RD Sharma Class 12 Exercise 8.1 Continuity Solutions Maths - Download PDF Free Online
RD Sharma Class 12 Exercise 8.1 Continuity Solutions Maths - Download PDF Free Online
Updated on 27 Jan 2022, 02:14 PM IST
Students of class 12 carry a big burden in the form of public exams. Best publications like the RD Sharma books, cater the needs of the students to make them understand every concept clearly. RD Sharma Solution Mathematics is a complicated subject for the class 12 students. The Class 12 RD Sharma Chapter Exercise 8.1 solution plays a key role in making the students understand those concepts in-depth.
This Story also Contains
RD Sharma Class 12 Solutions Chapter 8 Continuity - Other Exercise
Answer: $x=0$ (Discontinuous) Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{cc} e^{\frac{1}{x}}, \text { if } x \neq 0 \\\\ 1 & , \text { if } x=0 \end{array}\right)$ We observe, [LHL at $x=0$ ] $\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} e^{\frac{-1}{h}}=\lim _{h \rightarrow 0}\left(\frac{1}{e^{\frac{1}{h}}}\right)=\frac{1}{\lim _{h \rightarrow 0} e^{\frac{1}{h}}}=0$$\left[\because \frac{1}{\infty}=0\right]$ [RHL at $x=0$ ] $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} e^{\frac{1}{h}}=\infty$ Given $f\left ( 0 \right )=1$ It is known that for a function $f\left ( x \right )$ is to be continuous at $x=a$, $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) \neq f(a)$ But here $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \neq f(0)$ Hence, $f\left ( x \right )$ is discontinuous at $x=0$.
Answer: $x=0$ (Discontinuous) Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left\{\begin{array}{l} \frac{x-x}{2}, x>0 \\\\ \frac{x+x}{2}, x<0 \\\\ 2, x=0 \end{array}\right.$ $f(x)=\left\{\begin{array}{l} 0, x>0 \\ x, x<0 \\ 2, x=0 \end{array}\right.$ We observe, [LHL at $x=0$ ] $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=0$ [RHL at $x=0$ ] $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=0$ And $f\left ( 0 \right )=2$ $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$ Thus, $f\left ( x \right )$ is discontinuous at $x=0$.
Answer: Continuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} |x| \cos \left(\frac{1}{x}\right), \text { if } x \neq 0 \\\\ 0 \quad, \text { if } x=0 \end{array}\right)$ We observe, $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x| \cos \left(\frac{1}{x}\right) \\\\ &\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x| \lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right) \end{aligned}$ $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=0 \times \lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)=0 \\\\ &\lim _{x \rightarrow 0} f(x)=0 \end{aligned}$ The limit of function at $x$ tends to $0$ is equal to the value of function at that point hence it is continuous. Hence, $f\left ( x \right )$ is continuous at $x=0$.
Answer: Continuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} x^{2} \sin \left(\frac{1}{x}\right), \text { if } x \neq 0 \\\\ 0 \quad, \text { if } x=0 \end{array}\right)$ We observe $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow 0} x^{2} \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0 \times \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0 \\\\ &\lim _{x \rightarrow 0} f(x)=f(0) \end{aligned}$ Hence, $f\left ( x \right )$ is continuous at $x=0$.
Answer: Continuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} (x-a) \sin \left(\frac{1}{x-a}\right), \text { if } x \neq a \\\\ 0, \text { if } x=a \end{array}\right)$ Putting $x-a=y$ , we get $\begin{aligned} &\lim _{x \rightarrow a}(x-a) \sin \left(\frac{1}{x-a}\right)=\lim _{y \rightarrow 0} y \sin \left(\frac{1}{y}\right)=\lim _{y \rightarrow 0} y \lim _{y \rightarrow 0} \sin \left(\frac{1}{y}\right)=0 \times \lim _{y \rightarrow 0} \sin \left(\frac{1}{y}\right)=0 \\\\ &\lim _{x \rightarrow a} f(x)=f(a)=0 \end{aligned}$ Hence, $f\left ( x \right )$ is continuous at $x=a$.
Answer: Discontinuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} \frac{e^{x}-1}{\log (1+2 x)}, \text { if } x \neq 0 \\\\ 7, \text { if } x=0 \end{array}\right)$ We observe, $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}-1}{\log (1+2 x)} \\\\ &=\lim _{x \rightarrow 0} \frac{e^{x}-1}{\frac{2 x \log (1+2 x)}{2 x}} \end{aligned}$ [Multiplying and dividing the denominator by $2x$] $\begin{aligned} &=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\left(\frac{e^{x}-1}{x}\right)}{\left(\frac{\log (1+2 x)}{2 x}\right)} \\\\ \end{aligned}$ $=\frac{1}{2} \frac{\left(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}\right)}{\left(\lim _{x \rightarrow 0} \frac{\log (1+2 x)}{2 x}\right)}=\frac{1}{2} \times \frac{1}{1}=\frac{1}{2}$ And $f\left ( 0 \right )=7$ $\lim _{x \rightarrow 0} f(x) \neq f(0)$ Thus, $f\left ( x \right )$ is discontinuous at $x=0$.
Answer: Discontinuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, Given, $f(x)=\left(\begin{array}{c} \frac{1-x^{n}}{1-x}, \text { if } x \neq 1 \\\\ n-1, \text { if } x=1 \end{array}\right)$ Here, $f\left ( 1 \right )=n-1$ $\begin{aligned} &\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{1-x^{n}}{1-x} \\\\ &\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left[(1-x)^{n-1}+n C_{1}(1-x)^{n-2} x+n C_{2}(1-x)^{n-3} x^{2}+\ldots .+n C_{n-1}(1-x)^{0} x^{n-1}\right] \end{aligned}$ $\left[\because(a+b)^{n}={ }^{n} C_{0} a^{n} b^{0}+{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} d^{n-2} b^{2}+\ldots+{ }^{n} C_{n} a^{0} b^{n}\right]$ $\lim _{x \rightarrow 1} f(x)=0+0+\ldots+(1)^{n-1}=1 \neq f(1)$ Thus, $f\left ( x \right )$ is discontinuous at $x=1$.
Answer: Discontinuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left\{\begin{array}{c} \frac{2|x|+x^{2}}{x}, \text { if } x \neq 0 \\\\ 0, \quad \text { if } x=0 \end{array}\right.$ $f(x)=\left\{\begin{array}{c} \frac{2 x+x^{2}}{x}, \text { if } x>0 \\\\ \frac{-2 x+x^{2}}{x}, \text { if } x<0 \\\\ 0, \quad \text { if } x=0 \end{array}\right.$ $f(x)=\left\{\begin{array}{c} (x+2), \text { if } x>0 \\\\ (x-2), \text { if } x<0 \\\\ 0, \quad \text { if } x=0 \end{array}\right.$ We observe [LHL at $x=0$ ] $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0}(-h-2)=-2$ [RHL at $x=0$ ] $\begin{aligned} &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0}(h+2)=2 \\\\ &\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x) \end{aligned}$ Thus, $f\left ( x \right )$ is discontinuous at $x=0$ .
Answer: Continuous Hint: Continuous function must be defined at a point, limit must exist at the point, value of the function at that point must equal the value of the right and left limit at that point. Solution: Given, $f(x)=\left(\begin{array}{c} |x-a| \sin \left(\frac{1}{x-a}\right), \text { if } x \neq a \\\\ 0 \quad, \text { if } x=a \end{array}\right)$ $f(x)=\left(\begin{array}{c} (x-a) \sin \left(\frac{1}{x-a}\right), \text { if } x>a \\\\ (-x+a) \sin \left(\frac{1}{-x+a}\right), \text { if } x<a \\\\ 0, \text { if } x=a \\ \end{array}\right)$ We observe [LHL at $x=a$] $\lim _{x \rightarrow a^{-}} f(x)=(-a+a) \sin \left(\frac{1}{-a+a}\right)=0$ [RHL at $x=a$] $\begin{aligned} &\lim _{x \rightarrow a^{+}} f(x)=(a-a) \sin \left(\frac{1}{a-a}\right)=0 \\\\ &\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a) \end{aligned}$ Thus, $f\left ( x \right )$ is continuous at $x=a$.
Answer: Discontinuous Hint: Discontinuous occurs when the both number is equal to zero of the numerator and denominator or the function is undefined at its limit.
Solution: Given, $f(x)=\left(\begin{array}{ll} 1+x^{2}, & \text { if } 0 \leq x \leq 1 \\\\ 2-x, & \text { if } x>1 \end{array}\right)$ We observe [LHL at $x=1$ ] $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}\left(1+\left(1-h^{2}\right)\right)=\lim _{h \rightarrow 0}\left(2+h^{2}\right)=2$ [RHL at $x=1$ ] $\begin{gathered} \lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0}(2-(1+h))=\lim _{h \rightarrow 0}(1-h)=1 \\\\ \lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x) \end{gathered}$ Thus, $f\left ( x \right )$ is discontinuous at $x=1$ .
Answer: Continuous Hint: Continuous function must be defined at a point, limit must exist at the point and the value of the function at that point must equal the value of the right hand and left hand limit at that point. Solution: Given, $f(x)=\left(\begin{array}{cl} \frac{\sin 3 x}{\tan 2 x} & , \text { if } x<0 \\\\ \frac{3}{2} & ,\text { if } x=0 \\\\ \frac{\log (1+3 x)}{e^{2 x}-1}&, \text { if } x> 0\\\\ \end{array}\right)$ We observe [LHL at $x=0$ ] $\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h) \\\\ &=\lim _{h \rightarrow 0} f(-h) \\\\ &=\lim _{h \rightarrow 0}\left(\frac{\sin 3(-h)}{\tan 2(-h)}\right) \end{aligned}$ $=\lim _{h \rightarrow 0}\left(\frac{\sin 3 h}{\tan 2 h}\right) \Rightarrow \lim _{h \rightarrow 0}\left(\frac{\frac{3 \sin 3 h}{3h}}{\frac{2 \tan 2 h}{2 h}}\right)$ $\begin{aligned} &=\frac{\lim _{h \rightarrow 0}\left(\frac{3 \sin 3 h}{3 h}\right)}{\lim _{h \rightarrow 0}\left(\frac{2 \tan 2 h}{2 h}\right)} \Rightarrow \frac{3 \lim _{h \rightarrow 0}\left(\frac{\sin 3 h}{3 h}\right)}{2 \lim _{h \rightarrow 0}\left(\frac{\tan 2 h}{2 h}\right)} \\\\ \end{aligned}$$\left[\begin{array}{l} \because \sin (-x)=-\sin x \\ \because \tan (-x)=-\tan x \end{array}\right]$ $=\frac{3 \times 1}{2 \times 1}=\frac{3}{2}$ $\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$ And $f\left ( 0 \right )=\frac{3}{2}$ $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$ Thus, $f\left ( x \right )$ is continuous at $x=0$.
Answer: $f\left ( x \right )$ is discontinuous at the point $x=0$ Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{ll} 3 x-2, & \text { if } x \leq 0 \\\\ x+1, & \text { if } x>0 \end{array}\right)$ at $x=0$ $f(x)=\left(\begin{array}{l} 3 x-2, \text { if } x<0 \\\\ -2, \text { if } x=0 \\\\ x+1, \quad \text { if } x>0 \end{array}\right)$
Answer: Discontinuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left\{\begin{array}{l} x, \text { if } x>0 \\\\ 1, \text { if } x=0 \\\\ -x, \text { if } x<0 \end{array}\right.$ We observe [LHL at $x=0$ ] $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0}-(-h)=0$ [RHL at $x=0$ ] $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=0$ And $f\left ( 0 \right )=1$
Thus, $f\left ( x \right )$ is discontinuous at $x=0$ .
Answer: Continuous Hint: Continuous function must be defined at a point, limit must exist at the point and the value of the function at that point must equal the value of the right hand or left hand limit at that point. Solution: Given, $f(x)=\left(\begin{array}{l} x, i\! f \: 0 \leq x<\frac{1}{2} \\\\ \frac{1}{2}, \text { if } x=\frac{1}{2} \\\\ 1-x, \text { if } \frac{1}{2}<x \leq 1 \end{array}\right)$ We observe [LHL at $x=\frac{1}{2}$ ] $\lim _{x \rightarrow \frac{1^{-}}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{1}{2}-h\right)=\lim _{h \rightarrow 0}\left(\frac{1}{2}-h\right)=\frac{1}{2}$ [RHL at $x=\frac{1}{2}$ ] $\lim _{x \rightarrow \frac{1^{+}}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{1}{2}+h\right)=\lim _{h \rightarrow 0}\left(1-\left(\frac{1}{2}+h\right)\right)=\frac{1}{2}$ Also $f\left ( \frac{1}{2} \right )=\frac{1}{2}$ $\lim _{x \rightarrow \frac{1^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{1^{-}}{2}}f(x)=f\left(\frac{1}{2}\right)$ Thus, $f\left ( x \right )$ is continuous at $x=\frac{1}{2}$ .
Answer: Discontinuous Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left\{\begin{array}{l} 2 x-1, \text { if } x<0 \\\\ 2 x+1, \text { if } x \geq 0 \end{array}\right.$ We observe [LHL at $x=0$ ] $\lim _{x \rightarrow 0^{-}} f(x)=2(0)-1=-1$ [RHL at $x=0$ ] $\begin{aligned} &\lim _{x \rightarrow 0^{+}} f(x)=2(0)+1=1 \\ &\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x) \end{aligned}$ Thus, $f\left ( x \right )$ is discontinuous at $x=0$ .
Answer: $k=2$ Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} \frac{x^{2}-1}{x-1}, \text { if } x \neq 1 \\\\ k, \text { if } x=1 \end{array}\right)$ If $f\left ( x \right )$ is continuous at $x=1$ , then $\lim _{x \rightarrow 1} f(x)=f(1)$ $\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=k$$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$ $\begin{aligned} \\\\ &\lim _{x \rightarrow 1}(x+1)=k \\\\ \end{aligned}$ $k=2$
Answer: $k=-1$ Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Solution: Given, $f(x)=\left(\begin{array}{c} \frac{x^{2}-3 x+2}{x-1}, \text { if } x \neq 1 \\\\ k, \text { if } x=1 \end{array}\right)$ If $f\left ( x \right )$ is continuous at $x=1$ , then $\begin{aligned} &\lim _{x \rightarrow 1} f(x)=f(1) \\\\ &\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}=k \end{aligned}$ $\begin{aligned} &\lim _{x \rightarrow 1} \frac{(x-2)(x-1)}{x-1}=k \\\\ &\lim _{x \rightarrow 1}(x-2)=k \\\\ &k=-1 \end{aligned}$
Answer: $k=\frac{3}{4}$ Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given: $f(x)=\left(\begin{array}{r} k x^{2}, \text { if } x \leq 2 \\\\ 3, \text { if } x>2 \end{array}\right)$ is continuous at $x=2$ Solution: $f(x)=\left(\begin{array}{r} k x^{2}, \text { if } x \leq 2 \\\\ 3, \text { if } x>2 \end{array}\right)$ If $f\left ( x \right )$ is continuous at $x=2$ , then $\begin{aligned} &\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \\\\ &\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} k(2-h)^{2}=4 k \end{aligned}$ $\begin{aligned} &f(2)=3 \\ &4 k=3 \\ &k=\frac{3}{4} \end{aligned}$
Answer: $a=-2$ Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given: $f(x)=\left(\begin{array}{r} a x+5, \text { if } x \leq 2 \\\\ x-1, \text { if } x>2 \end{array}\right)$ Solution: $f(x)=\left(\begin{array}{r} a x+5, \text { if } x \leq 2 \\\\ x-1, \text { if } x>2 \end{array}\right)$ We observe [LHL at $x=2$ ] $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} a(2-h)+5=2 a+5$ [RHL at $x=2$ ] $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0}(2+h-1)=1$ $f(2)=a(2)+5=2 a+5$ $f\left ( x \right )$ is continuous at $x=2$, we have $\begin{aligned} &\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \\\\ &2 a+5=1 \\\\ &2 a=-4 \\\\ &a=-2 \end{aligned}$
Answer: Since,$\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$ are not equal, $f\left ( x \right )$ is discontinuous. Thus,$f\left ( x \right )$ is discontinuous at $x=0$ Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given:
$f(x)=\left\{\begin{array}{c} \frac{x}{|x|+2 x^{2}}, \text { if } x \neq 0 \\\\ k, \text { if } x=0 \end{array}\right.$
Solution: $f(x)=\left\{\begin{array}{c} \frac{x}{x+2 x^{2}}, \text { if } x>0 \\\\ \frac{-x}{x-2 x^{2}}, \text { if } x<0 \\\\ k, \text { if } x=0 \end{array}\right.$ $f(x)=\left\{\begin{array}{c} \frac{1}{2 x+1}, \text { if } x>0 \\\\ \frac{1}{2 x-1}, \text { if } x<0 \\\\ k, \text { if } x=0 \end{array}\right.$ We observe (LHL at $x=0$ ) $\lim _{h \rightarrow 0^{-}} \frac{1}{-2 h-1}=-1$ (RHL at $x=0$ ) $\lim _{h \rightarrow 0^{+}} \frac{1}{2 h+1}=1$ Since, $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$ are not equal, $f\left ( x \right )$ is discontinuous. Thus, $f\left ( x \right )$ is discontinuous at $x=0$ , regardless of choice of $k$
Answer: $\frac{a+b}{a b}=f(0)$ Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given: $f(x)=\frac{\log \left(1+\frac{x}{a}\right)-\log \left(1-\frac{x}{b}\right)}{x}, x \neq 0$ If $f\left ( x \right )$ is continuous at $x=0$ , then $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=f(0) \\\\ &\lim _{x \rightarrow 0}\left(\frac{\log \left(1+\frac{x}{a}\right)-\log \left(1-\frac{x}{b}\right)}{x}\right)=f(0) \end{aligned}$ $\lim _{x \rightarrow 0}\left(\frac{\log \left(1+\frac{x}{a}\right)}{\frac{a x}{a}}-\frac{\log \left(1-\frac{x}{b}\right)}{\frac{b x}{b}}\right)=f(0)$ [Multiplying the denominator of first term by $\frac{a}{a}$ ] [Multiplying the denominator of second term by $\frac{b}{b}$ ] $\frac{1}{a} \lim _{x \rightarrow 0}\left(\frac{\log \left(1+\frac{x}{a}\right)}{\frac{x}{a}}\right)-\left(\frac{-1}{b}\right) \lim _{x \rightarrow 0}\left(\frac{\log \left(1-\frac{x}{b}\right)}{\frac{-x}{b}}\right)=f(0)$
Answer: $k=\pm 2$ Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Given: $f(x)=\left\{\begin{array}{c} \frac{1-\cos 2 k x}{x^{2}}, \text { if } x \neq 0 \\\\ 8, \text { if } x=0 \end{array}\right.$ Solution: $f(x)=\left\{\begin{array}{c} \frac{1-\cos 2 k x}{x^{2}}, \text { if } x \neq 0 \\\\ 8, \text { if } x=0 \end{array}\right.$ If $f\left ( x \right )$ is continuous at $x=0$ , $\begin{aligned} &\lim _{x \rightarrow 0} f(x)=f(0) \\\\ &\lim _{x \rightarrow 0} \frac{1-\cos 2 k x}{x^{2}}=8 \end{aligned}$ $\lim _{x \rightarrow 0} \frac{2 k^{2} \sin ^{2} k x}{k^{2} x^{2}}=8$$(\cos 2x= 1-2\sin ^{2}x)$ $\begin{aligned} &2 k^{2} \lim _{x \rightarrow 0}\left(\frac{\sin k x}{k x}\right)=8 \\\\ &2 k^{2} \times 1=8 \\\\ &k^{2}=4 \\\\ &k=\pm 2 \end{aligned}$
Answer: $k=\frac{9}{5}$ Hint: For a function to be continuous at a point, its LHL RHL and value at that point should be equal. Given: $f(x)=\left(\begin{array}{l} k x+1, \text { if } x \leq 5 \\\\ 3 x-5, \text { if } x>5 \end{array}\right)$ Solution: $f(x)=\left(\begin{array}{l} k x+1, \text { if } x \leq 5 \\\\ 3 x-5, \text { if } x>5 \end{array}\right)$ We have (LHL at $x=5$ ) $\lim _{x \rightarrow 5^{-}} f(x)=\lim _{h \rightarrow 0} f(5-h)=\lim _{h \rightarrow 0} k(5-h)+1=5 k+1$ (RHL at $x=5$ ) $\lim _{x \rightarrow 5^{+}} f(x)=\lim _{h \rightarrow 0} f(5+h)=\lim _{h \rightarrow 0} 3(5+h)-5=10$ If $f\left ( x \right )$ is continuous at $x=5$ , then $\begin{aligned} &\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{-}} f(x) \\ &5 k+1=10 \\ &k=\frac{9}{5} \end{aligned}$
Answer: $k=10$ Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given: $f(x)=\left(\begin{array}{cc} \frac{x^{2}-25}{x-5} & , x \neq 5 \\\\ k & , x=5 \end{array}\right)$ Solution: $f(x)=\left(\begin{array}{cc} \frac{x^{2}-25}{x-5} & , x \neq 5 \\\\ k & , x=5 \end{array}\right)$ $f(x)=\left(\begin{array}{cc} \frac{(x-5)(x+5)}{x-5} \\\\ k, x=5 \end{array}, x \neq 5\right)$$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$ $f(x)=\left(\begin{array}{cc} (x+5), & x \neq 5 \\\\ k & , x=5 \end{array}\right)$ If $f\left ( x \right )$ is continuous at $x=5$ , then $\begin{aligned} &\lim _{x \rightarrow 5} f(x)=f(5) \\ &\lim _{x \rightarrow 5}(x+5)=k \\ &k=5+5=10 \\ &k=10 \end{aligned}$
Answer: $k=4$ Hint: $f(x)$ must be defined. The limit of the $f(x)$ approaches the value $x$ must exist. Given: $f(x)=\left(\begin{array}{c} k x^{2}, x \geq 1 \\ 4, x<1 \end{array}\right)$ Solution: $f(x)=\left(\begin{array}{c} k x^{2}, x \geq 1 \\ 4, x<1 \end{array}\right)$ We have (LHL at $x=1$ ) $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} 4=4$ (RHL at $x=1$ ) $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} k(1+h)^{2}=k$ If $f\left ( x \right )$ is continuous at $x=1$ , then $\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \\ &k=4 \end{aligned}$
Answer: $k$ can be any real number. Hint: $f\left ( x \right )$ must be defined. The limit of the $f\left ( x \right )$ approaches the value $x$ must exist. Given: $f(x)=\left\{\begin{array}{l} 2 x^{2}+k, \text { if } x \geq 0 \\ -2 x^{2}+k, \text { if } x<0 \end{array}\right.$ Solution: $f(x)=\left\{\begin{array}{l} 2 x^{2}+k, \text { if } x \geq 0 \\ -2 x^{2}+k, \text { if } x<0 \end{array}\right.$ We have (LHL at $x=0$) $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0}- 2-(h)^{2}+k=k$ (RHL at $x=0$ ) $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} 2(h)^{2}+k=k$ If $f\left ( x \right )$ is continuous at $x=0$ . $\begin{aligned} &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0) \\ &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=k \end{aligned}$ $k$ can be any real number.
Answer: $3a-3b=2$ Hint: $f(x)$ must be defined. The limit of the $f(x)$ approaches the value $x$ must exist. Given: $f(x)=\left\{\begin{array}{l} a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3 \end{array}\right.$ Solution: $f(x)=\left\{\begin{array}{l} a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3 \end{array}\right.$ We have (LHL at $x=3$ ) $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0} f(3-h)=\lim _{h \rightarrow 0}[a(3-h)+1]=3 a+1$ (RHL at $x=3$ ) $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h)=\lim _{h \rightarrow 0}[b(3+h)+3]=3 b+3$ Also $f(2)=k$ If $f\left ( x \right )$ is continuous at $x=3$ . $\begin{aligned} &\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(x) \\ &3 a+1=3 b+3 \\ &3 a-3 b=2 \end{aligned}$ Hence the required relationship between $a \; and \; i \; is \; 3 a-3 b=2$
There are a couple of exercises, ex 8.1 and ex 8.2 in this chapter. The concepts that the first exercise, ex 8.1 covers are continuous function, absolute continuous function, continuous probability distribution, absolute continuity of a measure concerning another measure and many more. This first exercise consists of 62 questions to be answered by the students. Looking at the number of questions they need not worry if they have the RD Sharma Class 12th Exercise 8.1 material with them.
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Most of the students who utilised the RD Sharma Class 8 solution of Continuity Ex 8.1 book to the best have attained excellent scores in their exams. Even the teachers do not miss to refer to the RD Sharma Class 12th Exercise 8.1 solution book before taking the lessons.
Following are a few advantages that the students attain when they use the RD Sharma Class 12 Solutions Chapter 8 exercise 8.1 solution book:
All the sums in the RD Sharma class 12th Exercise 8.1 reference book are solved in various methods that can be easily grasped by the students.
The fact is that, many teachers pick the homework sums from the RD Sharma Class 12th Exercise 8.1 book. It becomes even easier to recheck the answers or clarify the doubts regarding the homework sums with the help of this book.
The RD Sharma Class 12 Chapter 8 exercise 8.1 and the other RD Sharma books are available at the Career 360 website. Students can also download a copy if they want to use it offline.
Studying with outdated books is useless. The RD Sharma Class 12th Exercise 8.1 are updated according to the latest NCERT textbooks. As the PDF format of these books are available for free of cost at the Career 360 website, the students can make the most of it.