\overrightarrow{O B}-\overrightarrow{O A}) \\ \end{aligned}
\frac{2}{3} \overrightarrow{O B}+\frac{\overrightarrow{O A}}{3}
\begin{aligned} &O P^{2}+O Q^{2}=\frac{5}{9} A B^{2} \Rightarrow O P^{2}=|\overrightarrow{O P}|^{2}=\overrightarrow{O P} \cdot \overrightarrow{O P} \\\\ &O Q^{2}=|\overrightarrow{O Q}|^{2}=\overrightarrow{O Q} \cdot \overrightarrow{O Q} \\\\ &\overrightarrow{O P} \cdot \overrightarrow{O P}=\left(\frac{\overrightarrow{O B}}{3}+\frac{2}{3} \overrightarrow{O A}\right)\left(\frac{\overrightarrow{O B}}{3}, \frac{2}{3} \overrightarrow{O A}\right) \end{aligned}
\begin{aligned} &=\frac{|\overrightarrow{O B}|^{2}}{9}+\frac{4}{9}|\overrightarrow{O A}|^{2} \\\\ &O Q \cdot O Q=\frac{4}{9}|\overrightarrow{O B}|^{2}+\frac{|\overrightarrow{O A}|^{2}}{9} \end{aligned}
\begin{aligned} &O P^{2}+O Q^{2}=\frac{5}{9}\left(|O B|^{2}+|\overrightarrow{O A}|^{2}\right)=|A B|^{2} \\\\ &O P^{2}+O Q^{2}=\frac{5}{9}|A B|^{2} \end{aligned}

Scaler and dot product exercise 23.2 question 2

Answer: Yes, quadrant bisects at 90^{0} each other
Hint: Use rhombus
Given: Prove that if diagonal of quadrant bisects each other at right angle
Then it is rhombus.
Solution: Take quadrilateral ABCD , ACand BD are diagonals which intersect at 0

In \; \triangle \; A O B \; and \; \triangle A O D\\\\ \begin{array}{ll} D O=O B & \text { (O is midpoint) } \\ A O=A O & \text { (common side) } \end{array}
\angle A O B=\angle A O D \quad\left(90^{\circ}\right. Right \; angle ) \\\\So, \triangle A O B \cong \triangle A O D\\\\ So, A B=A D
Similarly, AB=BC=CD=AD

can proved which mean that ABCD is rhombus

Scaler and dot product exercise 23.2 question 3

Answer: (A C)^{2}=(A B)^{2}+(B C)^{2}
Hint: Pythagoras theorem
Given: P.T by vector method in right angle triangle the square of hypotenuse
is equal to sum of other two sides.
Solution: Let ABC is right angled triangle at B.
The side opposite to right angle is hypotenuse
Hence, (A C)^{2}=(A B)^{2}+(B C)^{2}
Hence, \vec{a} \cdot \vec{b}=0 \quad \rightarrow(1)
By triangle law of vector addition
A C=\vec{b}-\vec{a}
Squaring both sides,
\begin{aligned} &(A C)^{2}=(\vec{b}-\vec{a})^{2} \\\\ &(A C)^{2}=(\vec{a})^{2}+(\vec{b})^{2}-2(\vec{a} \cdot \vec{b}) \end{aligned}
Use eqn(1) we get Now since and be position vector of AB & BC
\begin{aligned} &(A C)^{2}=(\vec{a})^{2}+(\vec{b})^{2}-0 \\\\ &(A C)^{2}=(\vec{a})^{2}+(\vec{b})^{2} \\\\ &(A C)^{2}=(A B)^{2}+(B C)^{2} \end{aligned}

Scaler and dot product exercise 23.2 question 4

Answer: 2\left(|a|^{2}+|b|^{2}\right)
Hint: Let diagonal vector (\vec{a}+\vec{b}) \text { and }(\vec{a}-\vec{b})
Given: P.T by vector method that sum of square of diagonal of parallelogram
Equal to sum of square of sides
Solution: Let adjacent side of parallelogram \vec{a} \text { and } \vec{b}
Then diagonal vector will be (\vec{a}+\vec{b}) \text { and }(\vec{a}-\vec{b})
Sum of squares of diagonal
(\vec{a}+\vec{b})^{2}+(\vec{a}-\vec{b})^{2}=2\left(|a|^{2}+|b|^{2}\right)
Sum of squares of side
2\left(|a|^{2}+|b|^{2}\right)
Hence proved

Scaler and dot product exercise 23.2 question 5

Answer: |P Q|=|P S|
Hint: Use vector
Given: P.T by vector the quadrilateral obtained by joining
mid point of adjacent side of rectangle is rhombus.
Solution:

ABCD is rectangle.
Let P, Q, R, S be mid-point of side AB, BC, CD, DA.
Now
\overrightarrow{P Q}=\overrightarrow{P B}+\overrightarrow{B Q}=\frac{1}{2} \overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{B C})=\frac{1}{2} \overrightarrow{A C} \rightarrow (1)
\overrightarrow{S R}=\overrightarrow{S D}+\overrightarrow{D R}=\frac{1}{2} \overrightarrow{A D}+\frac{1}{2} \overrightarrow{D C}=\frac{1}{2}(\overrightarrow{A D}+\overrightarrow{D C})=\frac{1}{2} \overrightarrow{A C} \quad \rightarrow(2)
From (1) & (2)
\overrightarrow{P Q}=\overrightarrow{S R}
So side PQ and SR are equal and parallel
\begin{aligned} &(|\overrightarrow{P Q}|)^{2}=\overrightarrow{P Q} \cdot \overrightarrow{P Q} \\\\ &(|\overrightarrow{P Q}|)^{2}=(\overrightarrow{P B}+\overrightarrow{B Q})(\overrightarrow{P B}+\overrightarrow{B Q}) \\\\ &(|\overrightarrow{P Q}|)^{2}=(|\overrightarrow{P B}|)^{2}+2 \cdot \overrightarrow{P B} \overrightarrow{B Q}+(|\overrightarrow{B Q}|)^{2} \end{aligned}
\begin{aligned} &(|\overrightarrow{P Q}|)^{2}=(|\overrightarrow{P B}|)^{2}+0+(|\overrightarrow{B Q}|)^{2} \quad(\overrightarrow{P B} \perp \overrightarrow{B Q}) \\\\ &(|\overrightarrow{P Q}|)^{2}=(|\overrightarrow{P B})^{2}+(|\overrightarrow{B Q}|)^{2} \rightarrow(3) \end{aligned}
Also,
\begin{aligned} &(|\overrightarrow{P S}|)^{2}=\overrightarrow{P S} \cdot \overrightarrow{P S} \\\\ &(|\overrightarrow{P S}|)^{2}=(\overrightarrow{P A}+\overrightarrow{A S})(\overrightarrow{P A}+\overrightarrow{A S}) \\\\ &(|\overrightarrow{P S}|)^{2}=(|\overrightarrow{P A}|)^{2}+2 \cdot \overrightarrow{P A} \cdot \overrightarrow{A S}+(|\overrightarrow{A S}|)^{2} \end{aligned}
\begin{aligned} &(|\overrightarrow{P S}|)^{2}=(|\overrightarrow{P A}|)^{2}+0+(|\overrightarrow{A S}|)^{2} \quad(\overrightarrow{P A} \perp \overrightarrow{A S}) \\\\ &(|\overrightarrow{P S}|)^{2}=(|\overrightarrow{P B}|)^{2}+(|\overrightarrow{B Q}|)^{2} \rightarrow(4) \end{aligned}
From (3) & (4)
\begin{aligned} &(|\overrightarrow{P Q}|)^{2}=(|\overrightarrow{P S}|)^{2} \\\\ &|\overrightarrow{P Q}|=|\overrightarrow{P S}| \end{aligned}

Scaler and dot product exercise 23.2 question 6

Answer: \angle A O B=\angle A O D=90^{\circ}
Hint: Prove by 90
Given: P.T diagonal of rhombus are perpendicular bisector each other.
Solution:

ABCD is rhombus in which AB=BC=CD=DA
OA=OC and OB=OD
Now \; in \; \angle B O C \; and \; \angle D O C\\\\ \mathrm{OB}=\mathrm{OD}, \mathrm{BC}=\mathrm{DC} \text { and } \mathrm{OC}=\mathrm{OC}
\begin{aligned} &\angle B O C=\angle D O C \\\\ &\angle B O C+\angle D O C=180^{\circ} \quad \text { (linear pair) } \\\\ &\angle B O C-\angle D O C=90^{\circ} \end{aligned}
Similarly \; \; \angle A O B=\angle A O D=90^{\circ}
Hence the diagonal of rhombus bisect each other at right angle.

Scaler and dot product exercise 23.2 question 7

Answer: |\overrightarrow{A B}|=|\overrightarrow{A D}|
Hint: Diagonals of a rectangle are perpendicular
Given: If the rectangle is a square
Solution: Let ABCD be a rectangle.
Suppose the position vectors of points B and D be \vec{a} \text { and } \vec{b}
Now
\overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{B C}=\vec{a}+\vec{b}
Also \overrightarrow{ BD}=\vec{a} - \vec{b}
Since ABCD is a rectangle , so \overrightarrow{ AB}\perp \overrightarrow{ AD}
\vec{a} \cdot \vec{b}
Now , diagonals AC and BD are perpendicular if \overrightarrow{ AC}\cdot \overrightarrow{ BD}=0
\begin{aligned} &\text { If }(\vec{a}+\vec{b}) \cdot(\vec{a} \cdot \vec{b})=0 \\ &|\vec{a}|^{2}-|\vec{b}|^{2}=0 \\ &|\vec{a}|^{2}=|\vec{b}|^{2} \\ &|\overrightarrow{A B}|=|\overrightarrow{A D}| \end{aligned}

ABCD is a square

Thus the diagonal of a rectangle are perpendicular if and only if the rectangle is a square.

Scaler and dot product exercise 23.2 question 8

Answer: A B^{2}+A C^{2}=2\left(A D^{2}+C D^{2}\right)
Hint: Use Pythagoras theorem
Given: \text { if AD is median of } \triangle A B C \text { using vector }
\text { P.T } A B^{2}+A C^{2}=2\left(A D^{2}+C D^{2}\right)
Solution: A D \text { is median of } \triangle \mathrm{ABC}
Draw \mathrm{AE} \perp \mathrm{BC}
In right angled \Delta ACE
(A B)^{2}=(A E)^{2}+(B E)^{2} (By Pythagoras Theorem)
In right angled triangle \Delta ACE
(A C)^{2}=(A E)^{2}+(E C)^{2}
Add (1) & (2)
\begin{aligned} &(A B)^{2}+(A C)^{2}=(A E)^{2}+(B E)^{2}+(A E)^{2}+(E C)^{2} \\\\ &(A B)^{2}+(A C)^{2}=2(A E)^{2}+(B D-E D)^{2}+(E D+D C)^{2} \end{aligned}
\begin{aligned} &(A B)^{2}+(A C)^{2}=2(A E)^{2}+(B D)^{2}-2 B D \cdot E D+(E D)^{2}+(E D)^{2}+2 E D \cdot D C+(D C)^{2} \\\\ &(A B)^{2}+(A C)^{2}=2(A E)^{2}+2(E D)^{2}+(D C)^{2} \end{aligned}
\begin{aligned} &(A B)^{2}+(A C)^{2}=2(A E)^{2}+2(E D)^{2}+2(B D)^{2} \quad(B D=D C) \\\\ &(A B)^{2}+(A C)^{2}=2\left((A E)^{2}+(E D)^{2}+(B D)^{2}\right) \\\\ &(A B)^{2}+(A C)^{2}=2\left(A D^{2}+C D^{2}\right) \end{aligned}

Scaler and dot product exercise 23.2 question 9

Answer: \angle A D C=\angle A D B=90^{\circ}
Hint: Firstly prove the two triangle form by median
Given: if the median to base of triangle is perpendicular to base of triangle is isosceles
Solution:

Let ABC an isosceles triangle with AB=AC and let AB be median
To base BC then D Is midpoint of BC
\angle A B C=\angle A C B\\\\\ in\; \triangle \mathrm{ABD} \; \& \; \triangle \mathrm{ACD}\\\\ A B=A C \quad (equal \; side )
\begin{aligned} &\angle A B C=\angle A C B \quad \text { (equal angle }) \\\\ &B D=D C \quad(\mathrm{BC} \text { bisected by median } \mathrm{AD}) \end{aligned}
Therefore by SAS criterion of congurence triangle
\begin{aligned} &\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} \\\\ &\text { Hence } \angle A B C=\angle A C B \end{aligned} (by correcponding part of congurence)
Let \; \angle A D C=\angle A D B=x\\\\ \angle A D B+\angle A D C=180^{\circ}
Put the value we get
\begin{aligned} &x+x=180^{\circ} \\\\ &2 x=180^{\circ} \\\\ &x=90^{\circ} \\\\ &\angle A D C=\angle A D B=90^{\circ} \end{aligned}

Scaler and dot product exercise 23.2 question 10

Answer: A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 P Q^{2}
Hint: Use mid point theorem
Given: In quadrilateral ABCD
Prove A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 P Q^{2} where P \; \& \; Q are
Middle point of diagonal AC and BD
Solution:


Let ABCD be quadrilateral.
Take a as origin. Let position vector B,C,D be \vec{b}, \vec{c}, \vec{d} respectively
Then vector P=\frac{\vec{c}}{2} (Mid point formula)
Position vector \mathrm{Q}=\frac{\vec{b}+\vec{d}}{2} (Mid point)
Now,
\begin{aligned} &A B^{2}+B C^{2}+C D^{2}+D A^{2} \\\\ &(|\vec{b}|)^{2}+(|\vec{c}-\vec{b}|)^{2}+(|\vec{d}-\vec{c}|)^{2}+(|\vec{d}|)^{2} \end{aligned}
\begin{aligned} &(|\vec{b}|)^{2}+(|\vec{c}|)^{2}-2 \vec{c} \cdot \vec{b}+(|\vec{b}|)^{2}+(|\vec{d}|)^{2}-2 \vec{d} \vec{c}+(|\vec{c}|)^{2}+(|\vec{d}|)^{2} \\\\ &2(|\vec{b}|)^{2}+2(|\vec{c}|)^{2}+2(|\vec{d}|)^{2}-2 \cdot \vec{b} \cdot \vec{c}-2 \cdot \vec{c} \cdot \vec{d} \quad \rightarrow(1) \end{aligned}
Also,
\begin{aligned} &A C^{2}+B D^{2}+4 P Q^{2} \\\\ &(|\overrightarrow{A C}|)^{2}+(|\overrightarrow{B D}|)^{2}+4(|\overrightarrow{P Q}|)^{2} \\\\ &(|\vec{c}|)^{2}+(|\bar{d}-\vec{b}|)^{2}+(|\vec{b}+\vec{d}|)^{2}-2(|\vec{b}+\vec{d}|)^{2} \cdot c+(|\vec{c}|)^{2} \end{aligned}
\begin{aligned} &2(|\vec{c}|)^{2}+2(|\bar{d}|)^{2}+2(|\vec{b}|)^{2}-2 \cdot \vec{b} \cdot \vec{c}-2 \vec{b} \cdot \vec{c}-2 \cdot \vec{c} \cdot \vec{d} \\\\ &A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 P Q^{2} \end{aligned}

The RD Sharma class 12 arrangement of Scalar and dab item exercise 23.2 is utilized by thousands of students and instructors for the practical information on maths. The RD Sharma class 12th exercise 23.2 comprises of 10 inquiries that concealment every one of the fundamental confirmations like-

Demonstrating of Pythagoras theorem by vector method

Demonstrating quadrilateral acquired by joining midpoints of nearby sides of a square shape is a rhombus.

The advantages of rehearsing from the RD Sharma class 12th exercise 23.2 are referenced beneath: -

  • At Career360 RD Sharma class 12 solutions, chapter 23 exercise 23.2 is a confided textbook that thousands of students have utilized. Educators too are exceptionally attached to the book with regards to the subject of maths.

  • The inquiries shrouded in the RD Sharma class 12th exercise 23.2 are uniquely ready by specialists in the field of mathematics and give supportive tips and deceives to address the questions in a more available elective manner for better arrangement.

  • You can download the RD Sharma class 12 chapter 23 exercise 23.2 from the Career360 site as a PDF which implies you can get to it online from any place and any gadget.

  • RD Sharma class 12th exercise 23.2 is accessible for all students for free on the Career360 site. It would help if you looked through the book name and practice on the site, and it will lead you directly to the material.

  • You can utilize RD Sharma class 12th exercise 23.2 as a device to keep tabs on your development in the subject. You can even remain in front of your class addresses by planning early.

RD Sharma Chapter wise Solutions

Frequently Asked Question (FAQs)

1. Who is this material meant for?

This material is specifically prepared for class 12 students who want to get more knowledge on the subject.

2. What are the benefits of this material?

This material saves a lot of time in preparation as it contains questions and answers in the same place. The answers are easy to understand and exam oriented. 

3. Can I score good marks through this material?

Preparing from this material will help students gain more knowledge on the subject and in turn score better marks in exams.

4. Does it follow CBSE syllabus?

Yes, this material follows the CBSE syllabus. 

5. Is it available for free?

Yes this material is available free of cost and can be accessed through Career360’s website.

Articles

Get answers from students and experts
Back to top