NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4 - Polynomials

NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4 - Polynomials

Edited By Vishal kumar | Updated on May 02, 2025 04:17 PM IST

An algebraic identity is an algebraic equation that is true for all values of the variables occurring in it. These algebraic identities are also used in the factorisation of polynomials. These identities are used to solve different types of algebraic equations and polynomials. Algebraic identities are used to solve not only algebraic equations but also to solve geometry, trigonometry expressions by providing shortcuts. These identities help to simplify the complex equations.

This Story also Contains
  1. NCERT Solutions for Class 9 Maths Chapter 2 – Polynomials Exercise 2.5
  2. Access Polynomials Class 9 Chapter 2 Exercise: 2.5
  3. Topics covered in Chapter 2, Polynomials: Exercise 2.4
  4. NCERT Solutions of Class 10 Subject Wise
  5. NCERT Subject-Wise Exemplar Solutions
NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4 - Polynomials
NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.4 - Polynomials

Class 9 Maths chapter 2 exercise 2.4 includes a variety of problems related to the application of all the algebraic identities in the question. In exercise 2.5, Class 9 Maths a lot of problems which also include real-life applications. The 9th class maths exercise 2.4 answers have been meticulously prepared by subject experts and are presented in a comprehensive and easily understandable manner. This exercise consists of a total of sixteen questions, each containing multiple parts. Students can readily access NCERT Solutions class 9 maths chapter 2 exercise 2.4 in PDF format, allowing them to use them offline without requiring an internet connection, and they are made available free of charge. Additionally, along with Exercise 2.4 class 9 maths, you'll also find NCERT Books to study all the chapters and other subjects in a detailed manner.

NCERT Solutions for Class 9 Maths Chapter 2 – Polynomials Exercise 2.5

Download PDF

Access Polynomials Class 9 Chapter 2 Exercise: 2.5

Q1 (i) Use suitable identities to find the following product: $(x + 4) ( x + 10)$

Answer:

We will use identity

$(x+a)(x+b)=x^2+(a+b)x+ab$

Put $a = 4 \ \ and \ \ b = 10$

$(x+4)(x+10)= x^2+(4 + 10)x+4\times 10$

$= x^2+14x+40$

Therefore, $(x + 4) ( x + 10)$ is equal to $x^2+14x+40$

Q1 (ii) Use suitable identities to find the following product: $(x+8)(x-10)$

Answer:

We will use identity

$(x+a)(x+b)=x^2+(a+b)x+ab$

Put $a = 8 \ \ and \ \ b = -10$

$(x+8)(x-10)= x^2+(8 + (-10))x+(-10)\times 8$

$= x^2-2x-80$

Therefore, $(x+8)(x-10)$ is equal to $x^2-2x-80$

Q1 (iii) Use suitable identities to find the following product: $(3x+4)(3x - 5)$

Answer:

We can write $(3x+4)(3x - 5)$ as

$(3x+4)(3x - 5)= 9\left ( x+\frac{4}{3} \right )\left ( x-\frac{5}{3} \right )$

We will use identity

$(x+a)(x+b)=x^2+(a+b)x+ab$

Put $a = \frac{4}{3} \ \ and \ \ b = -\frac{5}{3}$

$9\left ( x+\frac{4}{3} \right )\left ( x-\frac{5}{3} \right )= 9\left ( x^2+\left ( \frac{4}{3}-\frac{5}{3} \right )x+\frac{4}{3} \times \left ( -\frac{5}{3} \right ) \right )$

$=9x^2-3x-20$

Therefore, $(3x+4)(3x - 5)$ is equal to $9x^2-3x-20$

Q1 (iv) Use suitable identities to find the following product: $(y^2 + \frac{3}{2})(y^2 - \frac{3}{2})$

Answer:

We will use identity

$(x+a)(x-a)=x^2-a^2$

Put $x=y^2 \ \ and \ \ a = \frac{3}{2}$

$(y^2 + \frac{3}{2})(y^2 - \frac{3}{2}) = \left ( y^2 \right )^2-\left(\frac{3}{2} \right )^2$

$= y^4-\frac{9}{4}$

Therefore, $(y^2 + \frac{3}{2})(y^2 - \frac{3}{2})$ is equal to $y^4-\frac{9}{4}$

Q1 (v) Use suitable identities to find the following product: $(3 - 2x) (3 + 2x)$

Answer:

We can write $(3 - 2x) (3 + 2x)$ as

$(3 - 2x) (3 + 2x)=-4\left ( x-\frac{3}{2} \right )\left(x+\frac{3}{2} \right )$

We will use identity

$(x+a)(x-a)=x^2-a^2$

Put $a = \frac{3}{2}$

$-4(x + \frac{3}{2})(x- \frac{3}{2}) =-4\left ( \left ( x \right )^2-\left(\frac{3}{2} \right )^2 \right )$

$=9-4x^2$

Therefore, $(3 - 2x) (3 + 2x)$ is equal to $9-4x^2$

Q2 (i) Evaluate the following product without multiplying directly: $103 \times 107$

Answer:

We can rewrite $103 \times 107$ as

$\Rightarrow 103 \times 107= (100+3)\times (100+7)$

We will use identity

$(x+a)(x+b)=x^2+(a+b)x+ab$

Put $x =100 , a=3 \ \ and \ \ b = 7$

$(100+3)\times (100+7)= (100)^2+(3+7)100+3\times 7$

$=10000+1000+21= 11021$

Therefore, value of $103 \times 107$ is $11021$

Q2 (ii) Evaluate the following product without multiplying directly: $95 \times 96$

Answer:

We can rewrite $95 \times 96$ as

$\Rightarrow 95 \times 96= (100-5)\times (100-4)$

We will use identity

$(x+a)(x+b)=x^2+(a+b)x+ab$

Put $x =100 , a=-5 \ \ and \ \ b = -4$

$(100-5)\times (100-4)= (100)^2+(-5-4)100+(-5)\times (-4)$

$=10000-900+20= 9120$

Therefore, value of $95 \times 96$ is $9120$

Q2 (iii) Evaluate the following product without multiplying directly: $104 \times 96$

Answer:

We can rewrite $104 \times 96$ as

$\Rightarrow 104 \times 96= (100+4)\times (100-4)$

We will use identity

$(x+a)(x-a)=x^2-a^2$

Put $x =100 \ \ and \ \ a=4$

$(100+4)\times (100-4)= (100)^2-(4)^2$

$=10000-16= 9984$

Therefore, value of $104 \times 96$ is $9984$

Q3 (i) Factorise the following using appropriate identities: $9x^2 + 6xy + y^2$

Answer:

We can rewrite $9x^2 + 6xy + y^2$ as

$\Rightarrow 9x^2 + 6xy + y^2 = (3x)^2+2\times 3x\times y +(y)^2$

Using identity $\Rightarrow (a+b)^2 = (a)^2+2\times a\times b +(b)^2$

Here, $a= 3x \ \ and \ \ b = y$

Therefore,

$9x^2+6xy+y^2 = (3x+y)^2 = (3x+y)(3x+y)$

Q3 (ii) Factorise the following using appropriate identities: $4y^2 - 4y + 1$

Answer:

We can rewrite $4y^2 - 4y + 1$ as

$\Rightarrow 4y^2 - 4y + 1=(2y)^2-2\times2y\times 1+(1)^2$

Using identity $\Rightarrow (a-b)^2 = (a)^2-2\times a\times b +(b)^2$

Here, $a= 2y \ \ and \ \ b = 1$

Therefore,

$4y^2 - 4y + 1=(2y-1)^2=(2y-1)(2y-1)$

Q3 (iii) Factorise the following using appropriate identities: $x^2 - \frac{y^2}{100}$

Answer:

We can rewrite $x^2 - \frac{y^2}{100}$ as

$\Rightarrow x^2 - \frac{y^2}{100} = (x)^2-\left(\frac{y}{10} \right )^2$

Using identity $\Rightarrow a^2-b^2 = (a-b)(a+b)$

Here, $a= x \ \ and \ \ b = \frac{y}{10}$

Therefore,

$x^2 - \frac{y^2}{100} = \left ( x-\frac{y}{10} \right )\left ( x+\frac{y}{10} \right )$

Q4 (i) Expand each of the following, using suitable identities: $(x + 2y+4z)^2$

Answer:

Given is $(x + 2y+4z)^2$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a = x , b = 2y \ \ and \ \ c = 4z$

Therefore,

$(x + 2y+4z)^2 = (x)^2+(2y)^2+(4z)^2+2.x.2y+2.2y.4z+2.4z.x$

$= x^2+4y^2+16z^2+4xy+16yz+8zx$

Q4 (ii) Expand each of the following, using suitable identities: $(2x - y + z)^2$

Answer:

Given is $(2x - y + z)^2$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a = 2x , b = -y \ \ and \ \ c = z$

Therefore,

$(2x -y+z)^2 = (2x)^2+(-y)^2+(z)^2+2.2x.(-y)+2.(-y).z+2.z.2x$

$= 4x^2+y^2+z^2-4xy-2yz+4zx$

Q4 (iii) Expand each of the following, using suitable identities: $(-2x + 3y + 2z)^2$

Answer:

Given is $(-2x + 3y + 2z)^2$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a =- 2x , b = 3y \ \ and \ \ c = 2z$

Therefore,

$(-2x +3y+2z)^2 = (-2x)^2+(3y)^2+(2z)^2+2.(-2x).3y+2.3y.2z+2.z.(-2x)$

$= 4x^2+9y^2+4z^2-12xy+12yz-8zx$

Q4 (iv) Expand each of the following, using suitable identities: $(3a - 7b - c)^2$

Answer:

Given is $(3a - 7b - c)^2$

We will Use identity

$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx$

Here, $x =3a , y = -7b \ \ and \ \ z = -c$

Therefore,

$(3a - 7b - c)^2=(3a)^2+(-7b)^2+(-c)^2+2.3a.(-7b)+2.(-7b).(-c)+2.(-c)$ $.3a$

$= 9a^2+49b^2+c^2-42ab+14bc-6ca$

Q4 (v) Expand each of the following, using suitable identities: $(-2x + 5y -3z)^2$

Answer:

Given is $(-2x + 5y -3z)^2$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a =- 2x , b = 5y \ \ and \ \ c = -3z$

Therefore,

$(-2x +5y-3z)^2$ $= (-2x)^2+(5y)^2+(-3z)^2+2.(-2x).5y+2.5y.(-3z)+2.(-3z).(-2x)$

$= 4x^2+25y^2+9z^2-20xy-30yz+12zx$

Q4 (vi) Expand each of the following, using suitable identities: $\left [\frac{1}{4}a - \frac{1}{2}b + 1\right ]^2$

Answer:

Given is $\left [\frac{1}{4}a - \frac{1}{2}b + 1\right ]^2$

We will Use identity

$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx$

Here, $x =\frac{a}{4} , y = -\frac{b}{2} \ \ and \ \ z = 1$

Therefore,

$\left [\frac{1}{4}a - \frac{1}{2}b + 1\right ]^2$ $=\left(\frac{a}{4} \right )^2+\left(-\frac{b}{2} \right )^2+(1)^2+2.\left(\frac{a}{4} \right ). \left(-\frac{b}{2} \right )+2. \left(-\frac{b}{2} \right ).1+2.1.\left(\frac{a}{4} \right )$

$= \frac{a^2}{16}+\frac{b^2}{4}+1-\frac{ab}{4}-b+\frac{a}{2}$

Q5 (i) Factorise: $4x^2 +9y^2 +16z^2 + 12xy -24yz - 16xz$

Answer:

We can rewrite $4x^2 +9y^2 +16z^2 + 12xy -24yz - 16xz$ as

$\Rightarrow 4x^2 +9y^2 +16z^2 + 12xy -24yz - 16xz$ $= (2x)^2+(3y)^2+(-4z)^2+2.2x.3y+2.3y.(-4z)+2.(-4z).2x$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a = 2x , b = 3y \ \ and \ \ c = -4z$

Therefore,

$4x^2 +9y^2 +16z^2 + 12xy -24yz - 16xz = (2x+3y-4z)^2$

$= (2x+3y-4z)(2x+3y-4z)$

Q5 (ii) Factorise: $2x^2 + y^2 +8z^2 - 2\sqrt2 xy + 4\sqrt2 yz - 8xz$

Answer:

We can rewrite $2x^2 + y^2 +8z^2 - 2\sqrt2 xy + 4\sqrt2 yz - 8xz$ as

$\Rightarrow 2x^2 + y^2 +8z^2 - 2\sqrt2 xy + 4\sqrt2 yz - 8xz$ $= (-\sqrt2x)^2+(y)^2+(2\sqrt2z)^2+2.(-\sqrt2).y+2.y.2\sqrt2z+2.(-\sqrt2x).2\sqrt2z$

We will Use identity

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

Here, $a = -\sqrt2x , b = y \ \ and \ \ c = 2\sqrt2z$

Therefore,

$2x^2 + y^2 +8z^2 - 2\sqrt2 xy + 4\sqrt2 yz - 8xz=(-\sqrt2x+y+2\sqrt2z)^2$

$=(-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z)$

Q6 (i) Write the following cubes in expanded form: $(2x + 1)^3$

Answer:

Given is $(2x + 1)^3$

We will use identity

$(a+b)^3=a^3+b^3+3a^2b+3ab^2$

Here, $a= 2x \ \ and \ \ b= 1$

Therefore,

$(2x+1)^3=(2x)^3+(1)^3+3.(2x)^2.1+3.2x.(1)^2$

$= 8x^3+1+12x^2+6x$

Q6 (ii) Write the following cube in expanded form: $(2a-3b)^3$

Answer:

Given is $(2a-3b)^3$

We will use identity

$(x-y)^3=x^3-y^3-3x^2y+3xy^2$

Here, $x= 2a \ \ and \ \ y= 3b$

Therefore,

$(2a-3b)^3=(2a)^3-(3b)^3-3.(2a)^2.3b+3.2a.(3b)^2$

$= 8a^3-9b^3-36a^2b+54ab^2$

Q6 (iii) Write the following cube in expanded form: $\left[\frac{3}{2}x + 1\right ]^3$

Answer:

Given is $\left[\frac{3}{2}x + 1\right ]^3$

We will use identity

$(a+b)^3=a^3+b^3+3a^2b+3ab^2$

Here, $a= \frac{3x}{2} \ \ and \ \ b= 1$

Therefore,

$\left(\frac{3x}{2}+1 \right )^3= \left(\frac{3x}{2} \right )^3+(1)^3+3.\left(\frac{3x}{2} \right )^2.1+3.\frac{3x}{2}.(1)^2$

$= \frac{27x^3}{8}+1+\frac{27x^2}{4}+\frac{9x}{2}$

Q6 (iv) Write the following cube in expanded form: $\left[x - \frac{2}{3} y\right ]^3$

Answer:

Given is $\left[x - \frac{2}{3} y\right ]^3$

We will use identity

$(a-b)^3=a^3-b^3-3a^2b+3ab^2$

Here, $a=x \ and \ \ b= \frac{2y}{3}$

Therefore,

$\left[x - \frac{2}{3} y\right ]^3 = x^3-\left(\frac{2y}{3} \right )^3-3.x^2.\frac{2y}{3}+3.x.\left(\frac{2y}{3} \right )^2$

$= x^3-\frac{8y^3}{27}-2x^2y+\frac{4xy^2}{3}$

Q7 (i) Evaluate the following using suitable identities: $(99)^3$

Answer:

We can rewrite $(99)^3$ as

$\Rightarrow (99)^3=(100-1)^3$

We will use identity

$(a-b)^3=a^3-b^3-3a^2b+3ab^2$

Here, $a=100 \ and \ \ b= 1$

Therefore,

$(100-1)^1=(100)^3-(1)^3-3.(100)^2.1+3.100.1^2$

$= 1000000-1-30000+300= 970299$

Q7 (ii) Evaluate the following using suitable identities: $(102)^3$

Answer:

We can rewrite $(102)^3$ as

$\Rightarrow (102)^3=(100+2)^3$

We will use identity

$(a+b)^3=a^3+b^3+3a^2b+3ab^2$

Here, $a=100 \ and \ \ b= 2$

Therefore,

$(100+2)^1=(100)^3+(2)^3+3.(100)^2.2+3.100.2^2$

$= 1000000+8+60000+1200= 1061208$

Q7 (iii) Evaluate the following using suitable identities: $(998)^3$

Answer:

We can rewrite $(998)^3$ as

$\Rightarrow (998)^3=(1000-2)^3$

We will use identity

$(a-b)^3=a^3-b^3-3a^2b+3ab^2$

Here, $a=1000 \ and \ \ b= 2$

Therefore,

$(1000-2)^1=(1000)^3-(2)^3-3.(0100)^2.2+3.1000.2^2$

$= 1000000000-8-6000000+12000= 994011992$

Q8 (i) Factorise the following: $8a^3 + b^3 + 12a^2 b + 6ab^2$

Answer:

We can rewrite $8a^3 + b^3 + 12a^2 b + 6ab^2$ as

$\Rightarrow 8a^3 + b^3 + 12a^2 b + 6ab^2$ $= (2a)^3+(b)^3+3.(2a)^2.b+3.2a.(b)^2$

We will use identity

$(x+y)^3=x^3+y^3+3x^2y+3xy^2$

Here, $x=2a \ \ and \ \ y= b$

Therefore,

$8a^3 + b^3 + 12a^2 b + 6ab^2 = (2a+b)^3$

$=(2a+b)(2a+b)(2a+b)$

Q8 (ii) Factorise the following: $8a ^3 - b^3 - 12a^2 b + 6ab^2$

Answer:

We can rewrite $8a ^3 - b^3 - 12a^2 b + 6ab^2$ as

$\Rightarrow 8a ^3 - b^3 - 12a^2 b + 6ab^2$ $= (2a)^3-(b)^3-3.(2a)^2.b+3.2a.(b)^2$

We will use identity

$(x-y)^3=x^3-y^3-3x^2y+3xy^2$

Here, $x=2a \ \ and \ \ y= b$

Therefore,

$8a ^3 - b^3 - 12a^2 b + 6ab^2 =(2a-b)^3$

$=(2a-b)(2a-b)(2a-b)$

Q8 (iii) Factorise the following: $27 - 125a^ 3 - 135a + 225a^2$

Answer:

We can rewrite $27 - 125a^ 3 - 135a + 225a^2$ as

$= (3)^3-(25a)^3-3.(3)^2.5a+3.3.(5a)^2$

We will use identity

$(x-y)^3=x^3-y^3-3x^2y+3xy^2$

Here, $x=3 \ \ and \ \ y= 5a$

Therefore,

$27 - 125a^ 3 - 135a + 225a^2 = (3-5a)^3$

$=(3-5a)(3-5a)(3-5a)$

Q8 (iv) Factorise the following: $64a^3 - 27b^3 - 144a^2 b + 108ab^2$

Answer:

We can rewrite $64a^3 - 27b^3 - 144a^2 b + 108ab^2$ as

$\Rightarrow 64a^3 - 27b^3 - 144a^2 b + 108ab^2$ $= (4a)^3-(3b)^3-3.(4a)^2.3b+3.4a.(3b)^2$

We will use identity

$(x-y)^3=x^3-y^3-3x^2y+3xy^2$

Here, $x=4a \ \ and \ \ y= 3b$

Therefore,

$64a^3 - 27b^3 - 144a^2 b + 108ab^2=(4a-3b)^2$

$=(4a-3b)(4a-3b)(4a-3b)$

Q8 (v) Factorise the following: $27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4} p$

Answer:

We can rewrite $27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4} p$ as

$\Rightarrow 27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4} p$ $= (3p)^3-\left(\frac{1}{6} \right )^3-3.(3p)^2.\frac{1}{6}+3.3p.\left(\frac{1}{6} \right )^2$

We will use identity

$(x-y)^3=x^3-y^3-3x^2y+3xy^2$

Here, $x=3p \ \ and \ \ y= \frac{1}{6}$

Therefore,

$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4} p = \left ( 3p-\frac{1}{6} \right )^3$

$= \left ( 3p-\frac{1}{6} \right ) \left ( 3p-\frac{1}{6} \right ) \left ( 3p-\frac{1}{6} \right )$

Q9 (i) Verify: $x^3 + y^3 = (x +y)(x^2 - xy + y^2)$

Answer:

We know that

$(x+y)^3=x^3+y^3+3xy(x+y)$

Now,

$\Rightarrow x^3+y^3=(x+y)^3-3xy(x+y)$

$\Rightarrow x^3+y^3=(x+y)\left((x+y)^2-3xy \right )$

$\Rightarrow x^3+y^3=(x+y)\left(x^2+y^2+2xy-3xy \right )$ $(\because (a+b)^2=a^2+b^2+2ab)$

$\Rightarrow x^3+y^3=(x+y)\left(x^2+y^2-xy \right )$

Hence proved.

Q9 (ii) Verify: $x^3 - y^3 = (x -y)(x^2 + xy + y^2)$

Answer:

We know that

$(x-y)^3=x^3-y^3-3xy(x-y)$

Now,

$\Rightarrow x^3-y^3=(x-y)^3+3xy(x-y)$

$\Rightarrow x^3-y^3=(x-y)\left((x-y)^2+3xy \right )$

$\Rightarrow x^3-y^3=(x-y)\left(x^2+y^2-2xy+3xy \right )$ $(\because (a-b)^2=a^2+b^2-2ab)$

$\Rightarrow x^3-y^3=(x-y)\left(x^2+y^2+xy \right )$

Hence proved.

Q10 (i) Factorise the following: $27y^3 + 125z^3$

Answer:

We know that

$a^3+b^3=(a+b)(a^2+b^2-ab)$

Now, we can write $27y^3 + 125z^3$ as

$\Rightarrow 27y^3 + 125z^3 = (3y)^3+(5z)^3$

Here, $a = 3y \ \ and \ \ b = 5z$

Therefore,

$27y^3+125z^3= (3y+5z)\left((3y)^2+(5z)^2-3y.5z \right )$

$27y^3+125z^3= (3y+5z)\left(9y^2+25z^2-15yz \right )$

Q10 (ii) Factorise the following: $64m^3 - 343n^3$

Answer:

We know that

$a^3-b^3=(a-b)(a^2+b^2+ab)$

Now, we can write $64m^3 - 343n^3$ as

$\Rightarrow 64m^3 - 343n^3 = (4m)^3-(7n)^3$

Here, $a = 4m \ \ and \ \ b = 7n$

Therefore,

$64m^3-343n^3= (4m-7n)\left((4m)^2+(7n)^2+4m.7n \right )$

$64m^3-343n^3= (4m-7n)\left(16m^2+49n^2+28mn \right )$

Q11 Factorise: $27x^3 + y^3 + z^3 - 9xyz$

Answer:

Given is $27x^3 + y^3 + z^3 - 9xyz$

Now, we know that

$a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$

Now, we can write $27x^3 + y^3 + z^3 - 9xyz$ as

$\Rightarrow 27x^3 + y^3 + z^3 - 9xyz$ $=(3x)^3+(y)^3+(z)^3-3.3x.y.z$

Here, $a= 3x , b = y \ \ and \ \ c = z$

Therefore,

$27x^3 + y^3 + z^3 - 9xyz$ $=(3x+y+z)\left((3x)^2+(y)^2+(z)^2-3x.y-y.z-z.3x \right )$

$=(3x+y+z)\left(9x^2+y^2+z^2-3xy-yz-3zx \right )$

Q12 Verify that $x^3 + y^3 + z^3 -3xyz = \frac{1}{2} ( x + y + z)\left[(x-y)^2 + (y-z)^2 + (z-x)^2 \right ]$

Answer:

We know that

$x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)$

Now, multiply and divide the R.H.S. by 2

$x^3+y^3+z^3-3xyz = \frac{1}{2}(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)$

$= \frac{1}{2}(x+y+z)(x^2+y^2-2xy+x^2+z^2-2zx+y^2+z^2-2yz)$

$= \frac{1}{2}(x+y+z)\left((x-y)^2+(y-z)^2 +(z-x)^2\right )$ $\left(\because a^2+b^2-2ab=(a-b)^2 \right )$

Hence proved.

Q13 If $x + y + z = 0$ , show that $x^3 + y^3 + z^3 = 3xyz$ .

Answer:

We know that

$x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)$

Now, It is given that $x + y + z = 0$

Therefore,

$x^3+y^3+z^3-3xyz =0(x^2+y^2+z^2-xy-yz-zx)$

$x^3+y^3+z^3-3xyz =0$

$x^3+y^3+z^3=3xyz$

Hence proved.

Q14 (i) Without actually calculating the cubes, find the value of each of the following: $(-12)^3 + (7)^3 + (5)^3$

Answer:

Given is $(-12)^3 + (7)^3 + (5)^3$

We know that

If $x+y+z = 0$ then , $x^3+y^3+z^3 = 3xyz$

Here, $x = -12 , y = 7 \ \ an d \ \ z = 5$

$\Rightarrow x+y+z = -12+7+5 = 0$

Therefore,

$(-12)^3 + (7)^3 + (5)^3 = 3 \times (-12)\times 7 \times 5 = -1260$

Therefore, value of $(-12)^3 + (7)^3 + (5)^3$ is $-1260$

Q14 (ii) Without actually calculating the cubes, find the value of the following: $(28)^3 + (-15)^3 + (-13)^3$

Answer:

Given is $(28)^3 + (-15)^3 + (-13)^3$

We know that

If $x+y+z = 0$ then , $x^3+y^3+z^3 = 3xyz$

Here, $x = 28 , y = -15 \ \ an d \ \ z = -13$

$\Rightarrow x+y+z =28-15-13 = 0$

Therefore,

$(28)^3 + (-15)^3 + (-13)^3 = 3 \times (28)\times (-15) \times (-13) = 16380$

Therefore, value of $(28)^3 + (-15)^3 + (-13)^3$ is $16380$

Q15 (i) Give possible expressions for the length and breadth of the following rectangle, in which its area is given:

$25a^2 - 35a + 12$

Answer:

We know that

Area of rectangle is = $length \times breadth$

It is given that area = $25a^2-35a+12$

Now, by splitting middle term method

$\Rightarrow 25a^2-35a+12 = 25a^2-20a-15a+12$

$= 5a(5a-4)-3(5a-4)$

$= (5a-3)(5a-4)$
Therefore, two answers are possible

case (i) :- Length = $(5a-4)$ and Breadth = $(5a-3)$

case (ii) :- Length = $(5a-3)$ and Breadth = $(5a-4)$

Q15 (ii) Give possible expressions for the length and breadth of the following rectangle, in which its area is given:

$35y^2 + 13y- 12$

Answer:

We know that

Area of rectangle is = $length \times breadth$

It is given that area = $35y^2 + 13y- 12$

Now, by splitting the middle term method

$\Rightarrow 35y^2 + 13y- 12 =35y^2+28y-15y-12$

$= 7y(5y+4)-3(5y+4)$

$= (7y-3)(5y+4)$

Therefore, two answers are possible

case (i) :- Length = $(5y+4)$ and Breadth = $(7y-3)$

case (ii) :- Length = $(7y-3)$ and Breadth = $(5y+4)$

Q16 (i) What are the possible expressions for the dimensions of the cuboid whose volumes is given below?

Volume : $3x^2 - 12x$

Answer:

We know that

Volume of cuboid is = $length \times breadth \times height$

It is given that volume = $3x^2-12x$

Now,

$\Rightarrow 3x^2-12x=3\times x\times (x-4)$

Therefore,one of the possible answer is possible

Length = $3$ and Breadth = $x$ and Height = $(x-4)$

Q16 (ii) What are the possible expressions for the dimensions of the cuboid whose volumes is given below?

Volume : $12ky^2 + 8ky - 20k$

Answer:

We know that

Volume of cuboid is = $length \times breadth \times height$

It is given that volume = $12ky^2+8ky-20k$

Now,

$\Rightarrow 12ky^2+8ky-20k = k(12y^2+8y-20)$

$= k(12y^2+20y-12y-20)$

$= k\left(4y(3y+5)-4(3y+5) \right )$

$= k(3y+5)(4y-4)$

$= 4k(3y+5)(y-1)$

Therefore,one of the possible answer is possible

Length = $4k$ and Breadth = $(3y+5)$ and Height = $(y-1)$


Also Read:

Topics covered in Chapter 2, Polynomials: Exercise 2.4

In this exercise following topics are covered:

  1. Algebraic identities are used to solve polynomial equations.
  2. The factor theorem will help to determine whether the equation is a factor of a polynomial or not.
  3. The factorisation method will help them to understand how to factorise the equation using the factorisation theorem by splitting the middle term.
NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

Also see-

NCERT Solutions of Class 10 Subject Wise

NCERT Subject-Wise Exemplar Solutions

Frequently Asked Questions (FAQs)

1. What exactly do you mean when you say algebraic identities?

An algebraic identity is a mathematical equation that holds true for all possible values of the variables in the equation.

2. Name all the algebraic identities used in NCERT solutions for Class 9 Maths exercise 2.5.

Identity I    : (x + y)²= x² + 2xy + y²

Identity II   : (x – y)² = x²  – 2xy + y² 

Identity III  : x² – y²= (x + y) (x – y) 

Identity IV  : (x + a) (x + b) = x²+ (a + b)x + ab

Identity V   : (x + y + z)² = x²+ y²+ z² + 2xy + 2yz + 2zx

Identity VI  : (x + y)³ = x³ + y³+ 3xy (x + y) 

Identity VII : (x – y)³ = x³ – y³ – 3xy(x – y) = x³ – 3x²y + 3xy² – y³

Identity VIII : x³ + y³ + z³ – 3xyz = (x + y + z)(x² + y² + z² – xy – yz – zx)

3. What are binomial algebraic identities?

(x + y)²= x² + 2xy + y²

(x – y)² = x²  – 2xy + y² 

x² – y²= (x + y) (x – y) 

(x + y)³ = x³ + y³+ 3xy (x + y) 

(x – y)³ = x³ – y³ – 3xy(x – y) = x³ – 3x²y + 3xy² – y³

4. What are trinomial algebraic identities?

(x + a) (x + b) = x² + (a + b)x + ab

(x + y + z)² = x²+ y²+ z² + 2xy + 2yz + 2zx

x³ + y³ + z³ – 3xyz = (x + y + z)(x² + y² + z² – xy – yz – zx)

5. In the NCERT Solutions for Class 9 Maths chapter 4 exercise 5, how many questions are covered?

There are 16 questions in Class 9 Maths chapter 4  exercise 9. 5

6. What is the number of solved examples covered before NCERT solutions for Class 9 Maths chapter 4 exercise 9.5?

There are 9  solved examples covered before NCERT solutions for Class 9 Maths chapter 4 exercise 9.5

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top