RD Sharma Class 12 Exercise FBQ Scalar and dot product Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise FBQ Scalar and dot product Solutions Maths - Download PDF Free Online

Edited By Lovekush kumar saini | Updated on Jan 27, 2022 05:02 PM IST

The Class 12 RD Sharma chapter 23 exercise FBQ solution books are utilized by each understudy getting ready for their class 12th board examinations. However, chapters like Scalar and spot items can be mind-boggling for the students to tackle, so they need additional resources for self-practice to expert this chapter for their examination. RD Sharma solutions Therefore, it is enthusiastically proposed that the students use the RD Sharma class 12th exercise FBQ reply for their rational help and foster their capacities to perform better in exams.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter23FBQ Scaler and dot product - Other Exercise
  2. Scalar or Dot Products Excercise: FBQ
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter23FBQ Scaler and dot product - Other Exercise

Scalar or Dot Products Excercise: FBQ

Scalar or dot product exercise fill in the blanks question 1

Answer:

\sqrt{3}
Hint:
Let |\vec {a}|=|\vec {b}|=1
Given:
If \vec {a}and \vec {b} are two unit vectors such that \left |\vec {a+b} \right | is unit vector, thena-b\left |\vec {a} -\vec {b} \right |
Solution:
As \left |\vec {a+b} \right | is unit vector, |\vec {a}|=|\vec {b}|=1
\begin{aligned} &|\vec{a}+\vec{b}|=1 \\ &|\vec{a}+\vec{b}|^{2}=1 \\ &|\vec{a}|^{2}+|\vec{b}|^{2}+2 a b=1 \\ \end{aligned}
\begin{aligned} &2+2(a \cdot b)=1 \\ &-2(a \cdot b)=1 \\ &|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 a b \\ \end{aligned}
\begin{aligned} &=1+1+1 \\ &|\vec{a}-\vec{b}|^{2}=3 \\ &|\vec{a}-\vec{b}|=\sqrt{3} \end{aligned}

Scalar or dot product exercise fill in the blanks question 2

Answer:

\pm \frac{3}{4}Hint:
\vec{a}+\lambda\vec{b}is perpendicular to\vec{a}-\lambda\vec{b}
Given:
\left | \vec{a} \right |=3,\left | \vec{b} \right |=4 and \vec{a}+\lambda\vec{b} is perpendicular to \vec{a}-\lambda\vec{b} , then \lambda =
Solution:
\vec{a}+\lambda\vec{b} is perpendicular to \vec{a}-\lambda\vec{b}
\begin{aligned} &(a+\lambda b)(a-\lambda b)=0 \\ &a^{2}-\lambda \times(a \cdot b)+\lambda \times(b \cdot a)-\lambda^{2} \times|b|^{2}=0 \\ \end{aligned}
\begin{aligned} &a^{2}-\lambda^{2} \times b^{2}=0 \\ &\lambda=\pm \frac{|a|}{|b|}=\pm \frac{3}{4}\end{aligned}

Scalar or dot product exercise fill in the blanks question 3

Answer:

-5
Hint:
Use \vec{a}.m\vec{b}=120
Given:
If \hat{a}=2\hat{i}-7\hat{j}+\hat{k}, \hat{b}=\hat{i}+3\hat{j}-5\hat{k} and a.mb=120 then m=
Solution:
\begin{aligned} &a \cdot b=2(1)+(-7)(3)+1(-5) \\ &=2-21-5 \\ &=-24 \\ \end{aligned}
\begin{aligned} &a \cdot m b=m(a \cdot b) \\ &m(-24)=120 \\ &m=\frac{-120}{24} \\ &m=-5\end{aligned}

Scalar or dot product exercise fill in the blanks question 4

Answer:

\pi
Hint:
Angle between \vec{a} and \vec{c}.
Given:
The non-zero vector \vec{a},\vec{b},\vec{c} are related by \vec{a}=8b and \vec{c}=-7b then angle between \vec{a} and \vec{c} is
Solution:
We have,
\vec{a}=8b and \vec{c}=-7b
Let,
\begin{aligned} &\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k} \\ \end{aligned}
Then,
\begin{aligned} &\vec{a}=8\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right) \\ \end{aligned}
And \begin{aligned} &\vec{c}=-7\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right) \\ \end{aligned}
Consider angle between \vec{a} and \vec{c} is \theta.
Now, we know the rule of dot product.
\begin{aligned} &\vec{a} . \vec{c}=|\vec{a} \| \vec{c}| \cos \theta \\ &\therefore \cos \theta=\frac{\vec{a} \cdot \vec{c}}{|\vec{a}||\vec{c}|} \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{\left[\left(8\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right) \cdot\left(-7\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right)\right)\right)\right]}{|-7| \times|8| \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}} \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{-56\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}{|-56|\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)} \quad\left[\begin{array}{l} \imath{\imath} . \hat{\imath}=1, \hat{\jmath} \cdot \hat{\jmath}=1, \\ \hat{k} \cdot \hat{k}=1 \end{array}\right] \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{-56}{56} \\ &\cos \theta=-1 \end{aligned}
Therefore,
\begin{aligned} \theta=\pi &&& \quad[\because \cos \pi=-1] \end{aligned}
Hence, angle between \vec{a} and \vec{c} is \pi.

Scalar or dot product exercise fill in the blanks question 5

Answer:

\sqrt{2}
Hint:
a is perpendicular to b
Given:
If a and b are mutually perpendicular unit vector, then \left |\vec{a}+\vec{b} \right |
Solution:
\left |\vec{a} \right |=\left |\vec{b} \right |=1 , \vec{a} .\vec{b} =0…as they are perpendicular … (i)
Now,
\begin{aligned} &|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b} \\ \end{aligned}
\begin{aligned} &=1+1+2(0)=2 &&&&&& [Use (i)]\\ \end{aligned}
\begin{aligned} &|\vec{a}+\vec{b}|=\sqrt{2} &&&&&& \left[\because \sqrt{1^{2}+1^{2}}=\sqrt{2}\right] \end{aligned}

Scalar or dot product exercise Fill in the blanks question 6

Answer:

0
Hint:
Find \alpha
Given:
If the angle between vector such that \hat{i}+\hat{k} and \hat{i}- \hat{j}+\alpha \hat{k} is \frac{\pi}{3}.
Find \alpha
Solution:
\begin{aligned} &\cos \theta=\frac{\vec{a} \vec{b}}{|\vec{a}| \cdot|\vec{b}|^{\prime}} \theta=\frac{\pi}{3}\\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{(\hat{\imath}+\hat{k}) \cdot(\hat{\imath}-\hat{\jmath}+\alpha \hat{k})}{\sqrt{1^{2}+1^{2}} \cdot \sqrt{1^{2}+1^{2}+\alpha^{2}}}\\ \end{aligned}
\begin{aligned} &\cos \frac{\pi}{3}=\frac{(\hat{\imath}+\hat{k}) \cdot(\hat{\imath}-\hat{\jmath}+\alpha \hat{k})}{\sqrt{2} \cdot \sqrt{2+\alpha^{2}}}\\ \end{aligned}
\begin{aligned} &\frac{1}{2}=\frac{(1+\alpha)}{\sqrt{2} \cdot \sqrt{2+\alpha^{2}}}\\ \end{aligned}
\begin{aligned} &\frac{1}{4}=\frac{(1+\alpha)^{2}}{2\left(2+\alpha^{2}\right)} \\ \end{aligned}..............…squaring the equation
\begin{aligned} &2(1+\alpha)^{2}=2+\alpha^{2}\\ &2\left(1+\alpha^{2}+2 \alpha\right)=2+\alpha^{2}\\ &2+2 \alpha^{2}+4 \alpha=2+\alpha^{2}\\ \end{aligned}
\begin{aligned} &\alpha^{2}+4 \alpha=0\\ &\alpha(\alpha+4)=0\\ &\alpha=0, \alpha=-4\\ \end{aligned}
Hence \begin{aligned} & \alpha=0\end{aligned}

Hence α=0

Scalar or dot product exercise Fill in the blanks question 7

Answer:

\frac{2\pi}{3}
Hint:
Angle between \vec{a} andn \vec{b}
Given:
If \vec{a},\vec{b},\vec{c} are unit vector such that \vec{a}+\vec{b}-\vec{c}=0, then angle betweenaandbis
Solution:
\left |\vec{a} \right |=\left |\vec{b} \right |=\left |\vec{c} \right |=1
We have,
\vec{a}+\vec{b}-\vec{c}=0
\vec{a}+\vec{b}=\vec{c}
on squaring both sides,
\begin{aligned} &(\vec{a}+\vec{b})^{2}=(\vec{c})^{2} \\ &|\vec{a}|^{2}+|\vec{b}|^{2}+2 \cdot a \cdot b \cos \theta=(\vec{c})^{2} \\ \end{aligned}
\begin{aligned} &1+1+2 a \cdot b \cos \theta=1 \\ &2 a \cdot b \cos \theta=1-2 \\ \end{aligned}
\begin{aligned} &\cos \theta(1)(1)=\frac{-1}{2} \\ &\cos \theta=\frac{-1}{2} \\ &\theta=\frac{2 \pi}{3} \end{aligned}

Scalar or dot product exercise Fill in the blanks question 8

Answer:

\frac{\pi}{3}
Hint:
Angle between \vec{a} and \vec{b}
Given:
If \vec{a}, \vec{b} are unit vector such that,\left | \vec{a}+ \vec{b} \right |=\sqrt{3}, then angle between \vec{a} and \vec{b} is
Solution:
\begin{aligned} &|\vec{a}+\vec{b}|=\sqrt{3},|\vec{a}|=|\vec{b}|=|\vec{c}|=1 \\ &|\vec{a}+\vec{b}|^{2}=(\sqrt{3})^{2} \\ \end{aligned}
\begin{aligned} &(\vec{a}+\vec{b})^{2}=(\sqrt{3})^{2} \\ &|\vec{a}|^{2}+|\vec{b}|^{2}+2(1)(1) \cos \theta=3 \\ \end{aligned}
\begin{aligned} &1+1+2 a \cdot b \cos \theta=3 \\ &2+2 \cos \theta=3 \\ &\cos \theta=1 \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{1}{2} \\ &\cos \theta=\cos 60^{\circ} \\ &\theta=\frac{\pi}{3} \end{aligned}

Scalar or dot product exercise fill in the blanks question 9

Answer:

\vec{a}.\vec{b}
Hint:
Use projection \vec{a} on \vec{b}
Given:
If \vec{a},\vec{b} are two non-zero vector, then projection of \vec{a} on \vec{b} is
Solution:
Projection of \vec{a} on \vec{b}=\frac{1}{|b|}\vec{a}.\vec{b}
\left |\vec{a} \right |=\left |\vec{b} \right |=1\\ \left |\vec{b} \right |=1
Hence Projection of \vec{a} on \vec{b} = \vec{a}.\vec{b}

Scalar or dot product exercise Fill in the blanks question 10

Answer:

\frac{\pi}{4}
Hint:
Angle between \vec{a} and \vec{b}
Given:
Let \vec{a},\vec{b} are unit vector such that, \vec{a}-\sqrt{2}\vec{b} is also a unit vector, then angle between \vec{a} and \vec{b}
Solution:
\begin{aligned} &|\vec{a}|=|\vec{b}|=1 \\ &|\vec{a}-\sqrt{2} \vec{b}|=1 \\ &|\vec{a}-\sqrt{2} \vec{b}|^{2}=1^{2} \\ \end{aligned} ….squaring on both sides
\begin{aligned} &|\vec{a}|^{2}+|\sqrt{2} \vec{b}|^{2}-2|\vec{a}| \cdot|\sqrt{2} \vec{b}| \cos \theta=1 \\ &1+2(1)^{2}-2(1)(\sqrt{2}(1)) \cos \theta=1 \end{aligned}
\begin{aligned} &1+2-2 \sqrt{2} \cos \theta=1 \\ &3-2 \sqrt{2} \cos \theta=1 \\ \end{aligned}
\begin{aligned} &3-1=2 \sqrt{2} \cos \theta \\ &2=2 \sqrt{2} \cos \theta \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{2}{2 \sqrt{2}} \\ &\cos \theta=\frac{1}{\sqrt{2}} \\ &\theta=\frac{\pi}{4} \end{aligned}

Scalar or dot product exercise Fill in the blanks question 11

Answer:

\frac{\pi}{3}
Hint:
Angle between \vec{a} and \vec{b}
Given:
\left |\vec{a} \right |=1 , \left |\vec{b} \right |=3 and \left |a-b \right |=\sqrt{7}. Find Angle between a and b.
Solution:
\left |\vec{a} \right |=1 , \left |\vec{b} \right |=3 and \left |a-b \right |=\sqrt{7} … (i)
\left |a-b \right |=\sqrt{7}
Squaring on both side we get
\begin{aligned} &|a-b|^{2}=(\sqrt{7})^{2} \\ &|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos \theta=(\sqrt{7})^{2} \end{aligned}
From (i)
\begin{aligned} &(1)^{2}+(3)^{2}-2(1)(3) \cos \theta=7 \\ &1+9-6 \cos \theta=7 \\ &10-7=6 \cos \theta \\ \end{aligned}
\begin{aligned} &\frac{3}{6}=\cos \theta \\ &\cos \theta=\frac{1}{2} \\ &\theta=\frac{\pi}{3} \end{aligned}

Scalar or dot product exercise fill in the blanks question 12

Answer:

\sqrt{a^{2}+b^{2}+c^{2}}
Hint:
Use a.b=0
Given:
If a,b,c are mutually perpendicular vector, then \left | \vec{a}+\vec{b}+\vec{c} \right |
Solution:
\begin{aligned} &|\vec{a}|=1,|\vec{b}|=1,|\vec{c}|=1 \\ &\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0 \\ &\vec{b} \cdot \vec{a}=0, \vec{c} \cdot \vec{b}=0, \vec{a} \cdot \vec{c}=0 \\ \end{aligned}
\begin{aligned} &|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c}) \\ \end{aligned}
\begin{aligned} &=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{c}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c} \\ \end{aligned}
\begin{aligned} &=|\vec{a}|^{2}+0+0+0+|\vec{b}|^{2}+0+0+0+|\vec{c}|^{2} \\ &=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2} \\ \end{aligned}
\begin{aligned} &|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2} \\ &\vec{a}+\vec{b}+\vec{c}=\sqrt{a^{2}+b^{2}+c^{2}} \end{aligned}

Scalar or dot product exercise Fill in the blanks question 13

Answer:

\pi
Hint:
Angle between \vec{a} and \vec{b}
Given:
If \vec{a} , \vec{b} are two non-zero vector \vec{a}.\vec{b}=-\left |\vec{a} \right | . \left |\vec{b} \right |, then angle between \vec{a} and \vec{b} is
Solution:
\vec{a}.\vec{b}=-\left |\vec{a} \right | . \left |\vec{b} \right | … (i)
And we know that \vec{a}.\vec{b}=-\left |\vec{a} \right | . \left |\vec{b} \right |.\cos\theta
From (i) we get
-\vec{a}.\vec{b}=-\left |\vec{a} \right | . \left |\vec{b} \right |.\cos\theta\\ \cos \theta =-1\\ \theta =\pi

Scalar or dot product exercise fill in the blanks question 14

Answer:

\left | \vec{r} \right |^{2}Hint:
Squaring both sides
Given:
For any vector \left ( r.\hat{i} \right )^{2}+ \left ( r.\hat{j} \right )^{2}+\left ( r.\hat{k} \right )^{2}=___________
Solution:
\begin{aligned} &|r|=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\ &|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \\ &|\vec{r}|^{2}=x^{2}+y^{2}+z^{2} \\ \end{aligned}
\begin{aligned} (r \cdot \hat{\imath})^{2}+(r \cdot \hat{\jmath})^{2}+(r \cdot \hat{k})^{2}=((x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{\imath})^{2}+((x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{\jmath})^{2}+((x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{k})^{2} \\ \end{aligned}
\begin{aligned} =x^{2}+y^{2}+z^{2} \\ (r \cdot \hat{\imath})^{2}+(r \cdot \hat{\jmath})^{2}+(r \cdot \hat{k})^{2}=x^{2}+y^{2}+z^{2}=|\vec{r}|^{2} \end{aligned}

Scalar or dot product exercise fill in the blanks question 15

Answer:

4
Hint:
\left |a \right |=?
Given:
If a,b non-zero vector of same magnitude. Such that angle between \vec{a} and \vec{b} are \frac{2\pi}{3} and a.b=-8 then \left | a \right |
Solution:
Let
\left | a \right |=m\\ \vec{a}.\vec{b}=-8\\ \left |\vec{a} \right |.\left |\vec{b} \right |.\cos \theta =-8\\
m^{2}\left ( -\frac{1}{2} \right ) =-8\\,since a and b have same magnitude
m^{2}=16
m=4,m cannot be negative

Scalar or dot product exercise fill in the blanks question 16

Answer:

\vec{r}
Hint:
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}
Given:
For any non-vector \vec{r}, the expression \vec{r}=(r.i)\hat{i}+(r.j)\hat{j}+(r.k)\hat{k} equals to
Solution:
\begin{aligned} &\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\ \end{aligned}
\begin{aligned} &r \cdot \hat{\imath}=x \\ &r \cdot \hat{\jmath}=y \\ &r \cdot \hat{k}=z \\ \end{aligned}
\begin{aligned} &(r . i) \hat{\imath}+(r . j) \hat{\jmath}+(r \cdot k) \hat{k}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\ &x \hat{\imath}+y \hat{\jmath}+z \hat{k}=\vec{r} \end{aligned}

Scalar or dot product exercise fill in the blanks question 17

Answer:

\frac{\pi}{4}Hint:
Find magnitude
Given:
The vector \vec{a}=3\hat{i}-2\hat{j}+2\hat{k} and \vec{b}=-\hat{i}-2\hat{k} are adjacent side of parallelogram
The acute angle between diagonal is
Solution:
Let \vec{AB}=3\hat{i}-2\hat{j}+2\hat{k} & \vec{BC}=-\hat{i}-2\hat{k}
AC & BD are the diagonals of the parallelogram,
\vec{AC}=\vec{AB}+\vec{BC}\\ =(3-1)\hat{i}-2\hat{j}+(2-2)\hat{k}\\ =2\hat{i}-2\hat{j}
\begin{aligned} &\overrightarrow{B D}=\overrightarrow{A B}-\overrightarrow{B C} \\ &=(3-(-1)) \hat{\imath}-2 \hat{\jmath}+4 \hat{k} \\ &\overrightarrow{B D}=4 \vec{\imath}-2 \vec{\jmath}+4 \vec{k} \\ \end{aligned}
\begin{aligned} &\overrightarrow{A C} \cdot \overrightarrow{B D}=|\overrightarrow{A C}| \cdot|\overrightarrow{B D}| \cos \theta \\ &12=\sqrt{4+4} \cdot \sqrt{16+4+16} \cos \theta \\ \end{aligned}
\begin{aligned} &12=\sqrt{8} \cdot \sqrt{36} \cos \theta \\ &12=2 \sqrt{2} \cdot 6 \cos \theta \\ \end{aligned}
\begin{aligned} &\frac{1}{\sqrt{2}}=\cos \theta \\ &\frac{\pi}{4}=\theta \end{aligned}

Scalar or dot product exercise fill in the blanks question 18

Answer:

\frac{3}{5\sqrt{2}}Hint:
\vec{a} and \vec{b} projection
Given:
\vec{a}=2\hat{i}-\hat{j}+2\hat{k} and \vec{b}=5\hat{i}-3\hat{j}-4\hat{k}
Solution:
\vec{a}=2\hat{i}-\hat{j}+2\hat{k} \\ \vec{b}=5\hat{i}-3\hat{j}-4\hat{k}
We know
Projection of vector \vec{a} and \vec{b} =\frac{1}{|\vec{b}|} \cdot(\vec{a} \cdot \vec{b})
\begin{aligned} (\vec{a} \cdot \vec{b}) &=(2 \times 5)+(-1 \times-3)+(2 \times-4) \\ &=10+3-8 \\ &=5 \\ \end{aligned}
\begin{aligned} |\vec{b}| &=\sqrt{25+9+16} \\ &=\sqrt{25+25} \\ &=\sqrt{50} \end{aligned}
Projection of vector \vec{a} on \vec{b} =\frac{1}{\sqrt{2}.5} \times 5\\
=\frac{1}{\sqrt{2}}
Projection of \vec{b} and \vec{a} =\frac{1}{|\vec{a}|} \cdot(\vec{b} \cdot \vec{a})
\begin{aligned} \vec{b} \cdot \vec{a}=&(5 \times 2)+(-3 \times-1)+(-4 \times 2) \\ &=10+3-8 \\ &=5 \\ \end{aligned}
\begin{aligned} |\vec{a}|=& \sqrt{2^{2}+1^{2}+2^{2}} \\ =& \sqrt{4+1+4} \\ &=\sqrt{9}\end{aligned}
\begin{aligned} &=3 \\ &\frac{\text { Projection of } \vec{a} \text { and } \vec{b}}{\text { Projection of } \vec{b} \text { and } \vec{a}}=\frac{\frac{1}{\sqrt{2}}}{\frac{5}{3}} \\ &\qquad=\frac{3}{5 \sqrt{2}} \end{aligned}

Therefore, the RD Sharma class 12th exercise FBQ for the chapter Increasing and a Decreasing request has accommodated the advantage of students. The solutions of RD Sharma class 12 solution chapter 23 exercise FBQ are compact answer kinds of inquiries by which students can work on their scientific thinking and time usage abilities.

The RD Sharma books help plan for tests and exams. However, the students can likewise chip away at their schoolwork and tasks with its assistance. There are just 18 inquiries gave in the RD Sharma class 12th exercise FBQ, and This chapter covers every one of the fundamental ideas the vector involves heading and size. FBQ questions are identified with Scalar as speck items, the point between vectors, the projection of vectors, and commonly opposite vectors.

Though there are various motivations to utilize the RD Sharma class 12 solution of Scalar and spot item exercise FBQ for exam planning, a portion of the advantages are recorded beneath:-

  • The inquiries are intended to conceal practically every one of the subjects that can be asked in the exams.

  • The RD Sharma class 12 chapter 23 exercise FBQ involves routinely presented requests in board exams and gives tips to settle the inquiries.

  • Experts in the field of maths set up the RD Sharma class 12th exercise FBQ questions.

  • RD Sharma class 12 solutions chapter 23 exercise FBQ handles the homework, as teachers take the help of a comparative book to give out a task. It is in like manner supportive in getting ready for exams as teachers suggest RD Sharma's class 12th exercise FBQ to design question papers.

  • The main part of RD Sharma's class 12 exercise FBQ is that it will in general be downloaded freed from the Career360 webpage; it doesn't cost a single penny to have this book.

RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Do the RD Sharma solutions organize with the new plan?

To be sure, the RD Sharma books are reexamined every year to identify with the timetable of NCERT.

2. What are the costs of the RD Sharma solution class 12 chapter 23?

RD Sharma class 12 chapter 23 ex FBQ, is, truth be told, liberated from cost to ensure. You can download the E-book and pdf through the Career360 website page.

3. What requests do the RD Sharma class 12 chapter 23 exercise FBQ solution contain?

The RD Sharma class 12th ex FBQ contains 14 requests that disguise the whole plan of the chapter, making it adequately powerful to practice.

4. Could the RD Sharma class 12 chapter 23 ex 23.2 help with settling homework?

It is helpful to address homework as instructors reliably use a comparable book to give out tasks. In this manner, taking care of reading with the help of RD Sharma solutions can help with saving time. 

5. From which source would I download the RD Sharma class 12 chapter 23 ex FBQ?

You can download the E-book and PDF from the authority webpage of Career360, which is furthermore freed from cost.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top