Careers360 Logo
RD Sharma Class 12 Exercise 23.1 Scaler and dot product Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 23.1 Scaler and dot product Solutions Maths - Download PDF Free Online

Updated on Jan 27, 2022 05:07 PM IST

The syllabus for the class 12 students is no less when compared to the other grades. As the challenges get bigger, every student spends on preparing for the exams gets extended. Not everyone who practices reaps the fruit; only the ones who practice in the right way can attain it. Students encounter difficulties in solving sums in the chapters like the Scalar and Dot Product. RD Sharma Solutions And as a solution for all their doubts, the RD Sharma Class 12th Exercise 23.1 plays a major role.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter23 Scaler and dot product - Other Exercise
  2. Scalar or Dot Products Excercise: 23.1
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter23 Scaler and dot product - Other Exercise

Background wave

Scalar or Dot Products Excercise: 23.1

Scaler or Dot Products Exercise 23.1 Question 1(i)

Answer: 19
Hints: you must the properly of vectors.
Given:a=i^2j^+k^ and b=4i^4j^+7k^ Find a.b
Solution:
a=ı^2ȷ^+k^b=4ı^4j^+7k^ab=(ı^2ȷ^+k^)(4ı^4ȷ^+7k^) |ı^i^=1ı^ȷ^=0|
=(4+8+7)=19

Scaler or Dot Products Exercise 23.1 Question 1(ii)

Answer: 2
Hints: you must know the properties of vectors.
Given: a=j^+2k^ and b=2i^+k^
Solution: b=j^+2k^
b=2j^+k^
a.b=(j^+2k^).(2i^+k^)=(0×2)+(1×0)+(1×2) |ı^ȷ^=0ȷ^k^=0k^k^=1|
=+2

Scaler or Dot Products Exercise 23.1 Question 1(iii)

Answer: 5
Hints: you must know the property of vectors.
Given: a=j^k^ and b=2j^+3j^2k^
Solution:
a=j^k^
b=2j^+3j^2k^ |ı^ı^=1ı^ȷ^=0J^ȷ^=1ȷ^k^=0|
a.b=(j^k^)(2i^+3j^2k^)
=3+2
=5



Scaler or Dot Products Exercise 23.1 Question 2(i)

Answer:λ=4
Hints: you must know the rules of solving vectors.
Given: for what value of λ , a and b are to each other,
a=λi^+2j^+k^ and b=4i^9j^+2k^
Solution:a=λi^+2j^+k^ and b=4i^9j^+2k^

If a.b=0 them both are perpendicular to each other

ab=(λı^+2ȷ^+k^)(4ı^9ȷ^+2k^)=0

=4λ18+2=0=4λ16=0

4λ=16λ=4


Scaler or Dot Products Exercise 23.1 Question 2(ii)

Answer:λ=165
Hints: if dot products of two vector are equal to zero then vectors are perpendicular to each other
Given: a=λi^+2j^+k^ and b=5i^9j^+2k^
Solution:
a=λi^+2j^+k^
b=5i^9j^+2k^
If a.b=0, them both a and b are to each other
ab=(λı^+2ȷ^+k^)(5ı^9ȷ^+2k^)=0
|i^l^=1ı^ȷ^=0|
5λ18+2=0
5λ16=0
5λ=16
λ=165

Scaler or Dot Products Exercise 23.1 Question 2(iii)

Answer:λ=3
Hints: you must know the proper of vectors
Given: a=2i^+3j^+4k^ and b=3i^+2j^λk^
Solution:a=2i^+3j^+4k^
b=3i^+2j^λk^
If a.b=0 them both a and b are perpendicular to each other
(2ı^+3ȷ^+4k^)(3ı^+2ȷ^λk^)=06+64λ=0124λ=04λ=12λ=3 |i^l^=1ı^ȷ^=0|

Scaler or Dot Products Exercise 23.1 Question 2(iv)

Answer: -3
Hints: you must know the rules of solving vectors.
Given: a=λi^+3j^+2k^ and b=i^j^+3k^
Solution:a=λi^+3j^+2k^ and b=i^j^+3k^
If a.b=0 them both a and b are perpendicular to each other
=(λı^+3ȷ^+2k^)(ı^ȷ^+3k^)=0
λ3+6=0λ+3=0λ=3

Scaler or Dot Products Exercise 23.1 Question 3

Answer: π3
Hints: you must know properly of finding angle from vectors.
Given: a∣=4,b∣=3, and a.b=6
Solution: a∣=4,b∣=3, a.b=6
Now, we know a.b=∣a∣∣bcosθ
6=(4)(3)(cosθ)6=(12)(cosθ)12=cosθθ=cos1(12)=π3

Scaler or Dot Products Exercise 23.1 Question 4

Answer: - 9
Hint: you must know the rules of solving vectors.
Given: a=i^j^ and b=j^+2k^
Solution: a=i^j^ and b=j^+2k^
Find (a2b).(a+b)
(a2b)=(ı^ȷ^)2(ȷ^+2k^)=(ı^ȷ^+2ȷ^4k^)(a+b)=(ı^ȷ^)+(ȷ^+2k^)
=ı^ȷ^ȷ^+2k^=ı^2ȷ^+2k^(a2b)(a+b)(ı^+ȷ^4k^)(ı^2ȷ^+2k^)1289

Scaler or Dot Products Exercise 23.1 Question 5(i)

Answer:2π3
Hint: you must know the properly of finding angle b/w two vectors.
Given:a^=i^j^ and b^=j^+k^
Solution:a^=i^j^ and b^=j^+k^
(ab)=(ı^ȷ^)(ȷ^+k^)=(0,1+0)1
|a|=(1)2+(1)2+(0)2=1+12
|b|=(0)2+(1)2+(1)2=1+12

Now we know a.b=∣a∣∣bcosθ

1=(2)(2)cosθ12=cosθ

θ=2π3


Scalar or Dot Products Exercise 23.1 Question 5(ii)

Answer: cos1(3463)
Hint: you must know the properly of findings angle b/w two vectors
Given: a=3i^2j^+6k^ and b=4i^j^+8k^
Solution: a=3i^2j^+6k^ and b=4i^j^+8k^
We know a.b=∣a∣∣bcosθ
Now, (a.b)=(3i^2j^+6k^)(4i^j^+8k^)
=12+248 1448=34
Magnitude of a∣=(3)2+(2)2+(6)2
=9+4+36 =49
7
Magnitude of b∣=(4)2(1)2+(8)2
=16+1+64
=81
9
Put values in 1
ab=|a||b|cosθ34=(7)(9)cosθ34=(63)cosθ
3463=cosθθ=cos1(3463)

Scalar or Dot Products Exercise 23.1 Question 5(iii)

Answer:π2
Hint: you must know the rules of finding angle b/w two vectors.
Given:a=2i^j^+2k^ and b=4i^+4j^2k^
Solution:
a=2i^j^+2k^
b=4i^+4j^2k^
We know a.b=∣a∣∣bcosθ
Now,(a.b)=(2i^j^+2k^).(4i^+4j^2k^) |l^l^=1ı^j^=0|
(844)0
Magnitude of a∣=(2)2+(1)2+(2)2
=4+1+4 =9=3
Magnitude ofb∣=(4)2+(4)2+(2)2
=16+16+4 =36=6
Put in 1
ab=|a||b|cosθ0=(3)(6)cosθ0=cosθθ=π2

Scalar or Dot Products Exercise 23.1 Question 5(iv)

Answer:cos1(384)

Hint: You must know the rules of finding angle between two vectors.
Given: a=2i^3j^+k and b=i^+j^2k
Solution:
a=2i^3j^+k
b=i^+j^2k
we Know a.b=∣a∣∣bcosθ ....(i)
Now,(a.b)=(2i^3j^+k)(i^+j^2k)|ı^ı^=1ı^ȷ^=0|
(232)3
Magnitude of a∣=(2)2+(3)2+(2)2
=4+9+4 =8+9=17
Magnitude ofb∣=(1)2+(1)2+(2)2
=1+1+4 =6
Put in (1)
a.b=∣a∣∣bcosθ
3=(17)(6)cosθ
3=84cosθ
cosθ=384
θ=cos1(384)

Scalar or Dot Products Exercise 23.1 Question 5(v)

Answer: cos1(23)
Hint: you must know the rules of solving and finding angle b/w two vectors
Given: a=i^+2j^k^ and b=i^j^+k^
Solution:
a=i^+2j^k^
b=i^j^+k^
Weknowab=|a||b|cosθ
Now,(ab)=(ı^+2ȷ^k^)(ı^ȷ^+k^)
==(121)
=2
Magnitudeof|a|=(1)2+(2)2+(1)2
=1+4+1=6
Magnitudeof|b|=(1)2+(1)2+(1)2
=1+1+1=3
Put in 1
ab=|a||b|cosθ(2)=(6)(3)cosθ2=18cosθ23×3×2=cosθ
232=cosθ2×232=cosθ23=cosθθ=cos1(23)

Scalar or Dot Products Exercise 23.1 Question 6

Answer: π3,2π3,π4
Hint: you must know the rules of finding angle
Given: a=i^j^+2k^ makes with co-ordinate ones.
Solution: Let θ, be the angle between a and x-axis
|a|=(1)2+(1)2+(2)2=1+1+2=2=2
b=i^(Because it is a unit vector along x-axis)
|b|=(1)2+0+0=1ab=(ı^ȷ^+2k^)(ı^)|ı^ı^=1ı^ȷ^=0|1 Now, (ab)=|a||b|cosθ
1=(2)(1)cosθ12=cosθθ=π3

Now, Let θ2 be the angle between a and y-axis.
|a|=(1)2+(1)2+(2)2=4=2b=j^(become it is a unit vector along y-axis)
b|=(1)2+0+0=11
ab=(ı^ȷ^+2k^)(j^)(1)|i^ı^=1ı^ȷ^=0|
Now,(ab)=|a||b|cosθ
1=(2)(1)cosθ1=2cosθ2cosθ2=12θ2=2π3

Now, Let θ3 be the angle between aand y-axis.

|a|=(1)2+(1)2+(2)2=4=2b=k^(becomek^isunitvectoralongzaxis)

|b|=0+0+(1)2=1ab=(ı^ȷ^+2k^)(k^)|k^k^=1k^ı^=0|=(2)

Now,(ab)=|a||b|cosθ

2=(2)(1)cosθ22=cosθ22=cosθθ=π4


Scalar or Dot Products Exercise 23.1 Question 7(i)

Answer:i^+2j^+k^
Hint: you must know the rules of finding vector from given dot product values
Given: dot product of i^+j^3k^,i^+3j^2k^ and 2i^+j^+4k^ are 0,5 and 8 respectively,
Solution: Let ai^+bj^+ck^ be the required vector
Give that,
(aı^+b^j+ck^)(ı^+ȷ^3k^)=0a+b3c=0(1)(aı^+bȷ^+ck^)(ı^+ȷ^3k^)=5a+3b2c=5(2)(aı^+bȷ^+ck^)(2ı^+ȷ^+4k^)=82a+b+4c=8(3)

From 1 and 2, subtract

(a+b3c)(a+3b2c)=05

a+b3ca3b2c=52bc=5c=52b

From 2 and 3, subtract

(a+3b2c)(2a+3b+4c)=58

a+3b2c2ab4c=3a+2b6c=3a2b+6c=3a=3+2b6c

Where c=52b

a=3+2b6c(52b)=3+2b3c+12ba=27+14b

Put value of (a) and (c) in 1

A+b3c=0

(27+14b)+b3(52b)=027+14b+b15+6b=0

21b42=0

21b=42

B=4221

B=2

Now put value of b in (c) and (a)

c=52b

c=52×2

=54

c=1

and a=27+14b

=27+14(2)

=27+28

=27+28

a=1

a=1,b=2,c=1

So,aı^+bȷ^+ck^=ı^+2ȷ^+k^


Scalar or Dot Products Exercise 23.1 Question 7(ii)

Answer: 2i^j^+k^
Hint: you must know the rules of finding vector from gives dot product values.
Given: i^j^+k^,2i^+j^3k^, i^+j^+k^, are 4,0 and 2 respectively
Solution:i^j^+k^ ,2i^+j^3k^, i^+j^+k^, are 4,0 and 2 respectively
Let ai^+bj^+ck^,be the required vector.
Given that
(aı^+bȷ^+ck^)(ı^+ȷ^+k^)=4ab+c=4(aı^+bȷ^+ck^)(2ı^+ȷ^3k^)=0
2a+b3c=012a
(aı^+bȷ^+ck^)(ı^+ȷ^+k^)a+b+c=2

From 1 and 2 subtract
(ab+c)(a+b+c)=42ab+cabc=22b=2B=1

From 1 and 2 subtract
(aı^+bȷ^+ck^)(ı^+ȷ^+k^)
a+b+c=2(ab+c)(a+b+c)=42ab+cabc=2
2b=2
B=1

From 1 and 2 subtract
(ab+c)(2a+b3c)=40ab+c2ab+3c=4a2b+4c=4a+2b4c=4a=42b+4c

Put b = -1

=42(1)+4c

=4+2+4c

A=4c2

Now from 3

A+b+c=2(4c2)+(1)+c=24c21+c=2

5c3=25c=3+25c=5C=1

Put value of b and c in 1

ab+c=4

a(1)+1=4a+1+1=4a+2=4a=2a=2,b=1,c=1aı^+bȷ^+ck^2ı^ȷ^+k^


Scalar or Dot Products Exercise 23.1 Question 8(i)

Answer: proved
Hint: you must know the rules of solving vectors.
Given: a^ and b^ are unit vector in dined at angle θ then prove cosθ2=12a^+b^
Solution: given that a^ and b^ are unit vectors
∴∣a^∣=1,b^∣=1
We have,
|a^+b^|2=∣a^2+b^2+2a^b^
=1+1+2|a^||b^|cosθ=2+2(1)(1)cosθ
|a^+b^|2=2+2cosθ
cosθ=|a^+b^|222
|a^+b^|2=|a^|2+|b^|22a^b^
=(1)2+(1)22|a^||b^|cosθ
|a^+b^|2=22cosθ
cosθ=2|a^+b^|22

Now,

cosθ=1+cosθ2

=1+|a^+b^|2222=2+|a^+b^|224=|a^+b^|24cosϑ212|a^+b^|= Proved 


Scalar or Dot Products Exercise 23.1 Question 8(ii)

Answer: Proved
Hint: you must know the property of solving vectors.
Given: if a^ and b^ are unit vectors inclined at angle θ, prove that tanθ2=∣a^b^a^+b^
Solution: given that a^ and b^ are unit vectors
So a^∣=1,b^∣=1
We have,
|a^b^|2=|a^|2+|b^|22a^b^=1+12|a^||b^|cosθ|a^b^|2=22cosθcosθ=2|a^b^|22
And sinθ2=1cosθ2
12|a^b^|22222+|a^b^|24
|a^b^|24sinθ2=12|a^b^|
And similarlycosθ2=12|a^+b^|
tanθ2=sinθ/2cosθ/2=12|a^b^|12|a^+b^||a^b^||a^+b^|

Scalar or Dot Products Exercise 23.1 Question 9

Answer: Proved
Hint: you must know rule of proving vector properties
Given: if the sum of two unit vectors is a unit vector prove that magnitude of their difference is 3
Solution: Let their unit vectors are a, b, c. given, sum of unit vectors is a unit vector
a+b=c|c^|2=|a^+b^|2|c^|2=|a|2+|b|2+2|a||b|cosθ=1=1+1+2cosθ [|a||b|=|c|=1 (unit vector) ]
cosθ=12
Now|a^b^|2=|a|2+|b|22|a||b|cosθ
|a^b^|2=[1+1+1]|a^b^|2=[3]|ab|=3

Scalar or Dot Products Exercise 23.1 Question 10

Answer: proved
Hint: you must know the rules of proving vector
Given: if a,b,c are these mutually perpendicular unit vectors, prove that a+b+c∣=3
Solution: given that a,band c are unit vectors
So, a∣=1,b∣=1,c∣=1
Since they are mutually perpendicular
ab=bc=ca=0
Now,|a+b+c|2=|a^|2+|b^|2+|c^|2+2a^b^+2b^c^+2c^a^
=1+1+1+0+0+0|a+b+c|23|a+b+c|3
=Proved

Scalar or Dot Products Exercise 23.1 Question 12

Answer: proved
Hint: you must know the rules of solving vectors.
Given: show that the vector i^+j^+k^ is equally inclined to coordinate
Solution: Let θ, be the angle b/w   a and x-axis,
|a|=(1)2+(1)2+(1)2=1+1+1=3b=i^( Because i^ is the unit vector along xaxis)|b|=(1)2+0+0=11ab=1+0+0=1
|b|=(1)2+0+0=11ab=1+0+0=1cosθ1=ab|a||b|=1(3)(1)13θ1=cos1(13)1
Let θ2 be the angle between aandyaxis
|a|=(1)2+(1)2+(1)2=3b=J^|b|=0+(1)2+0=11(ab)=0+1+0=11
we Know ab=cosθ|a||b|
1=3cosθ213=cosθ2θ2=cos1(13)

Again , Let θ3 be the angle between a and z-axis

|a|=(1)2+(1)2+(1)2=3b=k^ (Because k^ is unit vector along z axis )|b|=0+0+(1)2=1=1ab=(ı^ȷ^+k^)(k^)(0+0+1)1

We Know ab=cosθ|a||b|

1=3cosθ

13=cosθ

θ=cos1(13)

From 1, 2, 3 the given vector is equally inclined to the co-ordinate ones.


Scalar or Dot Products Exercise 23.1 Question 13

Answer: proved
Hint: you must know the rules of solving vectors
Given: show that the vectors
a=17(2ı^+3ȷ^+6k^),b=17(3ı^6ȷ^+2k^)c=17(6ı^+2ȷ^3k^)
Solution: we Have
a=17((2)2+(3)2+(6)2)
=174+9+36
=174977
=1
b=17(3)2+(6)2+(2)2=179+36+4
=1749=1c=17(6)2+(2)2+(3)2=1736+4+9
=171
And
ab=17(2ı^+3ȷ^+6k^)17(3ı^6j^+2k^)=149(618+12)0
bc=17(3ı^6ȷ^+2k^),(6ı^+2ȷ^3k^)=149(18126)=0
ca=17(6ı^+2ȷ^3k^)17(2ı^+3ȷ^+6k^)=17(12+6+18)0
So,a∣=∣b∣=∣c∣=1
And ab=bc=ca=0

Therefore, the given vectors are mutually perpendicular unit vectors.


Scalar or Dot Products Exercise 23.1 Question 14

Answer: proved
Hint: you must know the rules of solving vectors
Given: for any two vectors a and b
Show: (a+b)(ab)=0|a|=|b|
Solution: we have
(a+b)(ab)=0[(a+b)(ab)=(a2b2)]|a|2|b|2=0|a|=|b|
= Proved

Scalar or Dot Products Exercise 23.1 Question 15

Answer: λ=2
Hint: you must know the rules of solving vectors
Given: a=2ı^ȷ^+k^ Findλ
b=ı^+ȷ^2k^ Suchaistoλb+c
c=ı^+3ȷ^k^
Solution: The given vectors are a=2ı^ȷ^+k^
b=ı^+ȷ^2k^ and c=ı^+3ȷ^k^
Now,
λb+c=λ(ı^+ȷ^2k^)+ı^+3ȷ^k^=(λ+1)ı^+(λ+3)ȷ^(2λ+1)k^

It is given that

a(λb+c)a.(λb+c)=0

2(λ+1)(λ+3)(2λ+1)=02λ+2λ32λ1=0λ=2


Scalar or Dot Products Exercise 23.1 Question 16

Answer: λ=±1
Hint: you must know the rules of solving vectors
Given: if p=5i^+λj^3k^ and q=i^+3j^5k^
Then find the value of λ, so p+qand pqare perpendicular vectors
Solution: given that
p=5ı^+λȷ^3k^ and q=ı^+3ȷ^5k^p+q=(5ı^+λȷ^3k^)+(ı^+3j^5k^)
=6ı^+(λ+3)ȷ^8k^
pq=(5ı^+λȷ^3k^)(ı^+3ȷ^5k^)=4ı^+(λ3)ȷ^+2k^

Given that is p+qorthogonal topq

(p+q)(pq)=0[6ı^+(λ+3)ȷ^8k^][4ı^+(λ3)ȷ^+2k^]=0

24+λ2916=0λ2=1λ=±1


Scalar or Dot Products Exercise 23.1 Question 17

Answer: B1=15(3i^+4j^+5k^)
B2=15(13i^+9j^15k^)
Hint: you must know the rule of solving vectors
Given: if a=3i^+4j^+5k^B=2i^+j^4k^
Then express B in the form ofB=B1+B2 where B1 is parallel to a and B2 is perpendicular to a
Solution: given that a=3ı^+4ȷ^+5k^,  B=2ı^+ȷ^4k^
Also,
B=B1+B2B2=BB11

Since B1parallel toa

B1=taB1=t(3ı^+4ȷ^+5k^)=3tı^+4tȷ^+5tk^

Substituting the value of B1 and a

B2=2ı^+ȷ^4k^(3tı^+4tȷ^+5tk^)=(23t)ı^+(14t)ȷ^+(45t)k^

Since B is to a

B2a=0[(23t)ı^+(14t)ȷ^+(45t)k^][3ı^+4ȷ^+5k^]=03(23t)+4(14t)+5(45t)=069t+416t2025t=050t=10t=15

we get

B1=15(3ı^+4ȷ^+5k^)B2=15(13ı^+9j^15k^)=15(13ı^+9ȷ^15k^)





Scalar or Dot Products Exercise 23.1 Question 18

Answer: proved
Hint: you must know the rules of solving vectors
Given: if either a=0 or b=0 then a.b=0
But the inverse need not be true, justify with example
Solution: let us assume that either.
a∣=0 or b∣=0
Then, a.b=∣a∣∣bcosθ=0
Now let us assume that a.b=0
⇒∣a∣∣bcosθ=0
But here we cannot say that eithera∣=0 or b∣=0
For example, Let,
a=2ı^+ȷ^+3k^ and b=3ı^+2k^ Here, |a|=4+1+9=140|b|=9+0+4=130 But (ab)=(2ı^+ȷ^+3k^)(3ı^+2k^)=6+0+60




Scalar or Dot Products Exercise 23.1 Question 19

Answer: proved
Hint: you must know the rules of solving vectors
Given: b=i^3j^+5k^,
c=2i^+j^4k^, form a right angle
Solution: Let ABC be the given triangle
AC=b=ı^3ȷ^+5k^CB=a=3ı^2ȷ^+k^AB=c=2ı^+ȷ^4k^ab=3+6+5=14bc=2320=21ac=624=0SoAB is  to CB ∣∴ΔABCis a right angle triangle

Scalar or Dot Products Exercise 23.1 Question 20

Answer:λ=8
Hint: You must know the rules of solving vector.
Given:
a=2ı^+2ȷ^+3k^b=ı^+2ȷ^+k^c=3ı^+ȷ^
a+λb is perpendicular to c then findλ
Solution: We have,
a=2ı^+2ȷ^+3k^,b=ı^+2ȷ^+k^,c=3ı^+ȷ^a+λb=2ı^+2ȷ^+3k^+λ(ı^+2ȷ^+k^)a+λb=(2λ)ı^+(2+2λ)ȷ^+(3+λ)k^
Giventhata+λbisto c
(a+λb)c=0
[(2λ)ı^+(2+2λ)ȷ^+(3+λ)k^](3ı^+ȷ^)
3(2λ)+1(2+2λ)=0
63λ+2+2λ=0
λ=8

Scalar or Dot Products Exercise 23.1 Question 21

Answer:<A=π4,<B=π2,<C=π4
Hint: You must know the rules of finding angle of triangle
Given: Find angle of triangle A(0,1,2),B(3,1,4) and C(5,7,1)
Solution: Given that,
OA=0ı1ȷ^2k^,OB=3ı+1ȷ^+4k^,OC=5ı+7ȷ^+1k^
AB=OBOAAB=3ı+2ȷ^+6k^AB=9+4+36AB=49AB=7
BA=OAOBBA=3ı+2ȷ^6k^BA=9+4+36BA=49BA=7BC=OCOB
BC=2ı+6ȷ^3k^BC=4+36+9BC=49BC=7
CB=OBOCCB=2ı6ȷ^+3k^CB=4+36+9CB=49CB=7
CA=OAOCCA=5l8j^3k^CA=25+64+9CA=98CA=72
AC=OCOAAC=5ı+8ȷ^+3k^AC=25+64+9AC=98AC=72
CosA=ABAC|AB||AC|CosA=15+16+18(7)(72)CosA=49492CosA=12
A=Cos1(12)A=π4CosB=BABC|BA||BC|
CosB=612+18(7)(7)CosB=049CosB=0B=Cos1(0)B=π2
CosC=CBCA|CB||CA|CosC=10+489(7)(72)CosC=49492
CosC=12C=Cos1(12)C=π4

Scalar or Dot Products Exercise 23.1 Question 22

Answer:a=∣b∣=1
Hint: You must know the angle of solving vectors.
Given: Find the magnitude of two vectors a and b that are the same magnitude, are inclined at 60°, whose scalar product is 12 .
Solution: Given that angle between a and b is 30°
Also,
a=∣b
ab=12,    θ=60
we Know
ab=|a||b|cosθ12=|a||b|cos6012=|a|212|a|2=1|a|=1|a|=|b|=1

Scalar or Dot Products Exercise 23.1 Question 23

Answer: Proved
Hint: You must know the rules of solving vectors
Given: Show that the point whose position vectors are,
a=4i^3j^+k^,   b=2i^4j^+5k^,     c=i^j^from a right triangle.
Solution: Given that,
a=OA4ı^3ȷ^+k^b=OB2ı^4ȷ^+5k^
c=OCı^ȷ^
AB=OBOA2ı^ȷ^+4k^
BC=OCOBı^+3ȷ^5k^CA=OAOC3ı^2ȷ^+k^
ABBC=2320210BCCA=365140ABCA=6+2+40
So, AB is perpendicular to CA
So, ΔABCis a right angle triangle.

Scalar or Dot Products Exercise 23.1 Question 24

Answer:cos1(10102)
Hint: You must know the rules of solving vectors.
Given: If vertices A,Band C of ΔABC have position vectors (1,2,3,) (1,0,0)and (0,1,2) respectively. What is the magnitude of <ABC?
Solution: Given that,
OA=ı^+2ȷ^+3k^OB=ı^+0ȷ^+0k^OC=0ı^+1ȷ^+2k^AB=OBOA
AB=2ı^2ȷ^3k^AB∣=4+4+9AB∣=17BC=OCOB
BC=ı^+ȷ^+2k^BC∣=1+1+4BC∣=6CA=OAOC
CA=ı^+ȷ^+k^CA∣=1+1+1CA∣=3
Cos<ABC=|ABBC||AB||BC|Cos<ABC=|226||17||6|Cos<ABC=10102
<ABC=cos1(10102)

Scalar or Dot Products Exercise 23 .1 Question 25

Answer: Proved
Hint: You must know the rules of solving vectors.
Given: If A, B and C have position vectors (0,1,1,) (3,1,5) and (0,3,3) respectively. Show ΔABCright angled at C.
Solution: Given that,
OA=0ı^+ȷ^+k^OB=3ı^+1ȷ^+5k^OC=0ı^+3ȷ^+3k^
BC=OCOBBC=3ı^+2ȷ^2k^CA=OAOCCA=0ı^2ȷ^2k^

Now,

BCCA=04+4BCCA=0

So, BC is perpendicular to .CA

So, ΔABCis right angled at C.


Scalar or Dot Products Exercise 23.1 Question 26

Answer: 2
Hint: You must know the rules of solving vectors.
Given: Find the projection of b+c on a, where a=2i^2j^+k^, b=i^+2j^2k^
c=2i^j^+4k^
Solution: Given that,
a=2i^2j^+k^
b=i^+2j^2k^ and
c=2i^j^+4k^
b+c=ı^+2ȷ^2k^+2i^ȷ^+4k^b+c=3ı^+ȷ^+2k^

Projection ofb+c on a is

(b+c)a|a|=(3ı^+ȷ^+2k^)(2ı^2ȷ^+k^)|(2)2+(2)2+(1)2|(b+c)a|a|=62+2|4+4+1|(b+c)a|a|=6|9|(b+c)a|a|=63(b+c)a|a|=2




Scalar or Dot Products Exercise 23.1 Question 27

Answer: Proved
Hint: You must know the rules of solving vectors.
Given: If a=5i^j^3k^ and b=i^+3j^5k^ then show that the vectors a+b and ab are orthogonal.
Solution: a=5i^j^3k^ and b=i^+3j^5k^
a+b=5ı^ȷ^3k^+ı^+3ȷ^5k^
a+b=6i^+2ȷ^8k^
And
ab=5ı^ȷ^3k^ı^+3j^5k^ab=4ı^4ȷ^+2k^
Now,
(a+b)(ab)=(6ı^+2ȷ^8k^)(4ı^4ȷ^+2k^)(a+b)(ab)=24816
(a.b).(ab)=0

So,a+bis orthogonal of ab


Scalar or Dot Products Exercise 23.1 Question 28

Answer:π3,12i^,12j^,12k^
Hint: You must know the rules of solving vectors.
Given: A unit vector a makes angle π4 and π3 with i^ and j^ respectively and an acute angle θ and k^. Find the angle θ and components of a
Solution: Let
a=a12+a22+a32=1(1) [becauseaisaunitvector]
Now,
aı^=a1|a||ı^|cosπ4=a1[ because the angle between a and ı^ is π4]a1=(1)(1)(12)a1=12

Again,

|a||ı^|cosπ3=a2(1)(1)(12)=a212=a2

Now from (1)

(12)2+(12)2+a22=1[becausetheanglebetweenaandȷ^isπ3]

12+14+a32=134+a32=1a32=134

a3=12

NOw,

ak^=a3|a||k^|cosθ=12[ because the angle between a and k^ is θ]

(1)(1)cosθ=12θ=cos1(12)=π3

And,

a=12i^+12j^+12k^


Scalar or Dot Products Exercise 23.1 Question 29

Answer: 0
Hint: You must know the rules of solving vectors.
Given: If two vectors a and b are such that a∣=2,b∣=1, and a.b=1 then find the value of (3a5b).(2a+7b)
Solution: Given that,
a∣=2,b∣=1, and a.b=1
Now,
(3a5b)(2a+7b)=6|a|2+21ab10ba35|b|2
=6|a|2+21ab10ab35|b|2=6|a|2+11ab35|b|2=6(2)2+11(1)35(1)2=24+1135=0

Scaler or Dot Products Exercise 23.1 Question 30(i)

Answer: 3
Hint: You must know the rules of solving vectors.
Given: (xa).(x+a)=8
Solution: Given that a is a unit vector.
|a|=1(1)(xa)(x+a)=8|x|2|a|2=8|x|212=8|x|2=9|x|=3

Scaler or Dot Products Exercise 23.1 Question 30(ii)

Answer: 13
Hint: You must know the rules of solving vectors.
Given:(xa).(x+a)=12
Solution: Given that a∣=1 unit vector
a∣=1
(xa)(x+a)=12|x|2|a|2=12|x|212=12|x|2=13|x|=13

Scaler or Dot Products Exercise 23.1 Question 31(i)

Answer:a∣=4,b∣=2
Hint: You must know the rules of solving vectors.
Given: Find a and b b if (a+b).(ab)=12 and
Solution: Given,
|a|=2|b| and (a+b)(ab)=12|a|2|b|2=12
(2|b|)2|b|2=12
3|b|2=12
|b|2=4
|b|=2
|a|=2|b|2(2)=4
|a|=4 and |b|=2

Scaler or Dot Products Exercise 23.1 Question 31(ii)

Answer: a∣=8863, b∣=863
Hint: You must know the rules of solving vectors.
Given:(a+b).(ab)=8 and a∣=8b
Solution: Given that,
(a+b)(ab)=8 and |a|=8|b||a|2|b|2=8(8|b|)2|b|2=8
64|b|2|b|2=863|b|2=8|b|2=863
|b|=863|a|=8863 and |b|=863

Scaler or Dot Products Exercise 23.1 Question 31(iii)

Answer: a∣=2,b∣=1
Hint: You must know the rules of solving vectors.
Given:(a+b).(ab)=3 and a∣=2b and
Solution: Given that,
(a+b)(ab)=3 and |a|=2|b||a|2|b|2=3(2|b|)2|b|2=3
4|b|2|b|2=33|b|2=3|b|2=1
|b|=1|a|=2|b||a|=2(1)|a|=2|a|=2 and |b|=1

Scalar or Dot Products Exercise 23.1 Question 32(i)

Answer: 13
Hint: You must know the rules of solving vectors.
Given: Find ab if a∣=2 , b∣=5, & a.b=8
Solution: a∣=2,b∣=5 &a.b=8
We know that,
|ab|2=|a|2+|b|22(ab)|ab|2=(2)2+(5)22(8)|ab|2=4+2516|ab|=13

Scaler or Dot Products Exercise 23.1 Question 32(ii)

Answer:23
Hint: You must know the rules of solving vectors.
Given: Find ab if a∣=3 , b∣=4 & a.b=1
Solution:
|ab|2=|a|2+|b|22(ab)|ab|2=(3)2+(4)22(1)|ab|2=9+162|ab|2=23|ab|=23

Scalar or Dot Products Exercise 23.1 Question 32(iii)

Answer:5
Hint: You must know the rules of solving vectors.
Given: Find ab if a∣=2 , b∣=3 & a.b=4
Solution:
a∣=2 , b∣=3 & a.b=4

We know,

|ab|2=|a|2+|b|22(ab)|ab|2=(2)2+(3)22(4)|ab|2=4+98

|ab|2=5

|ab|=5


Scalar or Dot Products Exercise 23.1 Question 33(i)

Answer:π4
Hint: You must know the rules of solving vectors.
Given: Find the angle between two vectors a and b if a∣=3, b∣=2 & a.b=6
Solution: Let θ be the angle between a and b
a∣=3, b∣=2 & a.b=6
We know that,
ab=|a||b|cosθ6=(3)(2)cosθcosθ=623cosθ=12θ=cos1(12)θ=π4

Scalar or Dot Products Exercise 23.1 Question 34

Answer: 6i^+2k^,i^2j^+3k^
Hint: You must know the rules of solving vectors.
Given: Express the vector a=5i^2j^+5k^ as the sum of the two vectors such that one is parallel to vector b=3i^+k^ and other is perpendicular to b.
Solution: Given that,
a=5i^2j^+5k^ and b=3i^+k^
Let x. and y. be such that
a=x+yy=ax(1)
Since, x.is parallel to b.
x=t(3ı^+k^)x=3tı^+tk^
Substituting the values, x. and a.
y=5ı^2ȷ^+5k^3tı^+tk^y=(53t)ı^2ȷ^+(5t)k^
Since y. is perpendicular to b.
yb=0[(53t)ı^2ȷ^+(5t)k^]3ı^+k^=03(53t)+0+(5t)=0159t+5t=02010t=0t=2

Scalar or Dot Products Exercise 23.1 Question 35

Answer:23=∣a∣=∣b
Hints: You must know the value of same magnitude incident at an angle of 30°, a.b=3. Find a.b
Solution: Given that angle between a and b is 30°
Now,
|a||b| and ab=3ab=|a||b|cosθ
3=|a||a|cos303=|a|2(32)
|a|2=63|a|2=23|a|=23|b|=23

Scalar or Dot Products Exercise 23.1 Question 36

Answer:(12i^j^+12k^)+52(i^+k^)
Hints: You must know the rules of solving vectors.
Given: Express 2i^j^+3k^ as the sum of a vector parallel and a vector perpendicular to 2i^+4k^2k^.
Solution:
Let, a=2i^j^+3k^
b=2i^+4j^2k^
And x and y be such that,
a=x+y
y=ax
Since x is parallel to b
x=tbx=t(2ı^+4ȷ^2k^)x=2tı^+4tȷ^2tk^

Substituting the values of xand a

(2ı^ȷ^+3k^)(2tı^+4tȷ^2tk^)(22t)ı^+(14t)ȷ^+(3+2t)k^
Since y is perpendicular to b

yb=0[(22t)ı^+(14t)ȷ^+(3+2t)k^](2ı^+4ȷ^2k^)=02(22t)+4(14t)2(3+2t)=044t410t64t=024t=6

t=(14)x=2(14)ı^+4(14)ȷ^2(14)k^x=12ı^ȷ^+12k^y=[22(14)]ı^+[14(14)]ȷ^+[3+2(14)]k^y=52ı^+52k^=52(ı^+k^)
So,

a=x+y

a=(12i^j^+12k^)+52(i^+k^)




Scalar or Dot Products Exercise 23.1 Question 37

Answer: i^j^k^,7i^2j^5k^
Hint: You must know the rules of solving vectors.
Given: Decompose the vector 6i^3j^6k^ into vector which are parallel and perpendicular to the vector i^+j^+k^
Solution:
Let a=6i^3j^6k^
b=i^+j^+k^
And x and y be such that,
a=x+y
y=ax
Since xis parallel to b
x=tbx=t(ı^+ȷ^+k^)x=tı^+tȷ^+tk^
Substituting the values of x and a
y=(6i^3ȷ^6k^)(tı^+tȷ^+tk^)y=(6t)ı^+(3t)ȷ^+(6t)k^
Since y is perpendicular to b
yb=0[(6t)ı^+(3t)ȷ^+(6t)k^](ı^+ȷ^+k^)=01(6t)+1(3t)+1(6t)=0
33t=0t=1x=ı^ȷ^k^y=7ı^2ȷ^5k^

Scalar or Dot Products Exercise 23.1 Question 38

Answer:73
Hint: You must know the rules of solving vectors.
Given: a=5ı^ȷ^+7k^;b=ı^ȷ^+λk^, Find λa+b is orthogonal to ab
Solution:
Given that,
a=5ı^ȷ^+7k^;b=ı^ȷ^+λk^a+b=5i^ȷ^+7k^+ı^ȷ^+λk^a+b=6ı^2ȷ^+(7+λ)k^
And
ab=5ı^ȷ^+7k^(ı^ȷ^+λk^)ab=4ı^+0ȷ^+(7λ)k^
Give that a+b borthogonal ab

(a+b)(ab)=0[6ı^2ȷ^+(7+λ)k^](4ı^+0ȷ^+(7λ)k^)=024+0+49λ2=0λ2=73λ=73


Scalar or Dot Products Exercise 23.1 Question 39

Answer:b is any vector.
Hint: You must know the rules of solving vectors.
Given: If a.a=0 and a.b=0. What can you conclude about the vector b?
Solution:
Given that a.a=0
⇒∣a2=0
⇒∣a∣=0
Also given that,
a.b=0
|a||b|cosθ=0[ where θ is the angle between a and b^]0|b|cosθ=00=0

So, it means that for any vector b, the given equation a.b=0 is satisfied

Scalar or Dot Products Exercise 23.1 Question 40

Answer: Proved
Hints: You must know the rules of solving vectors.
Given: If c is perpendicular to both a and b then prove that it is perpendicular to both a+b and ab
Solution: Given that c is perpendicular to both a and b
c.a=0 and c.b=0
Now,
c(a+b)=ca+cb0+0=0
So, c is perpendicular to a+b
Again,
c(ab)=cacbc(ab)=00c(ab)=0

So, c is perpendicular to ab


Scalar or Dot Products Exercise 23.1 Question 41

Answer:(abab)2

Hint: You must know the rules of solving vectors.
Given: If |a|=a and |b|=b
Prove(aa2bb2)2=(abab)2
Solution
(aa2bb2)2
=|aa2|2+|bb2|22aba2b2
=|a|2a4+|b|2b42aba2b2=a2a4+b2b42aba2b2
=1a2+1b22aba2b2
=b2+a22aba2b2=(aa2bb2)2=(abab)2


Scalar or Dot Products Exercise 23.1 Question 42

Answer: Proved
Hint: You must know the rules of solving vectors.
Given: If a,b,c are three non-coplanar vectors, such that a.a=d.b=d.c=0 then show that d is the null vector.
Solution:
Given that aa=0
So, either a=0or da
Similarly, db=0
So, d=0 or db
Also, dc=0
So, d=0 or dc
But d cannot be perpendicular to a,b,c asa,b,c are non-coplanar
So, d=0,d is null vector.

Scalar or Dot Products Exercise 23.1 Question 43

Answer: Proved
Hint: You must know the rules of solving vectors.
Given: If a vector a is perpendicular to two non-collinear vector b and c then show that a is to every vector in the plane of b and c .
Solution: Given that a is perpendicular to b and c
ab=0 and ac=0
Now, let x be any vector in plane of b and c
Then, x is the linear combination of b and c
x=xb+yc for some r and y
Now,
ax=a(xb+yc)ax=x(ab)+y(ac)ax=x(0)+y(0)ax=0
Thus,aisperpendiculartox
Thatis,aisperpendiculartoeveryvectorinplanebandc

Scalar or Dot Products Exercise 23.1 Question 44

Answer: cosθ=|a|2|b|2a22|b||c|
Hint: You must know the rules of solving vectors.
Given: If a+b+c=0, show angle θ between vector b and c is given |a|2|b|2|c|22|b||||a|2|b|2|c|22|b||c
Solution: Given,
a+b+c=0b+c=a
|b+c|2=|a|2|b|2+|c|2+2bc=|a|2
2bc=|a|2|b|2|c|22|b||c|cosθ=|a|2|b|2|c|2cosθ=|a|2|b|2|c|22|b||c|

Scalar or Dot Products Exercise 23.1 Question 45

Answer: 25
Hint: You must know the rules of solving vectors.
Given:u+v+w=0 if |u|=3,|v|=4,|w|=5Finduv+vw+wu
Solution:u+v+w=0
|u+v+w|=0|u+v+w|2=0
|u|2+|v|2+|w|2+2(uv+vw+wu)=0
(3)2+(4)2+(5)2+2(uv+vw+wu)=0
9+16+25+2(uv+vw+wu)=0
50+2(uv+vw+wu)=02(uv+vw+wu)=50uv+vw+wu=25

Scalar or Dot Products Exercise 23.1 Question 46

Answer: xt(3,2)U(2,3)
Hints: You must know the rules of solving vectors.
Given: a=x2ı^+2ȷ^2k^,b=ı^ȷ^+k^,c=x2ı^+5ȷ^4k^
Solution: We have,
a=x2ı^+2ȷ^2k^b=ı^ȷ^+k^c=x2ı^+5ȷ^4k^
Let θ1 be the angle between aand b
θ2 be the angle between b and c
Given that θ1 is acute and θ2 is obtuse
cosθ1>0 and θ2<0
ab|a||b|>0 and bc|b||c|<0
x24x4+4+41+1+1>0 and x29x4+25+161+1+1<0
x24>0 and x29<0
xt(,2)U(2,) and xt(3,3)
xt(3,2)U(2,3)

Scalar or Dot Products Exercise 23.1 Question 48

Answer: 112
Hint: You must know the rules of solving vectors.
Given: If a and b are two non-collinear unit vectors such that a+b∣=3 .Find (2a5b)(3a+b)
Solution: We have,
a+b∣=3
Squaring both sides
|a+b|2=3|a|2+|b|2+2ab=31+1+2ab=3 [becauseaandbareunitvector]
2+2ab=32ab=32ab=12
Now,
(2a5b)(3a+b)
6|a|2+2ab15ba5|b|26|a|2+2ab15ba5|b|2[ab=ba]6|a|213ab5|b|26(1)13(12)5(1)1132112

Scalar or Dot Products Exercise 23.1 Question 49

Answer: Proved
Hints: You must know the rules of solving vectors.
Given: If ab are two vector such that, a+b∣=∣b, prove a+2b is to a
Solution: Given that,
a+b∣=∣b
Squaring both sides,
|a+b|2=|b|2|a|2+|b|2+2ab=|b|2|a|2+2ab=0

Now,

(a+2b)aaa+2ba|a|2+2ab[ba=ab]

0
So, a+2b is perpendicular to a.


Scalar or Dot Products Exercise 23.1 Question 50

Answer:π3
Hints: You must know the rules of solving vectors.
Given: Let a and b be unit vector. If the vectors c=a+2b,d=5a4b , are perpendicular to each other. Find the angle between vector a and b
Solution: a and b are unit vectors, ie, a∣=∣b∣=1
c=a+2bandd=5a4b
c and d are perpendicular to each other,
cd=0
Angle between a and b
cd=0(a+2b)(5a4b)=05aa4ab+10ba8bb=06(ab)=3ab=12[ because cos1(12)=π3]
So, angle between a and b is π3

Chapter 23 of class 12 mathematics consists of only two exercises, ex 23.1 and ex 23.2. The first exercise, ex 23.1, has around 67 questions, including its subparts in the textbook. This exercise revolves around the projection of vectors, unit and position vector, the angle between two vectors, dot product, etc. The best reference book to find the answers to all these questions is the RD Sharma Class 12 Chapter 23 Exercise 23.1. Students and the teachers can use this book to clarify their doubts and get to know the various methods in which each of these sums can be solved.

Regular practice is also a major requirement when it comes to developing knowledge in a particular concept. And it is a must to have clarity in mathematics. Even though this single exercise consists of 67 questions, additional sums are required for the students to understand each concept and method in-depth. The RD Sharma Class 12th Exercise 23.1 contains a lot of additional questions for practice. These extra sets of solved sums act as a catalyst in making the students understand the concepts easily.

The Class 12 RD Sharma Chapter 23 Exercise 23.1 Solution reference book is nothing but a collection of accurate solutions by mathematical experts. Not any random person has given in the solutions. You can even check out the reviews about these books given by the previous batch of students. Everyone has benefited by scoring high marks in the public exams using the RD Sharma Class 12 Scalar and Dot Product Solutions Ex 23.1 book.

This book is nothing but a boon for the students who are unable to afford a good set of solution books to prepare for their exams. As the Career 360 website provides all the RD Sharma books and the RD Sharma Class 12th Exercise 23.1 reference book for free of cost, the students prefer no other reference books.

The advantages that a student acquires by using the RD Sharma Class 12 Solutions Chapter 23 Ex 23.1 are ineffable. This will benefit them in every possible way to make them score hight than their benchmark. Download the RD Sharma book now to begin your practice in the right way.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Which is the best solution book to learn the basics of the Scalar and Dot product concept?

The RD Sharma Class 12th Exercise 23.1 is the best mathematics solution material for the students to understand the basic and in-depth concepts in the Scalar and Dot Products chapter.

2. Where is the complete set of RD Sharma solution books available?

The complete authorized set of RD Sharma books are available on the Career 360 website. 

3. How many questions are asked in the first exercise of Chapter 23 in class 12 mathematics?

There are 67 questions asked in Exercise 23.1 in the class 12 mathematics book. The right solutions for these questions can be found easily using the RD Sharma Class 12th Exercise 23.1 solution material. 

4. How much should I pay to own the RD Sharma books from the Career 360 website?

All the RD Sharma books available at this site can be accessed for free. Therefore, you need not pay even a single rupee to use these books.

5. Does the Career 360 website provide the feature to download the RD Sharma books?

The Download option can be enabled to save any RD Sharma books from the Career 360 website to your device.

Articles

Back to top