RD Sharma Solutions Class 12 Mathematics Chapter 8 MCQ

# RD Sharma Solutions Class 12 Mathematics Chapter 8 MCQ

Edited By Kuldeep Maurya | Updated on Jan 27, 2022 01:56 PM IST

RD Sharma class 12 Solutions chapter 8 exercise MCQ is considered one of the best books to prepare for the class 12 board exams. It contains in-detail explanations for concepts and questions in every chapter. It is used widely by class 12 CBSE students as well as teachers across the country. This is why it is the best choice for students to prepare for the exams.

## Continuity Excercise: MCQ

Continuity exercise multiple choice question 1

The correct option is (c)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\frac{4-x^{2}}{4 x-x^{3}}$
Solution:
Since a function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &f(x)=\frac{4-x^{2}}{4 x-x^{3}} \\ &f(x)=\frac{4-x^{2}}{x\left(4-x^{2}\right)} \\ &f(x)=\frac{1}{x} \\ &\text { Where } x \neq 0, \pm 2 \end{aligned}
f(x) is continuous for all real numbers except (0, $\pm$2).
Therefore, it is continuous exactly at three points (0, $\pm$2)
So, the correct option is (c)

Continuity exercise multiple choice question 2

The correct option is (a) and (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{h \rightarrow 0}\left\{\frac{f(a+h)-f(a)}{h}\right\}=f^{\prime}\left(a^{+}\right) \text {for right hand derivative }\\ &\lim _{h \rightarrow 0}\left\{\frac{f(a-h)-f(a)}{-h}\right\}=f^{\prime}\left(a^{-}\right) \text {for left hand derivative } \end{aligned}
Given:
$f(x)=|x-a| \phi(x)$
Solution:
Using formula (ii)
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{f(a+h)-f(a)}{h}\right\} \\ &=\lim _{h \rightarrow 0}\left\{\frac{|h+a-a| \phi(a+h)-|a-a| \phi(a)}{h}\right\} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{h \phi(a+h)}{h}\\ &=\lim _{h \rightarrow 0} \phi(a+h)=\phi(a)=f^{\prime}\left(a^{+}\right)\; \; \; ....(i) \end{aligned}
For Left Hand Derivative
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{f(a-h)-f(a)}{-h}\right\} \\ &=\lim _{h \rightarrow 0}\left\{\frac{|a-h-a| \phi(a-h)-|a-a| \phi(a)}{h}\right\} \\ &=\lim _{h \rightarrow 0} \frac{|-h| \phi(a-h)}{-h} \\ &=\lim _{h \rightarrow 0}-\phi(a-h) \end{aligned}
Therefore

\begin{aligned} &=\lim _{h \rightarrow 0}-\phi(a-h)\\ &=-\phi(a)\\ &=f^{\prime}\left(a^{-}\right)\; \; \; \; \; \; .....(ii) \end{aligned}
From (i) and (ii), we get
$f^{\prime}\left(a^{+}\right) \neq f^{\prime}\left(a^{-}\right)$
So, correct option is (a) and (b)

Continuity exercise multiple choice question 3

The correct option is (a) and (d)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{h \rightarrow 0}\left\{\frac{f(a+h)-f(a)}{h}\right\}=f^{\prime}\left(a^{+}\right) \text {for right hand derivative }\\ &\lim _{h \rightarrow 0}\left\{\frac{f(a-h)-f(a)}{-h}\right\}=f^{\prime}\left(a^{-}\right) \text {for left hand derivative } \end{aligned}
Given:
$f(x)=\left|\log _{10} x\right|$
Solution:
$f(x)=\left|\log _{10} x\right|$
$=\left|\frac{\log x}{\log _{e} 10}\right|=\left|\log _{\mathrm{e}} x \log _{10} e\right|$
Calculate right hand derivative
Using limit at x = 1
Apply limit at x = 1
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{f(1+h)-f(1)}{h}\right\} \\ &=\lim _{h \rightarrow 0}\left\{\frac{\left|\log _{10} e \log (1+h)\right|-\left|\log _{10} e \log 1\right|}{h}\right\} \\ &=\lim _{h \rightarrow 0} \frac{\log _{10} e|\log (1+h)|}{h} \end{aligned}
Therefore applying L-Hospital rule
\begin{aligned} &=\log _{10} e \times 1 \\ &=f^{\prime}\left(1^{+}\right) \end{aligned}
For left hand limit
$=\lim _{h \rightarrow 0}\left\{\frac{f(1-h)-f(1)}{-h}\right\}$
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{\left|\log _{10} e \log (1-h)\right|-\left|\log _{10} e \log 1\right|}{-h}\right\} \\ &=\lim _{h \rightarrow 0} \frac{-\log _{10} e|\log (1-h)|}{h} \\ &-\log _{10} e=f^{\prime}\left(1^{-}\right) \end{aligned}
\begin{aligned} &\text { The function } f(x)=\left|\log _{10} x\right| \text { is continuous and in the right hand derivative }\\ &f^{\prime}\left(1^{-}\right)=-\log _{10} e \end{aligned}
So the correct option is (a) and (d)

### Continuity exercise multiple choice question 4

The correct option is (C)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{x \rightarrow a}\left\{\frac{f(x)}{g(x)}\right\}=\frac{1}{m} \text { where } \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m\\ &\text { (iii) } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \end{aligned}
Given:
$f(x)=\left\{\begin{array}{l} \frac{36^{x}-9^{x}-4^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} \\ k \end{array}\right.$ \begin{aligned} , \quad &x \neq 0 \\ , \quad &x=0 \end{aligned}
Solution:
Function f(x) is continuous at x = 0
To calculate the value of k, understand that function is continuous at x = 0
\begin{aligned} &\Rightarrow \lim _{x \rightarrow 0}\left(\frac{36^{x}-9^{x}-4^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}}\right)=k \\ &\Rightarrow \lim _{x \rightarrow 0}\left(\frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{\sqrt{2}-\sqrt{1+\cos x}}\right)=k \\ &\Rightarrow \lim _{x \rightarrow 0}\left(\frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{\sqrt{2}\left[2 \sin ^{2}\left(\frac{x}{4}\right)\right]}\right)=k \end{aligned}
$\Rightarrow \lim _{x \rightarrow 0}\left(\frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{2 \sqrt{2} x^{2} \cdot \frac{\frac{\sin ^{2} x}{4}}{\frac{x^{2}}{16} \times 16}}\right)=k$
$\Rightarrow \lim _{x \rightarrow 0}\left\{\frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{\frac{\sqrt{2}}{8} x^{2} \times \frac{\sin ^{2} x y}{\frac{x^{2}}{16}}}\right\}=k$
Using formula (ii) and (iii)
\begin{aligned} &\left.\Rightarrow \frac{8 \ln 9 \ln 4}{\sqrt{2}}=k \quad \text { [understand that } \lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{a^{x}}\right)=\ln a\right] \\ &\Rightarrow \frac{32 \ln 3 \ln 2}{\sqrt{2}}=k \\ &\Rightarrow k=16 \sqrt{2} \ln 2 \ln 3 \end{aligned}
So correct option is (C)

The correct option is (d)
Hint:
Use the given formula:
\begin{aligned} &\text { (i) If } \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x) \text { then } f(x) \text { is discontinuous at } x=0 \text { . }\\ &\text { (ii)If } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0) \text { then } f(x) \text { is continuous at } x=0 \end{aligned}
\begin{aligned} &\text { (iii) A function } f(x) \text { is said to be continuous at a point } x=a \text { of its domain, if }\\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
Given:
$f(x)=\left\{\begin{array}{lr} \frac{\left|x^{2}-x\right|}{x^{2}-x} \\ 1 & \\ -1 & \end{array}\right.$ $\begin{array}{r} , \quad x \neq 0,1 \\ , \quad x=0 \\ , \quad x=1 \end{array}$
Solution:
Simplify the given function
$f(x)=\left\{\begin{array}{lr} \frac{\left|x^{2}-x\right|}{x^{2}-x} \\ 1 & \\ -1 & \end{array}\right.$ $\begin{array}{r} , \quad x \neq 0,1 \\ , \quad x=0 \\ , \quad x=1 \end{array}$
\begin{aligned} &f(x)=\left\{\begin{aligned} &1,\: x>1 \\ &1,\: x \leq 0 \\ &-1,\: 0 \leq x \leq 1 \end{aligned}\right. \\ &\text { Using RHL } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(h)=-1 \\ &\text { Using LHL } \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(h)=1 \end{aligned}
f(x) is discontinuous at x =0
Again, Using RHL,
\begin{aligned} &\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=1\\ \end{aligned}
Using LHL,
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=-1 \end{aligned}
f(x) is discontinuous at x = 1
Therefore,
f(x) is continuous for all except at x = 0 and x = 1
So, the correct option is (d)

Continuity exercise multiple choice question 6

The correct option is (C)
Hint:
Use the given formula:
$\text { (i) } \lim _{x \rightarrow 0} \frac{\log (1-x)}{x}=1 \text { and } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(ii) A function f(x) is said to be continuous at a point x=a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \\ &(\text { iii }) \lim _{x \rightarrow a}\{f(x) g(x)\}=1 m, \text { where } \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m \end{aligned}
Given:
$f(x)=\left\{\begin{array}{l} \frac{1-\sin x}{(\pi-2 x)^{2}} \frac{\log \sin x}{\left(\log \left(1+\pi^{2}-4 \pi x+4 x^{2}\right)\right)} \\ \\ k \end{array}\right.$ \begin{aligned} , \quad &x \neq \frac{\pi}{2} \\ , \quad &x=\frac{\pi}{2} \end{aligned}
Solution:
Function f(x) is continuous at
$x = \frac{\pi }{2}$
$\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
Using substitution method
\begin{aligned} &\text { Substitute } \frac{\pi}{2}-x=t \\ &\Rightarrow \lim _{t \rightarrow 0}\left(\frac{\pi}{2}-t\right)=f\left(\frac{\pi}{2}\right) \end{aligned}
$\Rightarrow \lim _{t \rightarrow 0}\left\{\frac{1-\sin \left(\frac{\pi}{2}-t\right)}{4 t^{2}} \frac{\log \sin \left(\frac{\pi}{2}-t\right)}{\log \left(1+\pi^{2}-4 \pi\left(\frac{\pi}{2}-t\right)+4\left(\frac{\pi}{2}-t\right)^{2}\right.}\right\}=k$
$\Rightarrow \lim _{t \rightarrow 0} \frac{\left(2 \sin ^{2} t / 2\right) \log \cos 1}{4 t^{2} \cdot \log \left(1+\pi^{2}-2 \pi^{2}+4 \pi t+\pi^{2}+4 t^{2}-4 \pi t\right)}=k$
\begin{aligned} &\Rightarrow \lim _{t \rightarrow 0} \frac{2 \sin ^{2} t / 2 \log \cos t}{4 t^{2} \log \left(1+4 t^{2}\right)}=k \\ &\Rightarrow \lim _{t \rightarrow 0} \frac{2 \sin ^{2} t / 2 \log \sqrt{1-\sin ^{2} t}}{4 \times 4 \frac{t^{2}} {4}} \frac{1}{4 t^{2} \cdot \frac{\log (1+4 t^{2})}{4 t^{2}}}=k \quad\left[\because \cos ^{2} x=1-\sin ^{2} x\right] \end{aligned}
$\Rightarrow \lim _{t \rightarrow 0} \frac{2}{16}\left(\frac{\sin t / 2}{t / 2}\right)^{2} \cdot \frac{\frac{1}{2} \log (1-\sin 2 t)}{4 t^{2} \cdot \frac{\log \left(1+4 t^{2}\right)}{4 t^{2}}}=k$
$\Rightarrow \frac{1}{8} \lim _{t \rightarrow 0}\left(\frac{\sin t / 2}{t / 2}\right)^{2} \cdot \frac{-\sin ^{2} f}{2} \cdot \frac{\log \left(1-\sin ^{2} t\right)}{4 t^{2}\left(\sin ^{2} t\right)} \times \frac{1}{\log \left(1+4 t^{2}\right)}=k$
$\Rightarrow \frac{-1}{8} \lim _{t \rightarrow 0}\left(\frac{\sin t / 2}{t / 2}\right)^{2} \cdot \frac{\sin ^{2} f}{8 t^{2}} \cdot \frac{\log (1-\sin 2 t)}{\left(-\sin ^{2} t-1\right)} \times \frac{1}{\frac{\log (1+4+2)}{4 t^{2}}}=k$
$\Rightarrow-\frac{1}{8 \times 8} \lim _{t \rightarrow 0}\left(\frac{\sin t / 2}{t / 2}\right)^{2} \cdot \lim _{t \rightarrow 0}\left(\frac{\sin t}{t}\right)^{2} \cdot \lim _{t \rightarrow 0} \frac{\log \left(1-\sin ^{2} t\right)}{-\sin 2 t} \cdot \lim _{d \rightarrow 0} \frac{1}{\frac{\log \left(1+4 t^{2}\right)}{4 t^{2}}}=k$
Using formula (iii)
$\Rightarrow \frac{1}{64} \lim _{t \rightarrow 0}\left\{\frac{\sin ^{2} \frac{t}{2} \frac{\log \left(1-\sin ^{2} t\right)}{8 t^{2}}}{\left(\frac{t}{2}\right)^{2}} \frac{\log \left(1+4 t^{2}\right)}{4 t^{2}}\right\}=k$
$\Rightarrow-\frac{1}{64} \lim _{t \rightarrow 0}\left(\frac{\sin t}{t}\right)^{2} \lim _{t \rightarrow 0} \log \frac{1-\sin ^{2} t}{-\sin ^{2} t}=k$ $\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=4, \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1\right]$
Using standard limit formula (i)
$\Rightarrow k=-\frac{1}{64}$
So, option (c) is correct.
The correct option is (C)
Hint:
Use the given formula:
$\text { (i) } \lim _{x \rightarrow 0} \frac{\log (1-x)}{x}=1 \text { and } \lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
(ii) A function f(x) is said to be continuous at a point x = a of its domain
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \\ &(\text {iii}) \lim _{x \rightarrow a}\{f(x) g(x)\}=1 m, \text { where } \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m \end{aligned}
Given:
$f(x)=(x+1)^{\cot x}$
Solution:
$f(x)=(x+1)^{\cot x}$
taking log on both sides
$\log f(x)=(\cot x)(\log (x+1))$
$\lim _{x \rightarrow 0} \log f(x)=\lim _{x \rightarrow 0}\left(\frac{\frac{\log (x+1)}{x}}{\frac{\tan x}{x}}\right)$
Using formula (iii)
$\lim _{x \rightarrow 0} \log f(x)=\frac{\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}}{\lim _{x \rightarrow 0} \frac{\tan x}{x}}$
Using standard limit formula (i)
\begin{aligned} &\lim _{x \rightarrow 0} f(x)=e \\ &f(0)=e \end{aligned}
So, the correct option is (C)
The correct option is (b)
Hint:
Use the given formula:
$\text { (i) Standard limit } \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
(ii) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \\ &(\text { iii }) \lim _{x \rightarrow a}\{f(x) \pm g(x)\}=1 \pm m, \text { where } \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m \end{aligned}
Given:
$f(x)=\left\{\begin{array}{l} \frac{\log (1+a x)-\log (1-b x)}{x} \\ k \end{array}\right.$ \begin{aligned} , x & \neq 0 \\ , x &=0 \end{aligned}
And f(x) is continuous at x = 0
Solution:
$\because$ f(x) is continuous at x = 0
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log (1+a x)-\log (1-b x)}{x}=k$
Using formula (ii)
$\Rightarrow a \lim _{x \rightarrow 0} \frac{\log (1+a x)}{a x}+b \lim _{x \rightarrow 0} \frac{\log (1-b x)}{-b x}=k$
Using formula (i)
$\Rightarrow a+b=k$
So, the correct option is (b)

Continuity exercise multiple choice question 9

The correct option is (b)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{l} \frac{e^{1 / x}-1}{e^{1 / x}+1} \\ 0 \end{array}\right.$ \begin{aligned} , x & \neq 0 \\ , x &=0 \end{aligned}
Solution:
Using substitution method,
$\text { Let } e^{1 / x}=t \text { so, } x \rightarrow 0, t \rightarrow \infty$
\begin{aligned} &\lim _{t \rightarrow \infty} f(x)=\lim _{t \rightarrow \infty}\left(\frac{t-1}{t+1}\right) \\ &=\frac{1-0}{1+0}=1 \quad \quad[L-\text { Hospital rule }] \end{aligned}
And,
\begin{aligned} &f(0)=0 \\ &\text { Therefore, } \lim _{x \rightarrow 0} f(x) \neq f(0) \end{aligned}
Hence, f(x) is discontinuous at x = 0
So, option (b) is correct.

The correct option is (d)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{l} \frac{x-4}{|x-4|}+a \\ a+b \\ \frac{x-4}{|x-4|}+b \end{array}\right.$ \begin{aligned} , \quad &x<4 \\ , \quad &x=4 \\ , \quad &x>4 \end{aligned}
and f(x) is continuous at x = 4
Solution:
Using RHL at x = 4
\begin{aligned} &=\lim _{x \rightarrow 4^{+}} f(x) \\ &=\lim _{h \rightarrow 0} f(4+h) \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}\left(\frac{4+h-4}{|4+h-4|}+b\right) \\ &=\lim _{h \rightarrow 0}\left(\frac{h}{|h|}+b\right) \\ &=1+b \end{aligned}
Using LHL
\begin{aligned} &\lim _{x \rightarrow 4^{-}} f(x)=\lim _{h \rightarrow 0} f(4-h) \\ &=\lim _{h \rightarrow 0}\left(\frac{4-h-4}{|4-h-4|}+a\right) \\ &=\lim _{h \rightarrow \infty}\left(\frac{-h}{|-h|}+a\right) \\ &=a-1 \end{aligned}
f(x) will be continuous at x = 4, if
\begin{aligned} &\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=f(4) \\ &a-1=b+1=a+b \\ &b=-1 \text { and } a=1 \end{aligned}
So, the correct option is (d)

The correct option is (b)
Hint:
Use the given formula:
\begin{aligned} &\text { (i) } \lim _{x \rightarrow 0} f(x) g(x)=e \lim _{x \rightarrow 0}(f(x)-1) \cdot g(x)\\ &\text { Where } \lim _{x \rightarrow 0} f(x)=1 \end{aligned}
\begin{aligned} &\text { And } \lim _{x \rightarrow 0} g(x)=0\\ &\text { (ii) } \lim _{x \rightarrow 0}\left\{\frac{\cos x-1}{x}\right\}=-1 \end{aligned}
(iii) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{l} (\cos x)^{\frac{1}{x}} \\ k \end{array}\right.$ \begin{aligned} , x & \neq 0 \\ , x &=0 \end{aligned}
And f(x) is continuous at x = 0
Solution:
$\lim _{x \rightarrow 0} f(x)=f(0)$
Calculate the value of k
$\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x}}=k$
Using formula (i)
$\lim _{x \rightarrow 0} f(x)^{g(x)}=e \lim _{x \rightarrow 0}\left\{\frac{\cos x-1}{x}\right\}=k$
Apply formula (ii)
\begin{aligned} &e^{0}=k \\ & k=1 \end{aligned}
So, option (b) is correct.

Continuity exercise multiple choice question 12

The correct option is (a)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=|x|+|x-1|$
Solution:
Both are polynomial function and we know that the polynomial functions are continuous everywhere,
So, according to option,
f(x) is continuous at x = 0, as well as at x = 1
So, option is (a) is correct.
The correct option is (d)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{l} \frac{x^{4}-5 x^{2}+4}{|(x-1)(x-2)|} \\ 6 \\ 12 \end{array}\right.$ \begin{aligned} ,\: &x \neq 1,2 \\ ,\: &x=1 \\ ,\: &x=2 \end{aligned}
Solution:
we write
\begin{aligned} x^{4}-5 x^{2}+4 &=x^{4}-x^{2}-4 x^{2}+4=x^{2}\left(x^{2}-1\right)-4\left(x^{2}-1\right) \\ &=\left(x^{2}-4\right)\left(x^{2}-1\right) \\ &=(x+2)(x-2)(x+1)(x-1) \end{aligned}
$\therefore$ we have
$f(x)=\left\{\begin{array}{c} \frac{(x+2)(x-2)(x+1)(x-1)}{|(x-1)(x-2)|} \\ 6 \\ 12 \end{array}\right.$\begin{aligned} ,\: &x \neq 1,2 \\ ,\: &x=1 \\ ,\: &x=2 \end{aligned}
$f(x)=\left\{\begin{array}{c} \frac{x^{4}-5 x^{2}+4}{(x-1)(x-2)} \\ 6 \\ 12 \end{array}\right.$\begin{aligned} ,\: &x \neq 1,2 \\ ,\: &x=1 \\ ,\: &x=2 \end{aligned}
$=\left\{\begin{array}{c} \int(x+1)(x+2), x<1 \\ -(x+1)(x+2), 12 \\ 6, x=1 \\ 12, x=2 \end{array}\right.$
Using RHL at x = 1
\begin{aligned} &\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h) \\ &=-(2) \cdot(3)=-6 \end{aligned}
Using LHL at x = 1
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h) \\ &=(2)(3)=6 \end{aligned}
And using RHL at x = 2
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=12$
Using LHL at x = 2
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=-12$
f(x) is discontinuous at x=1 and x=2 for f(x) continuous at R[1, 2]
So, the correct option is (d)

Continuity exercise multiple choice question 14

The correct option is (c)
Hint:

Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)\\ &\text { (ii) } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \end{aligned}
Given:
f(x) is continuous at x = 0 and
$f(x)=\left\{\begin{array}{cc} \frac{\sin (a+1) x+\sin x}{x} &, x<0 \\ C & , x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x \sqrt{x}} & , x>0 \end{array}\right.$
Solution:
Using RHL
$\begin{gathered} \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \\ =\lim _{h \rightarrow 0} f(h) \\ =\lim _{h \rightarrow 0} \frac{\sqrt{h+b h^{2}}-\sqrt{h}}{b h \sqrt{h}} \end{gathered}$
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\sqrt{h}(\sqrt{1+b h})-\sqrt{n}}{b h \sqrt{h}} \\ &=\lim _{h \rightarrow 0} \frac{\sqrt{1+b n}-1}{b h} \\ &=\lim _{h \rightarrow 0} \frac{\sqrt{1+b h}-1}{b h} \times \frac{\sqrt{1+b h}+1}{\sqrt{1+b h}+1} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{(1+b h)-1}{b h(\sqrt{1+b h}+1)} \\ &=\lim _{h \rightarrow 0} \frac{b h}{b h(\sqrt{1+b h}+1)} \\ &=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+b h}+1} \end{aligned}
\begin{aligned} &=\frac{1}{\sqrt{1+6 \cdot 0}+1} \\ &=\frac{1}{1+1} \\ &=\frac{1}{2} \end{aligned}
Using L.H.L
\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{h \rightarrow 0} f(0-h) \\ &=\lim _{h \rightarrow 0} f(-h) \\ &=\lim _{n \rightarrow 0} \frac{\sin (a+1)(-h)+\sin (-h)}{(-h)} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-\sin (a+1) \cdot h-\sinh }{-h} \\ &=\lim _{h \rightarrow 0}\left\{-\frac{\sin (a+1) \cdot h}{-h}+\frac{\sin h}{h}\right\} \quad[\because \sin (-\theta)=-\sin \theta] \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{\frac{\sin (a+1)}{(a+1)} \times(a+1)+\frac{\sinh }{h}\right\} \\ &=(a+1) \lim _{h \rightarrow 0} \frac{\sin (a+1)}{a+1}+\lim _{h \rightarrow 0} \frac{\sin h}{n} \end{aligned}
\begin{aligned} &=(a+1) \cdot 1+1 \quad\left[: \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\ &=a+1+1 \\ &=a+2 \end{aligned}
Since function f(x) is continuous at x = 0
\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \\ &=f(0) \\ &\Rightarrow a+2=\frac{1}{2} \\ &\Rightarrow a+2=\frac{1}{2} \\ &\text { or } c=\frac{1}{2} \end{aligned}
\begin{aligned} &\begin{aligned} \Rightarrow a &=\frac{1}{2}-2 \\ &=-\frac{3}{2} \text { or } \\ c=\frac{1}{2} \end{aligned}\\ &\text { and from } f(x) \text { , }\\ &b \in \mathbb{R}-\{0\} \end{aligned}
So, the correct option is (c).

Continuity exercise 5 multiple choice question 15

The correct option is (c)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
f(x) is continuous at x = 0 and
$f(x)=\left\{\begin{array}{l} m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2} \end{array}\right.$
Solution:
Using RHL\begin{aligned} &\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}+h\right) \\ &=\lim _{h \rightarrow 0}\left[\sin \left(\frac{\pi}{2}+h\right)+n\right] \\ &=\lim _{h \rightarrow 0}(\cos h+n)=1+n \end{aligned}

Using LHL

\begin{aligned} &\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}-h\right) \\ &=\lim _{h \rightarrow 0} m\left(\frac{\pi}{2}-h\right)+1=\frac{m \pi}{2}+1 \end{aligned}

\begin{aligned} &\text { Function } f(x) \text { is continuous at } x=\frac{\pi}{2}\\ &\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} f(x)\\ &\frac{m \pi}{2}+1=n+1\\ &\frac{m \pi}{2}=n \end{aligned}
So, option (c) is correct

Continuity exercise multiple choice question 16

The correct option is (c)
Hint:
Use the given formula:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$
Solution:
Using rationalization method,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\left(a^{2}-a x+x^{2}\right)-\left(a^{2}+a x+x^{2}\right)}{(\sqrt{a+x}-\sqrt{a-x})\left(\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}\right)}$
$\lim _{x \rightarrow 0} \frac{-2 a x(\sqrt{a+x}+\sqrt{a-x})}{2 x\left(\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}\right)}$
$\left.\lim _{x \rightarrow 0} \frac{-a(\sqrt{a+x}+\sqrt{a-x})}{\left(\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}\right.}\right)$
$=\lim _{x \rightarrow 0} \frac{-2 a(\sqrt{a})}{2 a}=-\sqrt{a}$
Understand that, f(x) is continuous for all x, then it is continuous at x = 0
\begin{aligned} &\lim _{x \rightarrow 0} f(x)=0 \\ &\lim _{x \rightarrow 0}-\sqrt{a}=f(0) \end{aligned}
So, the correct option is (c)

The correct option is (c)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{l} 1,|x| \geq 1 \\ \frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, x=0 \end{array}\right.$
Solution:
Step 1: Simplify the given function
$f(x)=\left\{\begin{array}{l} 1,|x| \geq 1 \\ \frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, x=0 \end{array}\right.$
Case 2: Calculate the RHL
$\begin{gathered} \lim _{x \rightarrow \frac{1}{n}^{+}} f(x)=\lim _{h \rightarrow 0}\left(\frac{1}{n}+h\right) \\ =\left(\frac{1}{h}\right)^{2} \end{gathered}$
Case 3: Calculate the RHL
\begin{aligned} &\lim _{x \rightarrow \frac{1}{n}^{-}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{1}{n}-h\right)=\left(\frac{1}{n-1}\right)^{2} \\ &\text { Therefore, } \lim _{x \rightarrow \frac{1}{n}^{+}} f(x) \neq \lim _{x \rightarrow \frac{1}{n}^{-}} f(x) \end{aligned}
Hence, the correct answer is option (c)
Hence, f(x) is discontinuous only at
$x=\pm \frac{1}{n^{\prime}} n \in Z-\{0\} \text { and } x=0$
The correct option is (c)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}},(x \neq 0)$
Solution:
Step 1: Understand that, if f(x) to be continuous at x = 0 then,
$\lim _{x \rightarrow 0} f(x)=f(0)$
Therefore,
$=f(0)=\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}}$
$=f(0)=\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-(27)^{\frac{1}{3}}}{3\left[3-(243+5 x)^{\frac{1}{5}}\right]}$
$=\lim _{x \rightarrow 0} \frac{(27-2 x)^{1 / 3}-(27)^{4 / 3}}{3\left\{(243)^{15}-(243+5 x)^{1 / 5}\right\}}$
$=\frac{1}{3} \lim _{x \rightarrow 0} \frac{x\left\{(27-2 x)^{1 / 3}-(27)^{4 / 3}\right\}}{\left.x(243)^{1 / 5}-(243+5 x)^{1 / 5}\right\}}$
$=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\frac{(27-2 x)^{1 / 3}-\left(2+1^{1 / 3}\right.}{x}}{\frac{(243)^{1 / 5}-(243+5 x)^{1 / 5}}{x}}$
$=\frac{2}{3} \lim _{x \rightarrow 0} \frac{\frac{(27-2 x)^{1 / 3}-(27)^{1 / 3}}{5}}{5 \frac{(243+5 x)^{1 / 5}-(243)^{1 / 5}}{5 x}}$
$=\frac{2}{15} \lim _{x \rightarrow 0} \frac{\frac{(27-2 x)^{1 / 3}-(27)^{1 / 3}}{27-2 x-27}}{\frac{(243+5 x)^{1 / 5}-(243)^{1 / 5}}{243+5 x-243}}$
$=f(0)=\frac{2}{15} \times \frac{\frac{1}{3} \times 27^{-\frac{2}{3}}}{\frac{1}{5} \times 243^{-\frac{4}{5}}}$
$=f(0)=\frac{2}{15} \times \frac{\frac{1}{3} \times \frac{1}{27^{\frac{2}{3}}}}{\frac{1}{5} \times \frac{1}{243^{\frac{4}{5}}}}$
\begin{aligned} &\begin{aligned} &=\frac{2}{9} \frac{(243)^{\frac{4}{5}}}{(27)^{\frac{2}{3}}} \\ =& \frac{2}{9} \frac{\left(3^{5}\right)^{4 / 5}}{\left(3^{3}\right)^{2 / 3}} \\ \therefore f(0) &=\frac{2}{9} \times \frac{3^{4}}{3^{2}} \\ &=2 . \end{aligned}\\ &\text { Therefore, } f(0)=2 \end{aligned}
Hence, the correct option is (c)

The correct option is (d)
Hint:
Use the given formula :
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \\ &\text { (ii) } \lim _{x \rightarrow a}\left\{\frac{f(x)}{g(x)}\right\}=\frac{1}{m}, \end{aligned}
${\text { Where, }} \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m$
Given:
$f(x)=\frac{2-(256-7 x)^{\frac{1}{8}}}{(5 x+32)^{\frac{1}{5}}-2} \text { is continuous everywhere }$
Solution:
$f(x)=\frac{2-(256-7 x)^{\frac{1}{8}}}{(5 x+32)^{\frac{1}{5}}-2}$
Now,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{2-(256-7 x)^{\frac{1}{8}}}{(5 x+32)^{\frac{1}{5}}-2}$
Using factorization method
$\Rightarrow \lim _{x \rightarrow 0} \frac{(256)^{1 / 8}-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-(32)^{1 / 5}}=x(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{x}{x}\left\{\frac{(256)^{1 / 8}-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-(32)^{1 / 5}}\right\}=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\frac{(256)^{1 / 8}-(256-7 x)^{1 / 8}}{x}}{\frac{(5 x+32)^{1 / 5}-(32)^{1 / 5}}{5}}=f(0)$
$\Rightarrow+\frac{7}{5} \lim _{x \rightarrow 0} \frac{\frac{(256-7 x)^{1 / 8}-(256)^{1 / 8}}{-7 x}}{\frac{(5 x+32)^{1 / 5}-(32)^{1 / 5}}{5 x}}=f(0)$
$\Rightarrow \frac{7}{5} \lim _{x \rightarrow 0} \frac{\frac{(256-7 x)^{1 / 8}-(256)^{1 / 8}}{256-7 x-256}}{\frac{(5 x+32)^{1 / 5-(32)^{1 / 5}}}{32+5 x-32}}=f(0)$
$\Rightarrow \frac{7 \frac{1}{8}(256)^{1 / 8-1}}{5} \frac{1}{\frac{1}{5}(32)^{1 / 5-1}}=f(0) \quad\left[\therefore \lim _{x \rightarrow a} \frac{x^{n}-a^{4}}{x-a}=n a^{n-1}\right]$
\begin{aligned} &\Rightarrow \frac{7}{5} \times \frac{1}{8} \times \frac{5}{1} \frac{(256)^{-7 / 8}}{(32)^{-4 / 5}}=f(0) \\ &\Rightarrow \frac{7}{8} \frac{(32)^{\frac{4}{5}}}{(256)^{-\frac{1}{8}}}=f(0) \end{aligned}
\begin{aligned} \Rightarrow f(0) &=\frac{7}{8} \times \frac{\left.72^{5}\right)^{\frac{4}{5}}}{\left(2^{8}\right)^{\frac{7}{8}}} \\ &=\frac{7}{2^{3}} \times \frac{2^{4}}{2^{7}} \\ &=\frac{7}{2^{6}}=\frac{7}{64} \end{aligned}
So the correct-option is (d)
The correct option is (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)=\left\{\begin{array}{c} \frac{\sqrt{1+p x}-\sqrt{1-p x}}{x},-1 \leq x<0 \\ \frac{2 x+1}{x-2} \quad, 0 \leq x \leq 1 \end{array}\right.$
Step 1 : Rationalize the function
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)$
$\lim _{h \rightarrow 0} \frac{\sqrt{1-p h}-\sqrt{1+p h}}{-h}$
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{(\sqrt{1-p h}-\sqrt{1+p h}) \times(\sqrt{1-p h}+\sqrt{1+p h})}{(-h)(\sqrt{1-p h}+\sqrt{1+p h})} \\ &=\lim _{h \rightarrow 0} \frac{((-p h)-(1+p h)}{(-h) \sqrt{1-p h}+\sqrt{1+p^{n}}} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-2 p h}{-n(\sqrt{1-p h}+\sqrt{1+p h})} \\ &=\lim _{h \rightarrow 0} \frac{+2 p}{\sqrt{1-p h}+\sqrt{1+p h}} \end{aligned}
\begin{aligned} &=\frac{2 p}{\sqrt{1}+\sqrt{1}} \\ &=\frac{2 p}{1+1} \\ &=\frac{2 p}{2} \\ &=p \end{aligned}
\begin{aligned} &\text { And } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h) \\ &=\lim _{n \rightarrow 0} \frac{2 h+1}{h-2} \\ &=\frac{2 \times 0+1}{0-2} \\ &=\frac{1}{-2} \end{aligned}
\begin{aligned} &\text { And } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h) \\ &=\lim _{n \rightarrow 0} \frac{2 h+1}{h-2} \\ &=\frac{2 \times 0+1}{0-2} \\ &=\frac{1}{-2} \end{aligned}
\begin{aligned} &=\frac{-1}{2} \end{aligned}
Also,
\begin{aligned} &f(x)=\frac{2 \cdot 0+1}{0-2} \\ &=\frac{-1}{2} \end{aligned}
From (i)
\begin{aligned} &p=-\frac{1}{2}=-\frac{1}{2} \\ &\Rightarrow p=\frac{-1}{2} \end{aligned}
So, the correct option is (b)

Continuity exercise multiple choice question 21

The correct option is (c)
Hint:
If a function is continuous at x=2, then
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
Given:
The function f(x)
$=\left\{\begin{array}{l} x^{2} a, 0 \leq x<1 \\ a, 1 \leq x<\sqrt{2} \\ \frac{2 b^{2}-4 b}{x^{2}}, \sqrt{2 \leq x<\infty} \end{array}\right. \text { is continuous for } 0 \leq x<\infty$
Solution:
Step 1: Calculate f(x) is continuous for
$x = 1, \: \sqrt{2}$
Calculate for f(x) is continuous at x = 1
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1+} f(x)=f(1) \cdots(i) \\ &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} \frac{(1-h)^{2}}{a} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\left(1+h^{2}-2 h\right)}{a} \cdot \quad\left[\because(\boldsymbol{a}-\boldsymbol{b})^{2}{=} \boldsymbol{a}^{2}+\boldsymbol{b}^{2}-\mathbf{2 a b}\right] \\ &=\lim _{h \rightarrow 0} \frac{1}{a}+\frac{1}{a} h^{2}-\frac{2 h}{a} \end{aligned}
\begin{aligned} &=\frac{1}{a}+0-2 \frac{1}{a} \times 0 \\ &=\frac{3}{a} \end{aligned}
f(a) = a
\begin{aligned} &\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+n)=\lim _{n \rightarrow 0} a=a \\ &\text { from (i) } \Rightarrow \frac{1}{a}=a=a \end{aligned}
\begin{aligned} &\Rightarrow \frac{1}{a}=a \\ &\Rightarrow a^{2}=1 \\ &\Rightarrow a=\pm 1 \end{aligned}
Step 2: Calculate for f(x) is continuous at
\begin{aligned} x=\sqrt{2} \end{aligned}
Therefore,
\begin{aligned} &\lim _{x \rightarrow \sqrt{2}}-f(x)=\lim _{x \rightarrow \sqrt{2}} f(x)=f(\sqrt{2})-\text { (ii) } \\ &\Rightarrow \lim _{x \rightarrow \sqrt{2}}-f(x)=\lim _{h \rightarrow 0} f(\sqrt{2}-h)=\lim _{h \rightarrow 0} a=a \end{aligned}
\begin{aligned} &\text { and } \lim _{x \rightarrow \sqrt{2}+} f(x)=\lim _{h \rightarrow 0} f(\sqrt{2}+h) \\ &=\lim _{h \rightarrow 0} \frac{2 b^{2}-4 b}{(\sqrt{2}+h)^{2}} \\ &=\left(2 b^{2}-4 b\right) \lim _{h \rightarrow 0} \frac{1}{(\sqrt{2}+4)^{2}} \end{aligned}
\begin{aligned} &=\left(2 b^{2}-4 b\right) \cdot \frac{1}{(\sqrt{2}+0)^{2}} \\ &=\left(2 b^{2}-4 b\right) \cdot \frac{1}{(\sqrt{2})^{2}} \\ &=\frac{2 b^{2}-4 b}{2} \\ &\text { also, } f(\sqrt{2})=\frac{2 b^{2}-4 b}{(\sqrt{2})^{2}} \end{aligned}
\begin{aligned} &=\frac{2 b^{2}-4 b}{2} \end{aligned}
from(ii), we have
\begin{aligned} &\Rightarrow a=\frac{2 b^{2}-4 b}{2} \\ &=\frac{2 b^{2}-4 b}{2} \\ &\Rightarrow a=\frac{2 b^{2}-4 b}{2} \\ &\Rightarrow 2 a-2 b^{2}+4 b=0 \\ &\Rightarrow b^{2}-a-2 b=0 \end{aligned}
\begin{aligned} &\text { When }-a=1 \text { then } \\ &\Rightarrow b^{2}-2 b-1=0 \\ &\Rightarrow b=\frac{2 \pm \sqrt{4-(-4)}}{2} \\ &=\frac{2 \pm \sqrt{4+4}}{2} \\ &=\frac{2 \pm \sqrt{8}}{2} \\ &=1 \pm \sqrt{2} \end{aligned}
\begin{aligned} &\text { Also, when } a=-1 \text { then }\\ &\Rightarrow b^{2}-2 b+1=0\\ &\Rightarrow b=\frac{2 \pm \sqrt{4-4}}{2}\\ &=\frac{2}{2}\\ &=1\\ &\text { Thus } \mathrm{a}=-1 \text { and } \mathrm{b}=1 \end{aligned}
The correct option is (c)

The correct option is (a)
Hint:
$\lim _{h \rightarrow 0} f\left(\left(\frac{\pi}{2}\right)-h\right)$
Given:
\begin{aligned} &\text { The function } f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}, \text { when } x \neq \frac{\pi}{2} \text { and } f\left(\frac{\pi}{2}\right)=\lambda, \text { then } f(x) \text { will be continuous function }\\ &\text { for } x=\frac{\pi}{2} \end{aligned}
Solution:
Step 1: Calculate, f(x) is continuous for
$x=\frac{\pi }{2}$
Therefore,
\begin{aligned} &\therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right) \\ &=\lim _{x \rightarrow \frac{\pi}{2}(\pi-2 x)^{2}}=f\left(\frac{\pi}{2}\right) \end{aligned}
\begin{aligned} &\text { Assume, }\left(\frac{\pi}{2}-x\right)=t \text { and substitute in equation }(i)\\ &\therefore \lim _{t \rightarrow 0}\left[\frac{1-\sin \left(\frac{\pi}{2}-t\right)}{(2 t)^{2}}\right]=f\left(\frac{\pi}{2}\right) \end{aligned}
\begin{aligned} &\lim _{t \rightarrow 0}\left(\frac{1-\cos t}{4 t^{2}}\right)=f\left(\frac{\pi}{2}\right) \\ &\frac{1}{4} \lim _{t \rightarrow 0}\left[\frac{2 \sin ^{2}\left(\frac{t}{2}\right)}{t^{2}}\right]=f\left(\frac{\pi}{2}\right) \\ &\frac{1}{4} \lim _{i \rightarrow 0}\left[\frac{\frac{2}{4} \sin ^{2}\left(\frac{t}{2}\right)}{\frac{t^{2}}{4}}\right]=f\left(\frac{\pi}{2}\right) \end{aligned}
Simplify further,
\begin{aligned} &=\frac{1}{8} \lim _{t \rightarrow 0}\left[\frac{\sin ^{2}\left(\frac{t}{2}\right)}{\frac{t^{2}}{4}}\right]=f\left(\frac{\pi}{2}\right) \\ &=\frac{1}{8} \lim _{t \rightarrow 0}\left[\frac{\sin \left(\frac{t}{2}\right)}{\frac{t}{2}}\right]^{2}=f\left(\frac{\pi}{2}\right) \end{aligned}
Apply formula (i) i.e
$\lim _{h \rightarrow 0} f\left(\left(\frac{\pi}{2}\right)-h\right)$
\begin{aligned} &=\frac{1}{8} \times(1)^{2}=f\left(\frac{\pi}{2}\right) \\ &=f\left(\frac{\pi}{2}\right)=\frac{1}{8} \\ &\therefore f\left(\frac{\pi}{2}\right)=\lambda \\ &\therefore \Rightarrow \lambda=\frac{1}{8} \end{aligned}
Hence, the value of
\begin{aligned} &\lambda \text { is }\frac{1}{8} \end{aligned}
Hence, the correct answer is option (a)

Continuity exercise multiple choice question 23

The correct option is (d)
Hint:
If a function f is continuous at x = a, then
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
$\text { (i) } \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1$
$\text { (ii) } \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
$\text { (iii) } \lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}\right)=\log a$
Given:
The function
$f(x)= \begin{cases}\frac{\left(4^{x}-1\right)^{3}}{\sin (x a) \log \left(1+x^{2} 3\right)} &, x \neq 0 \\ 12(\log 4)^{3} & , x=0\end{cases}$
Solution:
Step 1: Calculate, f(x) is continuous for x = 0
\begin{aligned} &\therefore \lim _{x \rightarrow 0} f(x)=f(0) \\ &\lim _{x \rightarrow 0}\left[\frac{\left(4^{x}-1\right)^{3}}{\sin \frac{x}{a} \log \left(1+\frac{x^{2}}{3}\right)}\right]=12(\log 4)^{3} \end{aligned}
$\lim _{x \rightarrow 0}\left[\frac{\frac{\left(4^{x}-1\right)^{3}}{x^{3}}}{\frac{\sin \frac{x}{a} \log \left(1+\frac{x^{2}}{3}\right)}{x^{3}}}\right]=12(\log 4)^{3}$
$\lim _{x \rightarrow 0}\left[\frac{a\left(\frac{4^{x}-1}{x}\right)^{3}}{\left(\frac{\sin \frac{x}{a}}{\frac{x}{a}}\right) \log \left(1+\frac{x^{2}}{3}\right)} x^{2}\right]=12(\log 4)^{3}$
$3 a \lim _{x \rightarrow 0}\left[\frac{\left(\frac{4^{x}-1}{x}\right)^{3}}{\left(\frac{\sin \frac{x}{a}}{\frac{x}{a}}\right) \frac{\log \left(1+\frac{x^{2}}{3}\right)}{\left(\frac{x^{2}}{3}\right)}}\right]=12(\log 4)^{3}$
$3 a\left[\frac{\lim_{x\rightarrow 0}\left(\frac{4^{x}-1}{x}\right)^{3}}{\lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{a}}{\frac{x}{a}}\right) \lim_{x \rightarrow 0} \frac{\log \left(1+\frac{x^{2}}{3}\right)}{\left(\frac{x^{2}}{3}\right)}}\right]=12(\log 4)^{3}$
Apply formula (i), formula (ii) and formula (iii)
\begin{aligned} &\therefore 3 a(\log 4)^{3}=12(\log 4)^{3} \\ &a=4 \end{aligned}
Hence, the correct answer is option (d)

Continuity exercise multiple choice question 24

The correct option is (C)
Hint:
If a function f is continuous at x = a, then
$\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
Given:
the function
$f(x)= tan\: x$
Solution:
Step 1: Check continuity of the function
$f(x)=\tan x \text { on the set }\{n \pi: n \in Z\}$
$\therefore f(x)=\tan n \pi$
is defined at the integral point
Check continuity of the function
$f(x)=\tan x \text { on the set }\{2 n \pi: n \in Z\}$
$f(x)=\tan 2 n \pi$
is defined at the integral point
Check continuity of the function
$f(x)=\tan x \text { on the set }\left\{(2 n+1) \frac{\pi}{2}: n \in Z\right\}$
$f(x)=\tan (2 n+1) \frac{\pi}{2}$
is defined at the integral point
\begin{aligned} &f(x)=\tan \left(n \pi+\frac{\pi}{2}\right) \\ &f(x)=-\cot (n \pi) \end{aligned}
is not defined at the integral point
Check continuity of the function
$f(x)=\tan x \text { on the set }\left\{\frac{n \pi}{2}: n \in Z\right\}$
$f(x)=\tan \frac{n \pi}{2}$
is defined at the integral point
Hence, the correct answer is option (c)
The correct option is (b)
Hint:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Given:
$f(x)= \begin{cases}\frac{\sin 3 x}{x} &, x \neq 0 \\ \frac{k}{2} &, x \neq 0\end{cases}$
Solution:
is continuous at x = 0, then
LHL = RHL
\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \\ &\lim _{x \rightarrow 0^{-}} \frac{\sin 3 x}{x}=f(0) \end{aligned}
\begin{aligned} &\Rightarrow 3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=\frac{k}{2} \\ &\Rightarrow 3.1=\frac{k}{2} \quad\left[\frac{\sin x}{x}=1 \therefore \frac{\sin 3 x}{3 x}=1\right] \end{aligned}
Hence, k = 6
So, the correct option is (b)
The correct option is (b)
Hint:
If a function f is continuous at x = a, then
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
$\text { (i) } \lim _{x \rightarrow 0}\left(\frac{\sin ^{-1} x}{x}\right)=1$
$\text { (ii) } \lim _{x \rightarrow 0}\left(\frac{\tan ^{-1} x}{x}\right)=1$
Given:
the function
$f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$
is continuous at each point of its domain
Solution:
Step 1: Understand that according to question, f(x) is continuous at x = 0
\begin{aligned} &\therefore \lim f(x)=f(0) \\ &\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}=f(0) \end{aligned}
$\lim _{x \rightarrow \infty} \frac{x\left(2-\frac{\sin ^{-1} x}{x}\right)}{x\left(2+\frac{\tan ^{-1} x}{x}\right)}=f(0)$
Simplify further,
$\lim _{x \rightarrow 0} \frac{2-\frac{\sin ^{-1} x}{x}}{2+\frac{\tan ^{-1} x}{x}}=f(0)$
$\frac{2-\lim _{x \rightarrow 0}\left(\frac{\sin ^{-1} x}{x}\right)}{2+\lim _{x \rightarrow 0}\left(\frac{\tan ^{-1} x}{x}\right)}=f(0)$
Apply formula (i) and formula (ii)
\begin{aligned} &\frac{2-1}{2+1}=f(0) \\ &f(0)=\frac{1}{3} \end{aligned}
Hence, the correct answer is option (b)

Continuity exercise multiple choice question 27

The correct option is (a)
Hint:
If a function is continuous at x = a, then
$\lim _{x \rightarrow t} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(a)$
Solution: the function

is continuous at every point of its domain
Step 1: Understand that according to question, f(x) is continuous at every point of its domain.
Therefore, it is continuous at x = 1
\begin{aligned} &\therefore \lim _{x \rightarrow 1} f(x)=f(1) \\ &\lim _{h \rightarrow 0} f(1+h)=f(1) \\ &\lim _{h \rightarrow 0}\left[4(1+h)^{2}+3 b(1+h)\right]=5(1)-4 \\ &4+3 b=1 \end{aligned}
Simplify further,
\begin{aligned} &3 b=-3 \\ &b=-1 \end{aligned}
Hence, the correct answer is option (a)

Continuity exercise multiple choice question 28

The correct option is (b)
Hint:
If a function f is continuous at x = a then
$\lim _{x \rightarrow 0^{-}} f(a)=\lim _{x \rightarrow 0^{+}} f(x)=f(a)$
Given:
The function
$f(x)=\frac{1}{1-x}$
Step 1: Understand that
$\{f: R-\{1\} \rightarrow R\}$
\begin{aligned} &\text { Therefore } f(f(x))=f\left(\frac{x-1}{x}\right) \\ &\begin{array}{c} f(f(x))=f\left(\frac{1}{1-\left(\frac{1}{x-1}\right)}\right) \\ \\=\frac{x-1}{x} \end{array} \end{aligned}
$\text { Step 2: Understand that } \therefore f \circ f: R-\{0,1\} \rightarrow R$
$\therefore f(f(f(x)))=f\left(\frac{x-1}{x}\right)$
\begin{aligned} &f(f(f(x)))=f\left(\frac{x-1}{1-\left(\frac{x-1}{x}\right)}\right) \\ &=x \end{aligned}
\begin{aligned} &\text { Step 3: Understand that } \therefore f \circ f \circ f: R-\{0,1\} \rightarrow R \\ &\text { Therefore, } f(f(f(x))) \text { is not defined at } x=0,1 \\ &\text { Hence, } f(f(f(x))) \text { is discontinuous at } \{0,1\} \\ &\text { The set of point discontinuous of the function } f(f(f(x))) \text { is }\{0,1\} \end{aligned}
Hence, the correct answer is option (b)

The correct option is (b)
Hint:
If a function f is continuous at x = a, then
$\lim _{x \rightarrow 4-} f(x)=\lim _{x \rightarrow 0+} f(x)=f(a)$
$\text { (i) } \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)=1$
Given:
The function
$f(x)=\frac{\tan \left(\frac{\pi}{4} x\right)}{\cot 2 x}, x \neq \frac{\pi}{4}$
Step 1: Understand that, if f(x) is continuous a
$x=\frac{\pi }{4}$
Understand that, if
$\frac{\pi }{4}-x=y$
Therefore,
$x\rightarrow \frac{\pi }{4} \text { and }y\rightarrow 0$
\begin{aligned} &\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}=f\left(\frac{\pi}{4}\right) \\ &\therefore \lim _{y \rightarrow 0}\left(\frac{\tan y}{\cot 2\left(\frac{\pi}{4}-y\right)}\right)=f\left(\frac{\pi}{4}\right) \end{aligned}
$\lim _{y \rightarrow 0}\left(\frac{\tan y}{\cot \left(\frac{\pi}{2}-2 y\right)}\right)=f\left(\frac{\pi}{4}\right)$
\begin{aligned} &\lim _{y \rightarrow 0}\left(\frac{\tan y}{\tan 2 y}\right)=f\left(\frac{\pi}{4}\right) \\ &\frac{1}{2} \lim _{y \rightarrow 0}\left(\frac{\frac{\tan y}{y}}{\frac{\tan 2 y}{2 y}}\right)=f\left(\frac{\pi}{4}\right) \end{aligned}
Apply formula (i)
\begin{aligned} &\therefore \frac{1}{2}\left(\frac{1}{1}\right)=f\left(\frac{\pi}{4}\right) \\ &f\left(\frac{\pi}{4}\right)=\frac{1}{2} \end{aligned}
Hence, the correct answer is option (b)
The correct option is (a)
Hint:
If a function f is continuous at x = a, then
$\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=f(a)$
Given:
the function
$f(x)=\frac{x^{3}+x^{2}-16 x+20}{x-2}$
is not defined for x = 2. In order to make f(x) continuous at x = 2
Step 1: Take
$f(x)={x^{3}+x^{2}-16 x+20}$
and calculate further
$\therefore f(x)={x^{3}+x^{2}-16 x+20}$
\begin{aligned} &=x^{2}(x-2)+3 x(x-2)-10(x-2)\\ \end{aligned}
Simplify further,
\begin{aligned} &=(x-2)(x-2)(x+5)\\ &=(x-2)^{2}(x+5) \end{aligned}
Therefore, the function can be rewritten as
\begin{aligned} &\therefore f(x)=\frac{(x-2)^{2}(x+5)}{(x-2)} \\ &f(x)=(x-2)(x+5) \end{aligned}
Step 2: Understand that if f(x) is continuous at x = 2
Therefore,
\begin{aligned} &\therefore \lim _{h \rightarrow 0} f(x)=f(x) \\ &=\lim _{h \rightarrow 0}(x-2)(x+5)=f(x) \\ &f(2)=0 \end{aligned}
Hence, the correct answer is option (a)
The correct option is (a)
Hint:
f(x) is continuous at x = 0
$(\text { LHL of } f(x) \text { at } x=0)=(\text { RHL of } f(x) \text { at } x=0)=f(0)$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)\: \: \: \: \: \: \: \: \: \: .....(i)$
\begin{aligned} \text { Now, }&\lim _{x \rightarrow 0^{-}} f(x) \\ &=\lim _{x \rightarrow 0} a \sin \frac{\pi}{2}(x+1) \end{aligned}
\begin{aligned} &=\lim _{x \rightarrow 0} a \sin \left(\frac{\pi}{2}+\frac{\pi}{2} x\right) \\ &=\lim _{x \rightarrow 0} a \cos \frac{\pi x}{2}=a \end{aligned} \begin{aligned} &{\left[\therefore f(x)=a \sin \frac{\pi}{2}(x+1), \text { if } x \leq 0\right]} \\ &{[\cos 0={1}]} \end{aligned}
\begin{aligned} \text { Again, }&\lim _{x \rightarrow 0^{+}} f(x) \end{aligned}
$=\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} \quad\left[\because f(x)=\frac{\tan x-\sin x}{x^{3}} \text { if } x>0\right]$
\begin{aligned} &=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}-\sin x}{x^{3}} \\ &=\lim _{x \rightarrow 0} \frac{\sin x-\sin x \cos x}{\cos x \times x^{3}}=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{\cos x \times x^{3}} \end{aligned}
$=\lim _{x \rightarrow 0} \frac{1}{\cos x} \lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{2 \sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4} \times 4} \quad\left[\because 1-\cos x=2 \sin ^{2} \frac{x}{2}\right]$
$=\frac{1}{1} \times 1 \times \frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}$
$=\frac{1}{2}\left[\lim _{\frac{x}{2} \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}}\right]=\frac{1}{2} \times 1=\frac{1}{2}$
$\begin{gathered} \text { Also, } f(0)=a \sin \frac{\pi}{2}(0+1) \\ \qquad=a \sin \frac{\pi}{2}=a \end{gathered}$
Putting above values in (i) we get,
$\begin{gathered} a=\frac{1}{2} \end{gathered}$
So, the correct option is (a)

The correct option is (d)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)$
Given:
$f(x)= \begin{cases}a x^{2}+b & , 0 \leq x<1 \\ 4 & , \quad x=1 \\ x+3 &, 1
Step 1: Understand that, f(x) is continuous at x = 1
Therefore,
\begin{aligned} &\therefore \lim _{h \rightarrow 0} f(x)=f(1) \\ &\lim _{h \rightarrow 0} f(1-h)=4 \\ &\lim _{h \rightarrow 0} a(1-h)^{2}+b=4 \end{aligned}
Therefore, the possible values for (a, b) can be (2, 2), (3, 1), (4, 0) but (a,b) ≠ (5, 2)
Hence, the correct answer is option (d).

Continuity exercise multiple choice question 33

The correct option is (b)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
(i) Standard limits
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
Given:
$f(x)=\left\{\begin{array}{cc} \frac{\log (1+3 x)-\log (1-2 x)}{x} \quad, x \neq 0 \\ k \qquad \quad, x=0 \end{array} \right.$
Step 1: Understand that, if f(x) is continuous at x = 0
\begin{aligned} &\therefore \lim _{x \rightarrow 0} f(x)=f(0) \\ &\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\log (1+3 x)-\log (1-2 x)}{x}=k \end{aligned}
$\lim _{x \rightarrow 0} \frac{3 \log (1+3 x)}{3 x}-\frac{2 \log (1-2 x)}{2 x}=k$
Simplifying further,
$3 \lim _{x \rightarrow 0} \frac{\log (1+3 x)}{3 x}+2 \lim _{x \rightarrow 0} \frac{\log (1-2 x)}{-2 x}=k$
Applying formula (i)
\begin{aligned} &\therefore 3 \times 1+2 \times 1=k \\ &k=3+2 \\ &k=5 \end{aligned}
So, correct option is (b)

Continuity exercise multiple choice question 34

The correct option is (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
(ii) Standard limits
\begin{aligned} &\lim _{x \rightarrow a} \frac{sin\: x}{x}=1 \\ \end{aligned}
Given:
$f(x)= \begin{cases}\frac{1-\cos 10 x}{x^{2}} &, x<0 \\ a & , x=0 \\ \frac{\sqrt{x}}{\sqrt{625+x}-25} &, x>0\end{cases}$
then the value of a so that f(x) may be continuous at x = 0
Using LHL
\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(-h) \\ &\quad=\lim _{h \rightarrow 0} \frac{1-\cos (-10 h)}{(-h)^{2}} \\ &\quad=50 \lim _{h \rightarrow 0} \frac{(\sin 5 h)^{2}}{(5 h)^{2}} \\ &\quad=50(\text { Using standard limits }) \end{aligned}
Function f(x) is continuous at x=0
50 = a
So, the correct option is (b).

Continuity exercise multiple choice question 35

The correct option is (a)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
(ii) Standard limits
\begin{aligned} &\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\ &\text { (iii) } \lim _{x \rightarrow 0}\{f(x) \pm g(x)\}=1 \pm m \text {, } \end{aligned}
\begin{aligned} &{\text { Where, }} \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m \\ \end{aligned}
Given:
\begin{aligned} & f(x)=x \sin \frac{1}{x} \end{aligned}
Solution:
\begin{aligned} & f(x)=x \sin \frac{1}{x} \end{aligned}
$=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$
Function f(x) is continuous at x = 0
\begin{aligned} &=\lim _{x \rightarrow 0} f(x)=f(0) \\ &=0=f(0) \end{aligned}
So, option (a) is correct.

Continuity exercise multiple choice question 36
The correct option is (d)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
(ii) Standard limits
\begin{aligned} &\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\ \end{aligned}
Given:
\begin{aligned} f(x)=\sin \frac{1}{x} \end{aligned}
Solution:
\begin{aligned} f(x)=\sin \frac{1}{x} \end{aligned}
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \sin \frac{1}{x}$
Function f(x) is continuous at x = 0
\begin{aligned} &\lim _{x \rightarrow 0} f(x)=f(0) \\ &\lim _{x \rightarrow 0} \sin \frac{1}{x}=k \end{aligned}
Value does not exist for fraction to be continuous.
So, the option (d) is correct.

### Continuity exercise multiple choice question 37

The correct option is (e)
Hint:
Use this definition of continuity to solve this problem. A function f(x) is said to be continuous at x=a
if
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
Given:
$f(x)=\left\{\begin{array}{cl} (1+a x)^{1 / x} & , x<0 \\ b & , x=0 \\ \frac{(x+c)^{1 / 3}-1}{(x+1)^{1 / 2-1}} & , x>0 \end{array}\right.$
may be continuous at x = 0
Solution:
Now at x = 1
$f(x)=\left\{\begin{array}{cl} (1+a x)^{1 / x} & , x<0 \\ b & , x=0 \\ \frac{(x+c)^{1 / 3}-1}{(x+1)^{1 / 2-1}} & , x>0 \end{array}\right.$
To find the value of a, b and c we will use definition of continuous function
So we know if f(x) is continuous at x = 0 then we have,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)-(1)$
Using equation (1) We have,
$\lim _{x \rightarrow 0^{-}} f(x)=f(0) \Rightarrow \lim _{h \rightarrow 0} f(0-h)=f(0)$
\begin{aligned} &\left.\Rightarrow \lim _{h \rightarrow 0}\{1+a(-h)\}^{\frac{1}{h}}=f(0) \quad [\because f(x)=(1+a x)^{1 / x}, x<0\right] \\ &\Rightarrow \lim _{h \rightarrow 0}(1-a h)^{-\frac{1}{h}}=f(0)=b \quad[\because \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}, \boldsymbol{x}=\mathbf{0}] \end{aligned}
Taking log both sides, then
\begin{aligned} &\Rightarrow \lim _{h \rightarrow 0} \log (1-a b)^{-1 / n}=\log b \\ &\Rightarrow \lim _{h \rightarrow 0}-\frac{1}{n} \log (1-a h)=\log b \quad\left[\because \log a^{m}=\boldsymbol{m l o g} a\right] \end{aligned}
$\Rightarrow \lim _{h \rightarrow 0} \frac{a \log (1-a h)}{-a h}=\log b \quad \text { [multiply and divide a on L.H.S] }$
\begin{aligned} &\Rightarrow a \lim _{h \rightarrow 0} \frac{\log \{1+(-a b)\}}{(-a b)}=\log b\\ &\Rightarrow a \cdot 1=\log b &\left[\therefore \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1\right]\\ &\Rightarrow a=\log b \qquad - (2) \end{aligned}
Again, using equation (1) we get,
\begin{aligned} &\lim _{x \rightarrow 0+} f(x)=\{(0) \\ &\Rightarrow \lim _{h \rightarrow 0} f(0+h)=f(0) \end{aligned}
\begin{aligned} &\left.\Rightarrow \lim _{h \rightarrow 0} f(n)=f^{\prime} (0) \right) \\ &\Rightarrow \lim _{h \rightarrow 0}\left(\frac{(h+c)^{1 / 3}-1}{(h+1)^{1 / 2}-1}\right)=f(0) \quad\left[\because \boldsymbol{f}(x)=\frac{(x+\boldsymbol{c})^{\mathbf{1} / 3}-4}{(\boldsymbol{x}+\mathbf{1})^{\mathbf{1} / 2}-\mathbf{1}}, x>\mathbf{0}\right] \end{aligned}
$\Rightarrow \lim _{h \rightarrow 0}\left(\frac{(h+c)^{1 / 3}-1}{(n+1)^{1 / 2}-1} \times \frac{(n+1)^{1 / 2}+1}{(n+1)^{1 / 2}+1}\right)=\mathrm{b} \quad[\because f(x)=b, x=0]$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left((h+r)^{4} 3-1\right) \times\left((n+1)^{42}+1\right)}{\left((h+1)^{1 / 2}-1\right)\left((h+1)^{1 / 2}+1\right)}=b$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left((h+c)^{1 / 3}-1\right)\left((n+1)^{4 / 2}+1\right)}{\left((h+1)^{1 / 2}\right)^{2}-(1)^{2}}=\mathrm{b} \quad\left[\because(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}\right]$
\begin{aligned} &\Rightarrow \lim _{h \rightarrow 0} \frac{\left((h+c)^{1 / 3}-1\right)\left((h+1)^{42}+1\right)}{h+1-1}=b \\ &\Rightarrow \lim _{h \rightarrow 0} \frac{\left.\left((h+c)^{1 / 3}-1\right)(n+1)^{4 / 2}+1\right)}{h}=b \end{aligned}
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left((h+c)^{1 / 3}-1\right)}{h} \times \lim _{h \rightarrow 0}\left((n+1)^{1 / 2}+1\right)=b \quad\left[\begin{array}{ll} \because \lim _{x \rightarrow a} f(x) \cdot g(x)= & \lim _{x \rightarrow a} f(x) \\ x \lim _{x \rightarrow a} g(x) \end{array}\right]$
\begin{aligned} &\Rightarrow \lim _{h \rightarrow 0}\left(\frac{(h+c)^{1 / 3}-1^{4 / 3}}{h}\right) \times(0+1)^{1 / 2}+1=b \\ &\Rightarrow \lim _{h \rightarrow 0} \frac{(h+c)^{1 / 3}-1^{1 / 3}}{(h+c)-c} \times 1^{1 / 2}+1=b \\ &\Rightarrow g \times 2=b \end{aligned}
\begin{aligned} &\text { where } g \therefore=\lim _{h \rightarrow 0} \frac{(h+c)^{1 / 3}-1^{1 / 3}}{(h+c)-c}-(a) \\ &\Rightarrow g \cdots=\frac{6}{2} \quad-(3) \end{aligned}
To find the value of g, we will use
$\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-\mathrm{L}}$
But this formula is applicable on g only if c=L
So we take c = L then we have,
$g=\lim _{h \rightarrow 0} \frac{(h+1)^{1 / 3}-1^{1 / 3}}{(h+1)-1}$ $\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
\begin{aligned} &=\frac{1}{3} \cdot 1^{1 / 3-1} \\ &=\frac{1}{3} 1^{-2 / 3}=\frac{1}{3} \cdot 1=\frac{1}{3} \\ &\therefore g=\frac{1}{3} \end{aligned}
Equation (3)
\begin{aligned} &\Rightarrow \frac{1}{3}=\frac{b}{2} \\ &\Rightarrow b=\frac{2}{3} \end{aligned}
Then equation 2 becomes,
\begin{aligned} &\Rightarrow a=\log \frac{2}{3} \\ &\therefore a=\frac{\log 2}{3}, b=\frac{2}{3}, c=1 \end{aligned}

Continuity exercise multiple choice question 38

The correct option is (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
Given:
$f(x)= \begin{cases}2 \sqrt{x} &, 0 \leq x \leq 1 \\ 4-2 x &, 1
Solution:
Now at x = 1
\begin{aligned} &\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h) \\ &=\lim _{h \rightarrow 0} f(4-2(1+h)) \\ &=2 \end{aligned}
Again,
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h) \\ &=\lim _{h \rightarrow 0}(2 \sqrt{1-h}) \\ &=2 \\ &=\lim _{x^{+} \rightarrow 0} f(x)=f(0)=\lim _{x \rightarrow 0^{-}} f(x) \end{aligned}
Therefore, function is continuous at x = 0
Now we will check the continuity of f(x) at
\begin{aligned} x = \frac{5}{2} \end{aligned}
\begin{aligned} &\text { So } \lim _{x \rightarrow \frac{5}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{5}{2}-h\right) \\ &=\lim _{h \rightarrow 0}\left(4-2\left(\frac{5}{2}-h\right)\right) \quad\left[\because f(x)=4-2 x, x<\frac{5}{2}\right] \\ &=4-2\left(\frac{5}{2}-0\right) \end{aligned}
\begin{aligned} &=4-2 \times \frac{5}{2} \\ &=4-5 \\ &=-1 \end{aligned}
\begin{aligned} \text { And } \lim _{x \rightarrow \frac{5}{2}^{+}} f(x) &=\lim _{h \rightarrow 0} f\left(\frac{5}{2}+h\right) \\ &=\lim _{h \rightarrow 0} 2\left(\frac{5}{2}+h\right)-7 \quad\left[\because f(x)=2 x-7, x>\frac{5}{2}\right] \\ &=2\left(\frac{5}{2}+0\right)-7 \end{aligned}
\begin{aligned} &=2 \times \frac{5}{2}-7 \\ &=5-7 \\ &=-2 \\ \lim _{x \rightarrow \frac{5}{2}} f(x) & \neq \lim _{x \rightarrow \frac{5}{2}} f(x) \\ \text { le }-1 \neq-2 & \end{aligned}
Therefore the function f(x) is discontinuous at
\begin{aligned} x = \frac{5}{2} \end{aligned}
So, correct option is (b)

Continuity exercise multiple choice question 39

The correct option is (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
(ii) Standard limits
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Given:
$f(x)= \begin{cases}\frac{1-\sin ^{2} x}{3 \cos ^{2} x} &, x<\frac{\pi}{2} \\ a & , x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}} &, x>\frac{\pi}{2}\end{cases}$
Solution:
$f(x)= \begin{cases}\frac{1-\sin ^{2} x}{3 \cos ^{2} x} &, x<\frac{\pi}{2} \\ a & , x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}} &, x>\frac{\pi}{2}\end{cases}$
So it is given that the function f(x) is continuous at
$x=\frac{\pi}{2}$
So, we have
\begin{aligned} &\lim _{x \rightarrow \frac{\pi}{2}}+f(x)=\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)-(1) \\ &\text { L.H.L at } x=\frac{\pi}{2} \\ &{\text { i.e }} \lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{h \rightarrow 0} f(\frac{\pi}{2}-h) \end{aligned}
$=\lim _{h \rightarrow 0} \frac{1-\sin ^{2}(\pi / 2-h)}{3 \cos ^{2}(\pi / 2-h)} \quad\left[\therefore \boldsymbol{f}(x)=\frac{1-\sin ^{2} x}{3 \cos ^{2} x}, x<\pi / 2\right]$
$=\lim _{h \rightarrow 0} \frac{1-\{\sin (\pi / 2-h)\}^{2}}{3\{\cos (\pi / 2-h)\}^{2}}$
$=\lim _{h \rightarrow 0} \frac{1-(\cos h)^{2}}{3(\sin h)^{2}} \quad\left[\begin{array}{c} \because \sin (\pi / 2-\theta)=\cos \theta, \\ \cos (\pi / 2-\theta)=\sin \theta \end{array}\right]$
$=\lim _{h \rightarrow 0} \frac{1-\cos ^{2} h}{3 \sin ^{2} h}$
\begin{aligned} &=\lim _{n \rightarrow 0} \frac{\sin ^{2} h}{3 \sin ^{2} h} \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=\perp \Rightarrow 1-\cos ^{2} \theta=\sin ^{2} \theta\right] \\ &=\frac{1}{3} \lim _{h \rightarrow 0} 1=\frac{1}{3} . \quad {-(2)} \end{aligned}
\begin{aligned} &\text { R.H.I at } x=\pi / 2 \\ &{\text { i.e }} \lim _{x \rightarrow \pi / 2^{+}} f(x)=\lim _{h \rightarrow 0} f(\pi / 2+h) \end{aligned}
$=\lim _{h \rightarrow 0} \frac{b\{1-\sin (\pi / 2+h)\}}{\{\pi-2(\pi / 2+h)\}^{2}} \quad\left[\because {f}(x)=\frac{{b}(\mathbf{1}-\sin x)}{(\pi-2 x)^{2}}, x>\pi / 2\right]$
$=\lim _{h \rightarrow 0} \frac{b\{1-\cosh \}}{\left\{\pi-2\left(\frac{\pi}{2}\right)-2 h\right\}^{2}} \quad[\because \sin (\pi / 2+\theta)=\cos \theta]$
$=\lim _{h \rightarrow 0} \frac{b\left\{2 \sin ^{2} h / 2\right\}}{(\pi-\pi-2 h)^{2}} \quad\left[\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right]$
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\frac{2 b \sin ^{2} h}{2}}{(-2 h)^{2}} \\ &=\lim _{h \rightarrow 0} \frac{\frac{2 b \sin ^{2} h}{2}}{4 h^{2}} \\ &=\frac{26}{4} \lim _{h \rightarrow 0} \frac{\frac{\sin ^{2} n}{2}}{h^{2}} \end{aligned}
\begin{aligned} &=\frac{b}{2} \lim _{h \rightarrow 0} \frac{\frac{\sin ^{2} h}{2}}{\frac{h^{2}}{4} x^{4}} \\ &=\frac{b}{8} \lim _{h \rightarrow 0}\left(\frac{\frac{\sin h}{2}}{\frac{h}{2}}\right)^{2} \\ &=\frac{6}{8}\left(\lim _{h \rightarrow 0} \frac{\sin n / 2}{h / 2}\right)^{2} \end{aligned}
\begin{aligned} &=\frac{b}{8} \times 1^{2} \quad\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\ &=\frac{b}{8} \times 1 \\ &=\frac{b}{8}-(3) \end{aligned}
\begin{aligned} &\text { also, } f(x) a t-x=\pi / 2\\ &{\text { i.e }} f(\pi / 2)=a \quad -(4) &[\because {f}({x})={a}, {x}=\pi / 2] \end{aligned}
Putting the value of equation 2 ,3 , 4 in (1)
we get ,
\begin{aligned} &-\frac{1}{3}=\frac{b}{8}=a \\ &\text { Sor } a=\frac{1}{3} \text { or } \frac{b}{8}=\frac{1}{3} \Rightarrow b=\frac{8}{3} \\ &\therefore a=\frac{1}{3}, b=\frac{8}{2} \end{aligned}

Continuity exercise multiple choice question 40

The correct option is (b)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
Given:
$f(x)= \begin{cases}\frac{1}{5}\left(2 x^{2}+3\right) &, \quad x \leq 1 \\ 6-5 x & , \quad 1
Solution:
Now at x = 1
\begin{aligned} &\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h) \\ &\lim _{h \rightarrow 0}[6-5(1+h)]=1 \\ &\lim _{h \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1) \end{aligned}
Therefore continuous at x = 1
Now, at x = 3
\begin{aligned} &\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h) \\ &\lim _{h \rightarrow 0}[(3+h)-3] \\ &=0 \end{aligned}
For left hand limit,
\begin{aligned} &=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0} f(3-h) \\ &=\lim _{h \rightarrow 0}[6-5(3-h)]=-9 \end{aligned}
We have
$=\lim _{x \rightarrow 3^{+}} f(x) \neq \lim _{x \rightarrow 3^{-}} f(x)$
Therefore discontinuous at x = 3
So, the correct option is (b).

Continuity exercise multiple choice question 41
The correct option is (d)
Hint:
A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a) \end{aligned}
Given:
$f(x)= \begin{cases}5 x-4 &, 0
is continuous at every point of domain
Solution:
$f(x)= \begin{cases}5 x-4 &, 0
At x = 1 f(x)=1
So,
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h) \\ &=\lim _{h \rightarrow 0} s(1-h)-4 \quad[\because {f}(x)=5 x-4 \text { when } x<1] \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} 5-5 h-4\\ &=\lim _{h \rightarrow 0} 1-5 h\\ &=1-5 \times 0\\ &=1 \end{aligned}
\begin{aligned} \lim _{x \rightarrow 1^{+}} f(x) &=\lim _{h \rightarrow 0} f(1+h) \\ &=\lim _{h \rightarrow 0}\left\{4(1+h)^{2}+3 a(1+n)\right\} &\left[\because {f}({x})=4 {x}^{2}+3 {a} x \text { when } x>\mathbf{1}\right] \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}\left\{4\left(1+h^{2}+2 b\right)+3 a+3 a h\right\} \quad\left[\because(\boldsymbol{a}+\boldsymbol{b})^{2}=\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+2 \boldsymbol{a} \boldsymbol{b}\right] \\ &=\lim _{h \rightarrow 0}\left(4+4 h^{2}+8 h+3 a+3 a h\right) \end{aligned}
\begin{aligned} &=4+4 \times 0^{2}+8 x 0+3 a+3 a \times 0 \\ &=4+0+0+3 a+0=4+3 a \quad-(2) \\ &\text { Also, } f(1)=5 \cdot 1-4 \\ &\quad=5-4 \\ &\qquad=1 \quad-(3) \quad[\because {f}(x)=5 x-4 \text { when } x=1] \end{aligned}
It is given that the function f(x) is continuous at x=1
\begin{aligned} \Rightarrow \lim _{x \rightarrow 1^{-}} f(x) &=\lim _{x \rightarrow 1^{+}} f(x) \\ &=f(1) \\ \Rightarrow 1=4+3 a & \end{aligned}
\begin{aligned} &=1 \quad \text { [using equation (1), (2) and (3) }\\ &\text { So, } \Rightarrow 4+3 a=1 \\ \Rightarrow 3 a &=1-4 \\ &=-3 \\ \Rightarrow a &=\quad \frac{-3}{3}=-1 \\ & \therefore a=-1 \end{aligned}

Continuity exercise multiple choice question 42
The correct option is (a)
Hint:
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\begin{aligned} &\lim _{x \rightarrow a} f(x)=f(a) \\ &\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a) \end{aligned}
(ii) Standard limits
\begin{aligned} &\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\ &(\text { iii }) \lim _{x \rightarrow 0}\{f(x) \pm g(x)\}=1 \pm m, \\ &{\text { Where, }} \lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=m \end{aligned}
Given:
$f(x)= \begin{cases}\frac{(\sin (\cos x)-\cos x)}{(\pi-2 x)^{2}} &, x \neq \frac{\pi}{2} \\ k & , x<\frac{\pi}{2}\end{cases}$
Solution:
$f(x)= \begin{cases}\frac{(\sin (\cos x)-\cos x)}{(\pi-2 x)^{2}} &, x \neq \frac{\pi}{2} \\ k & , x<\frac{\pi}{2} \end{cases} \qquad -(1)$
\begin{aligned} &\text { At } x=\frac{\pi}{2}\\ &\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)\\ &\Rightarrow \lim _{x \rightarrow \pi / 2} \frac{\sin (\cos x)-\cos x)}{(\pi-2 x)^{2}}=k &\text { [using 1] } \end{aligned}
Let
\begin{aligned} &\pi-2 x=2 y\\ &\Rightarrow y=\frac{\pi-2 x}{2}\\ &\Rightarrow y=\frac{\pi}{2}-x\\ &\text { Since, when } x \rightarrow \frac{\pi}{2} \text { then } y \rightarrow 0 \text {. } \end{aligned}
$\Rightarrow \lim _{y \rightarrow 0} \frac{\sin (\cos x)-\cos x}{(2 y)^{2}}=k \quad[\because \pi-2 x=y]$
$\Rightarrow \lim _{y \rightarrow 0} \frac{\sin \{\cos (\pi / 2-y)\}-\cos (\pi / 2-y)}{4 y^{2}}=k \quad\left[\because y=\frac{\pi}{2}-x \Rightarrow x=\frac{\pi}{2}-y\right]$
$\Rightarrow \lim _{y \rightarrow 0} \frac{\sin (\sin y)-\sin y}{4 y^{2}}=k \quad\left[\because \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta\right]$
$\Rightarrow \lim _{y \rightarrow 0} \frac{2 \sin \left(\frac{\sin y-y}{2}\right) \cdot \cos \left(\frac{\sin y+y}{2}\right)}{4 y^{2}}=k \quad\left[\because \sin c-\sin D=2 \sin \left(\frac{C-D}{2}\right) \cdot \cos \left(\frac{c+D}{2}\right)\right]$
$\Rightarrow \frac{1}{2} \lim _{y \rightarrow 0} \frac{\left(\frac{\sin y-y}{2}\right) \cdot \sin \left(\frac{\sin y-y}{2}\right)}{y^{2} \cdot\left(\frac{\sin y-y}{2}\right)} \cdot \cos \left(\frac{\sin y+y}{2}\right)$
$\Rightarrow \frac{1}{2} \lim _{y \rightarrow 0}\left(\frac{\frac{\sin y-y}{2}}{y}\right) \cdot\left\{\frac{\sin \left(\frac{\sin y-y}{2}\right)}{\left(\frac{\sin y-y}{2}\right)} \mid \cdot\left\{\frac{\cos \left(\frac{\sin y+y}{2}\right)}{y}\right\}=k\right.$
$\Rightarrow \frac{1}{2} \lim _{y \rightarrow 0} \frac{\sin y-y}{2 y} \times \lim _{y \rightarrow 0} \frac{\sin \left(\frac{\sin y-y}{2}\right)}{\left(\frac{\sin y-y}{2}\right)} \times \lim _{y \rightarrow 0} \frac{\cos \left(\frac{\sin y+y}{2}\right)}{y}=k$
$\left[\because \lim _{x \rightarrow a} f(x) \cdot g(x) \cdot h(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x) \lim _{x \rightarrow a} h(x)\right]$
$\Rightarrow \frac{1}{4}(1-1) \times 1 \times \lim _{y \rightarrow 0} \frac{\cos \left(\frac{\sin y+y}{2}\right)}{y}=k \quad\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
\begin{aligned} &\Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim _{y \rightarrow 0} \frac{\cos \left(\frac{\sin y+y}{2}\right)}{y^{\circ}}=R \\ &\Rightarrow 0=k \end{aligned}
\begin{aligned} \therefore k=0 \end{aligned}
So, the correct option is (a)
The correct option is (d)
Hint:
use this to get
$\frac{f(x)}{g(x)}$
Given:
\begin{aligned} &f(x)=2 x \\ &g(x)=\frac{x^{2}}{2}+1 \end{aligned}
For the discontinuous function
$\frac{f(x)}{g(x)} \rightarrow g(x) \neq 0$
If g(x) = 0, then it is a discontinuous function
So, the correct option is (d)
The correct option is (a)
Given:
We have
$f(x)=\cot x=\frac{\cos x}{\sin x}$
Now, f(x) is discontinuous when sinx = 0 we know that
$\sin x=0 \text { at } x=n \pi, n \in \mathbb{Z}$
f(x) = cot x is discontinuous on the set
$\{x: x=n \pi: n \in \mathbb{Z}\}$
So, the correct option is (a)

Continuity exercise multiple choice question 45

The correct option is (a)
Given:
The given function f is
$f(x)=x^{2} \sin \frac{1}{x}, \text { where } x \neq 0$
It is evident that f is defined at all points of the real line.
let C be a real number.
\begin{aligned} &\text { Case } 1 \text { : If } c \neq 0 \text {, then } f(c)=c^{2} \sin \frac{1}{c}\\ &\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2} \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow c} x^{2}\right)\left(\lim _{x \rightarrow c} \sin \frac{1}{x}\right)=c^{2} \sin \frac{1}{c} \end{aligned}
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x≠0
Case 2: If c=0, then f(0)=0
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)=c^{2} \sin \frac{1}{c}$
It is known that
\begin{aligned} &-1 \leq \sin \frac{1}{x} \leq 1, x \neq 0 \\ &=-x^{2} \leq \sin \frac{1}{x} \leq x^{2} \end{aligned}
\begin{aligned} &=\lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq \lim _{x \rightarrow 0} x^{2} \\ &=0 \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq 0 \end{aligned}
\begin{aligned} &=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0 \\ &\therefore \lim _{x \rightarrow 0^{-}} f(x)=0 \end{aligned}
Similarly,
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
There fore f is continuous at x = 0
So, the correct option is (a)

Continuity exercise multiple choice question 46

The correct option is (d)
$f(x)=\frac{1}{x-[x]}$
The greatest integer function becomes discontinuous at every integer value of x. So, the whole function will become discontinuous at each integer value of x.
It has infinite number of points of discontinuity.
So, the correct option is (d)

Continuity exercise multiple choice question 47

The correct option is (d)
The function f(x) = [x] is continuous for all x except all integral values of x
Hence, it is continuous at x = 1.5, which is not an integer
So, the correct option is (d)

Continuity exercise multiple choice question 48

The correct option is (b)
Hint:
Standard limit:
\begin{aligned} (i) \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\ (ii) \lim _{x \rightarrow 0} \cos x=1 \end{aligned}
Given:
$f(x)=\left\{\begin{array}{cl} \frac{\sin x}{x}+\cos x &, \text { if } x \neq 0 \\ k & , \text { if } x=0 \end{array}\right.$
f(x) is continuous at x = 0.
So,\begin{aligned} &=\lim _{x \rightarrow 0} f(x)=f(0) \\ &=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\cos x\right)=k \\ &=\lim _{x \rightarrow 0} \frac{\sin x}{x}+\lim _{x \rightarrow 0} \cos x=k \\ &=1+1=k \\ &=k=2 \end{aligned}

RD Sharma class 12 solution of Continuity ex MCQ contains questions of the chapter Continuity. There are about 48 MCQs in this exercise that are extremely basic and simple to solve if you are aware of the fundamentals of this chapter. However, if you find any question tricky to solve, you can refer to the RD Sharma class 12th exercise MCQ to get a good understanding of all the concepts in this chapter.

The essential concepts covered in the RD Sharma class 12th exercise MCQ are:-

• The intuitive notion of continuity

• Testing the continuity of a function

• Continuity of a point

• Continuity of an interval

• Continuity of an open interval

• Continuity of an closed interval

• Definition and meaning of continuous function

• Properties of continuous function

The questions prepared in the RD Sharma class 12th exercise MCQ are created by experts from academics across the country. The experts also provide helpful tips and tricks to solve the questions quickly and alternately, which will be less time-consuming. RD Sharma solutions Therefore, using Class 12 RD Sharma exercise MCQ solution can help prepare for the exams efficiently as the questions mentioned in the book are frequently asked in the board exams. The level of questions in the RD Sharma class 12th exercise MCQ is exactly the same as in the NCERT that are helpful in the preparation of public examinations as well.

The latest version of the RD Sharma class 12th exercise MCQ is available at the Career360 website. As the new version is released, the older materials are replaced. The solutions by Career360 are updated to the latest version. Also, the RD Sharma class 12th exercise MCQ can be downloaded free of cost from the Career360 website, which means it will not cost you a single penny to own the RD Sharma class 12 chapter 8 exercise MCQ.

## RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%

1. Does the RD Sharma class 12 MCQ contain all solutions?

Yes, the RD Sharma class 12 MCQ solution covers the entire syllabus and has all the solutions. Thus making it efficient for practice to build up skills and ace the maths exams.

2. Where can I find the solutions for the next exercise?

You can find the solutions to all the exercises at the Career360 website, which can be downloaded free of cost

3. Is RD Sharma class 12 chapter 8 MCQ helpful for homework?

Yes, RD Sharma class 12 chapter 8 MCQ is helpful for solving homework as the teachers use the same book for assigning and taking references to evaluate the homework as well, and also the solution available helps in solving questions easily and takes less time.

4. Where can I find the material for RD Sharma chapter 8 MCQ?

You can download the E-book and PDF for the solution on the Career360 website and all the other RD Sharma material on the Career360 website, and that is also free of cost.

5. Is the RD Sharma class 12 chapter 8 MCQ of the latest syllabus?

Yes, the solutions are yearly revised according to the syllabus of NCERT. This makes the RD Sharma class 12 chapter 8 MCQ more efficient for practice as it is of the latest version.

## Upcoming School Exams

#### National Means Cum-Merit Scholarship

Application Date:05 August,2024 - 20 September,2024

#### National Rural Talent Scholarship Examination

Application Date:05 September,2024 - 20 September,2024

#### Meghalaya Board of Secondary School Leaving Certificate Examination

Application Date:05 September,2024 - 23 September,2024

#### National Institute of Open Schooling 12th Examination

Admit Card Date:13 September,2024 - 07 October,2024

#### National Institute of Open Schooling 10th examination

Admit Card Date:13 September,2024 - 07 October,2024

Get answers from students and experts