RD Sharma class 12 Solutions chapter 8 exercise MCQ is considered one of the best books to prepare for the class 12 board exams. It contains in-detail explanations for concepts and questions in every chapter. It is used widely by class 12 CBSE students as well as teachers across the country. This is why it is the best choice for students to prepare for the exams.
This Story also Contains
Continuity exercise multiple choice question 1
Answer:Continuity exercise multiple choice question 2
Answer:
The correct option is (a) and (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{h \rightarrow 0}\left\{\frac{f(a+h)-f(a)}{h}\right\}=f^{\prime}\left(a^{+}\right) \text {for right hand derivative }\\ &\lim _{h \rightarrow 0}\left\{\frac{f(a-h)-f(a)}{-h}\right\}=f^{\prime}\left(a^{-}\right) \text {for left hand derivative } \end{aligned}$
Given:
$f(x)=|x-a| \phi(x)$
Solution:
Using formula (ii)
$\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{f(a+h)-f(a)}{h}\right\} \\ &=\lim _{h \rightarrow 0}\left\{\frac{|h+a-a| \phi(a+h)-|a-a| \phi(a)}{h}\right\} \end{aligned}$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{h \phi(a+h)}{h}\\ &=\lim _{h \rightarrow 0} \phi(a+h)=\phi(a)=f^{\prime}\left(a^{+}\right)\; \; \; ....(i) \end{aligned}$
For Left Hand Derivative
$\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{f(a-h)-f(a)}{-h}\right\} \\ &=\lim _{h \rightarrow 0}\left\{\frac{|a-h-a| \phi(a-h)-|a-a| \phi(a)}{h}\right\} \\ &=\lim _{h \rightarrow 0} \frac{|-h| \phi(a-h)}{-h} \\ &=\lim _{h \rightarrow 0}-\phi(a-h) \end{aligned}$
Therefore
$\begin{aligned} &=\lim _{h \rightarrow 0}-\phi(a-h)\\ &=-\phi(a)\\ &=f^{\prime}\left(a^{-}\right)\; \; \; \; \; \; .....(ii) \end{aligned}$
From (i) and (ii), we get
$f^{\prime}\left(a^{+}\right) \neq f^{\prime}\left(a^{-}\right)$
So, correct option is (a) and (b)
Continuity exercise multiple choice question 3
Answer:Continuity exercise multiple choice question 6
Answer:Continuity exercise multiple choice question 9
Answer:Continuity exercise multiple choice question 12
Answer:Continuity exercise multiple choice question 14
Answer:Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \end{aligned}$
Given:
f(x) is continuous at x = 0 and
$f(x)=\left\{\begin{array}{cc} \frac{\sin (a+1) x+\sin x}{x} &, x<0 \\ C & , x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x \sqrt{x}} & , x>0 \end{array}\right.$
Solution:
Using RHL
$\begin{gathered} \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \\ =\lim _{h \rightarrow 0} f(h) \\ =\lim _{h \rightarrow 0} \frac{\sqrt{h+b h^{2}}-\sqrt{h}}{b h \sqrt{h}} \end{gathered}$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\sqrt{h}(\sqrt{1+b h})-\sqrt{n}}{b h \sqrt{h}} \\ &=\lim _{h \rightarrow 0} \frac{\sqrt{1+b n}-1}{b h} \\ &=\lim _{h \rightarrow 0} \frac{\sqrt{1+b h}-1}{b h} \times \frac{\sqrt{1+b h}+1}{\sqrt{1+b h}+1} \end{aligned}$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{(1+b h)-1}{b h(\sqrt{1+b h}+1)} \\ &=\lim _{h \rightarrow 0} \frac{b h}{b h(\sqrt{1+b h}+1)} \\ &=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+b h}+1} \end{aligned}$
$\begin{aligned} &=\frac{1}{\sqrt{1+6 \cdot 0}+1} \\ &=\frac{1}{1+1} \\ &=\frac{1}{2} \end{aligned}$
Using L.H.L
$\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{h \rightarrow 0} f(0-h) \\ &=\lim _{h \rightarrow 0} f(-h) \\ &=\lim _{n \rightarrow 0} \frac{\sin (a+1)(-h)+\sin (-h)}{(-h)} \end{aligned}$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-\sin (a+1) \cdot h-\sinh }{-h} \\ &=\lim _{h \rightarrow 0}\left\{-\frac{\sin (a+1) \cdot h}{-h}+\frac{\sin h}{h}\right\} \quad[\because \sin (-\theta)=-\sin \theta] \end{aligned}$
$\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{\sin (a+1)}{(a+1)} \times(a+1)+\frac{\sinh }{h}\right\} \\ &=(a+1) \lim _{h \rightarrow 0} \frac{\sin (a+1)}{a+1}+\lim _{h \rightarrow 0} \frac{\sin h}{n} \end{aligned}$
$\begin{aligned} &=(a+1) \cdot 1+1 \quad\left[: \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\ &=a+1+1 \\ &=a+2 \end{aligned}$
Since function f(x) is continuous at x = 0
$\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \\ &=f(0) \\ &\Rightarrow a+2=\frac{1}{2} \\ &\Rightarrow a+2=\frac{1}{2} \\ &\text { or } c=\frac{1}{2} \end{aligned}$
$\begin{aligned} &\begin{aligned} \Rightarrow a &=\frac{1}{2}-2 \\ &=-\frac{3}{2} \text { or } \\ c=\frac{1}{2} \end{aligned}\\ &\text { and from } f(x) \text { , }\\ &b \in \mathbb{R}-\{0\} \end{aligned}$
So, the correct option is (c).
Continuity exercise 5 multiple choice question 15
Answer:Using LHL
$\begin{aligned} &\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}-h\right) \\ &=\lim _{h \rightarrow 0} m\left(\frac{\pi}{2}-h\right)+1=\frac{m \pi}{2}+1 \end{aligned}$
$\begin{aligned} &\text { Function } f(x) \text { is continuous at } x=\frac{\pi}{2}\\ &\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} f(x)\\ &\frac{m \pi}{2}+1=n+1\\ &\frac{m \pi}{2}=n \end{aligned}$
So, option (c) is correct
Continuity exercise multiple choice question 16
Answer:Continuity exercise multiple choice question 21
Answer:Continuity exercise multiple choice question 23
Answer:Continuity exercise multiple choice question 24
Answer:Continuity exercise multiple choice question 27
Answer:Continuity exercise multiple choice question 28
Answer:Continuity exercise multiple choice question 33
Answer:Continuity exercise multiple choice question 34
Answer:Continuity exercise multiple choice question 35
Answer:Continuity exercise multiple choice question 38
Answer:Continuity exercise multiple choice question 39
Answer:Continuity exercise multiple choice question 40
Answer:Continuity exercise multiple choice question 45
Answer:Continuity exercise multiple choice question 46
Answer:Continuity exercise multiple choice question 47
Answer:Continuity exercise multiple choice question 48
Answer:RD Sharma class 12 solution of Continuity ex MCQ contains questions of the chapter Continuity. There are about 48 MCQs in this exercise that are extremely basic and simple to solve if you are aware of the fundamentals of this chapter. However, if you find any question tricky to solve, you can refer to the RD Sharma class 12th exercise MCQ to get a good understanding of all the concepts in this chapter.
The essential concepts covered in the RD Sharma class 12th exercise MCQ are:-
The intuitive notion of continuity
Testing the continuity of a function
Continuity of a point
Continuity of an interval
Continuity of an open interval
Continuity of an closed interval
Definition and meaning of continuous function
Properties of continuous function
The questions prepared in the RD Sharma class 12th exercise MCQ are created by experts from academics across the country. The experts also provide helpful tips and tricks to solve the questions quickly and alternately, which will be less time-consuming. RD Sharma solutions Therefore, using Class 12 RD Sharma exercise MCQ solution can help prepare for the exams efficiently as the questions mentioned in the book are frequently asked in the board exams. The level of questions in the RD Sharma class 12th exercise MCQ is exactly the same as in the NCERT that are helpful in the preparation of public examinations as well.
The latest version of the RD Sharma class 12th exercise MCQ is available at the Career360 website. As the new version is released, the older materials are replaced. The solutions by Career360 are updated to the latest version. Also, the RD Sharma class 12th exercise MCQ can be downloaded free of cost from the Career360 website, which means it will not cost you a single penny to own the RD Sharma class 12 chapter 8 exercise MCQ.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters