Careers360 Logo
RD Sharma Class 12 Exercise 22.8 Algebra of vectors Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 22.8 Algebra of vectors Solutions Maths - Download PDF Free Online

Updated on Jan 24, 2022 06:20 PM IST

The Class 12 RD Sharma chapter 22 exercise 22.8 solution covers the chapter 'Algebra of Vectors.' Though many students find it difficult to find the solutions to the problems provided in this chapter, the RD Sharma class 12th exercise 22.8 comes under consideration. RD Sharma solutions This solution provides the most basic ways to understand this chapter's theory, which helps them further solve questions much easier.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter22 Algebra of vectors - Other Exercise
  2. Algebra of Vectors Excercise: 22.8
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter22 Algebra of vectors - Other Exercise

Algebra of Vectors Excercise: 22.8

Algebra of vectors exercise 22.8 question 1(i)

Answer: Vectors are collinear
Hint: Prove one vector representing in the form of another vector
Given Let
A=2i^+j^k^B=3i^2j^+k^C=i^+4j^3k^
AB = Position of vector B – Position of vector A
=(3i^2j^+k^)(2i^+j^k^)=(32)i^+{(2+1)}j^+(1+1)k^=i^3j^+2k^
BC = Position of vector C – Position of vector B
=(i^+4j^3k^)(3i^2j^+k^)=(13)i^+(4+2)j^+(31)k^=2i^+6j^4k^=2(i^3j^+2k^)
From (1) we can say
BC=2AB
Also, B is the common point and BC andAB are parallel
Hence, Vectors are collinear.

Algebra of vectors exercise 22.8 question 1(ii)

Answer: Vectors are collinear
Hint: Find PQ and QR
Given
P=3i^2j^+4k^Q=i^+j^+k^R=i^+4j^2k^
Solution:
Let P,Q and R be the points represented and the factor vectors are
P=3i^2j^+4k^Q=i^+j^+k^R=i^+4j^2k^
PQ = Position of vector Q – Position of vector P
=(i^+4j^2k^)(3i^2j^+4k^)=i^+j^+k^3i^+2j^4k^=2i^+3j^3k^
QR = Position of vector R – Position of vector Q
=(i^+4j^2k^)(i^+j^+k^)=i^+4j^2k^i^j^k^=2i^+3j^3k^
Here, PQ=QR
So, they are parallel to each other and B bring the common point implies that vectors are all collinear.

Algebra of vectors exercise 22.8 question 2(i)

Answer: A,B and C are collinear
Hint: Use formula AB=λBC i.e. representing one vector as a scalar product of another vector
Given, the points,
A=6i^7j^k^B=2i^3j^+k^C=4i^5j^
AB = Position of vector B – Position of vector A
=(2i^3j^+k^)(6i^7j^k^)=(26)i^+(3+7)j^+(1+1)k^=4i^+4j^+2k^=2(2i^2j^k^)
Similarly, BC = Position of vector C – Position of vector B
=(4i^5j^+0k^)(2i^3j^+k^)=(42)i^+(5+3)j^+(01)k^=2i^2j^k^
From (1)
AB=2BC
Thus, both vectors are parallel to each other and as B is the common point
A(6,7,1),B(2,3,1)&C(4,5,0) are collinear.

Algebra of vectors exercise 22.8 question 2(ii)

Answer: A,B and C are collinear
Hint: Try to form vectors such that one vector represents the another vector as a scalar product
Given the points,
A=2i^j^+3k^B=4i^+3j^+k^C=3i^+j^+2k^
AB = Position of vector B – Position of vector A
=(4i^+3j^+k^)(2i^j^+3k^)=(42)i^+(3+1)j^+(13)k^=2i^+4j^2k^=2(i^+2j^k^) ............(1)
Similarly, BC = Position of vector C – Position of vector B
=(3i^+j^+2k^)(4i^+3j^+k^)=(34)i^+(13)j^+(21)k^=i^2j^+k^=(i^+2j^k^) ............(2)
From (1) & (2)
AB=2BC
Thus, both vectors are parallel to each other and as B being the common point
Given, Points A, B and C are collinear.

Algebra of vectors exercise 22.8 question 2(iii)

Answer: A,B and C are collinear
Hint: Represent one vector as a scalar product of another.
Given the points,
A=i^+2j^+7k^B=2i^+6j^+3k^C=3i^+10j^k^
AB = Position of vector B – Position of vector A
=(2i^+6j^+3k^)(i^+2j^+7k^)=(21)i^+(62)j^+(37)k^=i^+4j^+(4)k^=i^+4j^4k^ ..........(1)
Similarly, BC = Position of vector C – Position of vector B
=(3i^+10j^k^)(2i^+6j^+3k^)=(32)i^+(106)j^+(13)k^=i^+4j^4k^ .........(2)
 From (1)&(2)
AB=BC
So, vectors are parallel. But B is a point common to them
Hence, the given points A,B and C are collinear.

Algebra of vectors exercise 22.8 question 2(iv)

Answer: Vectors are collinear
Hint: Use formula AB=λBC i.e. representing one vector as a scalar product of another vector
Given the points,
A=3i^2j^5k^B=i^+2j^+3k^C=3i^+4j^+7k^
AB = Position of vector B – Position of vector A
=(i^+2j^+3k^)(3i^2j^5k^)=(1+3)i^+(2+2)j^+(3+5)k^=4i^+4j^+8k^=4(i^+j^+2k^) .....(1)
Similarly, BC = Position of vector C – Position of vector B
=(3i^+4j^+7k^)(i^+2j^+3k^)=(31)i^+(42)j^+(73)k^=2i^+2j^+4k^ .......(2)
 From (1)&(2)
AB=2BC
Thus both vectors are parallel to each other and B being the common point
Hence, vectors are collinear.

Algebra of vectors exercise 22.8 question 3(i)

Answer: Vectors are co-planar
Hint: Vectors are coplanar if we express them as a linear combination of other two.
5a+6b+7c=x(7a8b+9c)+y(3a+20b+5c)5a+6b+7c=a(7x+3y)+b(8x+20y)+c(9x+5y)
Comparing the equations
5=7x+3y7x+3y=5 .....(1)
8x+20y=6 .......(2)
9x+5y=7 ........(3)
Solving equation (1) and (2) by elimination method
7x+3y=5 ............(1)×(8)
8x+20y=6 .............(2)×(7)
56x24y=4056x+140y=42
164y=82y=82164y=12
Put value of y in (1)
7x+3(12)=57x+32=57x=5327x=10327x=72x=77×2
x=12
Now x=12 & y=12 satisfies the third equation
Hence given vectors are coplanar.

Algebra of vectors exercise 22.8 question 3(ii)

Answer: Vectors are not co-planar
Hint: Place the three vectors in the form of linear combination of the other two
Let,
a2b+3c=x(3b+5c)+y(2a+3b4c)a2b+3c=a(2y)+b(3x+3y)+c(5x4y)
Comparing the terms we get,
1=2yy=122=3x+3y2=3x+3(12)2=3x323x=32+23x=3+42
x=16
 Similarly ,3=5x4y Put x=16&y=(12) R.H.S =5x4y
=5(16)4(12)=56+2=5+126=1763
Thus, here value of x and y do not satisfy the third equation.
Hence given vectors are not coplanar.

Algebra of vectors exercise 22.8 question 4

Answer: Vectors are co-planar
Hint: Express four points as the linear combination of one vector into two vectors
Given: Let,
P=6i^7j^Q=16i^19j^4k^R=3j^6k^S=2i^5j^+10k^
Now, Expressing one vector as a linear combination of other two.
PQ=(16i^19j^4k^)(6i^7j^+0k^)=(166)i^+(19+7)j^+(40)k^=10i^12j^4k^PR=(0i^+3j^6k^)(6i^7j^+0k^)=(06)i^+(3+7)j^+(60)k^=6i^+10j^6k^PS=(2i^5j^+10k^)(6i^7j^+0k^)=(26)i^+(5+7)j^+(00)k^
=4i^+2j^+10k^PQ=xPR+yPS10i^12j^4k^=x(6i^+10j^6k^)+y(4i^+2j^+10k^)10i^12j^4k^=i^(6x4y)+j^(10x+2y)+k^(6x+10)
Comparing coefficients of i, j and k on both sides
6x4y=102(3x+2y)=103x+2y=5.(1)10x+2y=122(5x+y)=125x+y=6.(2)6x+10y=42(3x5y)=43x5y=2.(3)
Solving (1) and (3) by elimination
3x+2y=53x5y=27yy=7y=77y=13x5(1)=23x+5=23x=25x=33=1
Now, Put x=1 & y=1 in equation (2)
5x+y=6 L.H S=5(1)+(1)=51=6=RH.S
As x=1 & y=1 satisfies all the equation we can say that
All four points are coplanar.

Algebra of vectors exercise 22.8 question 5(i)

Answer: Vectors are co-planar
Hint: We know that vectors are coplanar if one can be expressed as a linear combination into other two.
Given:
So, if
A=2i^j^+k^B=i^3j^5k^C=3i^4j^4k^ then, A=xB+yC2i^j^+k^=x(i^3j^5k^)+y(3i^4j^4k^)2i^j^+k^=i^(x+3y)+j^(3x4y)+k^(5x4y)
Comparing coefficients of i^,j^& k^ on both sides
x+3y=2 .....(1)
3x4y=1 ....(2)
5x4y=1 ....(3)
Subtracting (2) and (3)
3x4y=1
5x4y=1
2x =2
x=1
Put,x=1 in (2)
3(1)4y=134y=14y=4y=1
Now, put x = -1 and y = 1 in (1)
 L.H.S =x+3y=(1)+3(1)=1+3=2=RH.S
Thus, the values satisfy all the three we can say that vectors are coplanar.

Algebra of vectors exercise 22.8 question 5(ii)

Answer: vectors are co-planar
Hint: If vectors are given express as linear combination
Given vectors as follows:
Let,
P=i^+j^+k^Q=2i^+3j^k^R=i^2j^+2k^P=xQ+yRi^+j^+k^=x(2i^+3j^k^)+y(i^2j^+2k^)i^+j^+k^=i^(2xy)+j^(3x2y)+k^(x+2y)
Comparing coefficient of i^,j^ & k^ on both sides
2xy=1 ........(1)
3x2y=1 .........(2)
x+2y=1 ..........(3)
Add eqn (2) and (3)
3x2y=1
x+2y=1
2x =2
x=1
Put, x = 1 in (3)
1+2y=12y=1+1y=22=1 Put, x=1&y=1in(1)
L.H.S=2xy
=2(1)(1)
=21
=1
=R.H.S
As values satisfies the third equation we can say that the given vectors are coplanar.

Algebra of vectors exercise 22.8 question 6(i)

Answer: vectors are not co-planar
Hint: If in given vectors we can’t express one vector in linear combination of other two, then they are non-coplanar
Given,
P=3i^+j^k^Q=2i^j^+7k^R=7i^j^+23k^ then, 
PxQ+yR then they are non-coplanar
 Taking P=xQ+yR3i^+j^k^=x(2i^j^+7k^)+y(7i^j^+23k^)3i^+j^k^=i^(2x+7y)+j^(xy)+k^(7x+23y)
Comparing coefficient of i^,j^ & k^ on both sides
2x+7y=3 .......(1)
xy=1 .........(2)
7x+23y=1 ..........(3)
To eliminate x from (1) and (2) multiply equation (1) with (-1) and equation (2) with (2) and subtract
2x7y=3
2x2y=2
5y=5
y=1
Put value of y = 1 in equation (2)
x1=1x=2x=2 Put x=2&y=lin(3)7x+23y=1=7(2)+23=14+23=9RHS
As values of x and y do not satisf the third equation
PxQ+yR
Thus, they are non-coplanar.

Algebra of vectors exercise 22.8 question 6(ii)

Answer: vectors are not co-planar
Hint: Form vectors in linear combination of other two vectors
Given, three vectors
Let,
A=i^+2j^+3k^B=2i^+j^+3k^C=i^+j^+k^A=xB+yCi^+2j^+3k^=x(2i^+j^+3k^)+y(i^+j^+k^)i^+2j^+3k^=i^(2x+y)+j^(x+y)+k^(3x+y)
Comparing coefficient of i^,j^ & k^
2x+y=1 .............(1)
x+y=2 ..............(2)
3x+y=3 .............(3)
Subtracting (1) and (2)
2x+y=1x+y=2x=1x+y=21+y=2y=3 Put x=1&y=3 in 3x+y=3 Substitute x=1 and y=3in(3)
3x+y=3
Substitute x=-1 and y=3
3(1)+3=3
=3+3
=0
3
Thus, as x and y do not satisfy the third equation
Hence, given vectors are non-coplanar.

Algebra of vectors exercise 22.8 question 7(i)

Answer: vectors are not co-planar
Hint: If vectors are in linear combination then they are coplanar and if they can’t be represented then they are not.
Given the vectors as follows:
A=2ab+3cB=a+b2cC=a+b3cA=xB+yC2ab+3c=x(a+b2c)+y(a+b3c)2ab+3c=a(x+y)+b(x+y)+c(2x3y)
Comparing coefficient of a,b & c
x+y=2 .............(1)
x+y=1 ..............(2)
2x3y=3 ...............(3)
Subtracting equation (1) and (2)
x+y=2
x+y=1
No solution can be obtained
Hence given vectors are non-coplanar.

Algebra of vectors exercise 22.8 question 7(ii)

Answer: vectors are not co-planar
Hint: The coefficients of a,b and c
Given: a+b+3c, 2a+b+3c and a+b+c
Solution : We know that
Three vectors are coplanar if any one of them can be expressed sa the linear combination of other two vectors.
Let
a+2b+3c=x(2a+b+3c)+y(a+b+c)a+2b+3c=a(2x+y)+b(x+y)+c(3x+y)
Comparing the coefficients of L.H.S and R.H.S.
2x+y=1 ....(1)
x+y=2 ....(2)
3x+y=3 ....(3)
Solving (1) and (2)
2x+y=1
x+y=2
x =1
And from (i)
2×(1)+y=1
y=1+2
y=3
There is no value of x and y that can satisfy the equation (3)
Thus, vectors are not co-planar.

Algebra of vectors exercise 22.8 question 8

Answer: d is expressible as linear combination of a,b & c
Hint: Express one vector in linear combination of the other two
Given,
a=i^+2j^+3k^b=2i^+j^+3k^c=i^+j^+k^a=xb+yci^+2j^+3k^=x(2i^+j^+3k^)+y(i^+j^+k^)i^+2j^+3k^=i^(2x+y)+j^(x+y)+k^(3x+y)
Comparing coefficients of i^,j^ & k^
2x+y=1 ...(1)
x+y=2 ....(2)
3x+y=3 ....(3)
Subtracting (1) and (2)
2x+y=1
x+y=2
x =1
x+y=2
1+y=2
y=3
Put, x=-1 and y=3
3x+y=3
L.H.S=3x+y
=3(1)+3
=3+3
=0
R.H.S
Thus, a,b & c are non-coplanar
Now, expressing a as a linear combination of a,b & c
d=ax+by+cz2i^j^3k^=x(i^+2j^+3k^)+y(2i^+j^+3k^)+z(i^+j^+k^)2i^j^3k^=i^(x+2y+z)+j^(2x+y+z)+k^(3x+3y+z)
Comparing co-efficient of i^,j^ & k^
x+2y+z=2 ...(1)
2x+y+z=1 ....(2)
3x+3y+z=3 ....(3)
Subtracting (1) and (2)
x+2y+z=2
2x+y+z=1
x+y =3
Subtracting (2) and (3)
2x+y+z=1
3x+3y+z=3
x2y =2
x+2y=2 .......(5)
Subtracting (4) and (5)
xy=3
x+2y=2
3y=1
y=13
Put y=13 in (4)
x(13)=3x=3+13x=83
Put x=83 & y=13 in eq (1)
x+2y+z=283+2(13)+z=263+z=2z=2+2z=4
Hence, d is expressible as linear combination of a,b & c.

Algebra of vectors exercise 22.8 question 9

Answer: Vectors are coplanar
Hint: Prove and express that vectors can be coplanar if we can express them as the linear combination.
Given, three vectors a,b & c to be proved as coplanar
Now “Necessary condition”
To be coplanar vectors must be expressed as linear combination of other two.
If a,b & c has to be coplanar.
There exists,c=xa+yb .....(1)
Where x and y be some scalars.
Hence, lc+mb+nc=0 ....(2)
Comparing (1) and (2)
We can say, l=x
m = y
c = -1
For lc+mb+nc=0 to be coplanar they must satisfy this.Wherel,m and n are non-zero simultaneously.
“Sufficient Condition”
If we suppose thata,b & c be three vectors satisfying lc+mb+nc=0
Where l,m and n not all zero simultaneously as scalars.
So from, lc+mb+nc=0
nc=lambc=(ln)a+(mn)b
Thus, c can be written as linear combination of a & bwhere (ln) and (mn) be some scalars.
Hence, a,b & c are coplanar vectors.

Algebra of vectors exercise 22.8 question 10

Answer: Vectors are coplanar
Hint: From vectors as a linear combination to prove they are coplanar
Given a,b,c & d be four position vectors.
If these vectors are coplanar then, ld+mb+nc+wd=0 where, l,m,n and w be some scalars
As per given condition
a,b,c & d are coplanar if they are in the form of
3a2b+c2d=0
Comparing,
l = 3
m = -2
n = 1
w = -2
Now, l+m+n+w=32+12=0
Thus, vectors are coplanar. Where l, m, n and w are non-zero scalar simultaneously.


The RD Sharma class 12 solution of Algebra of vectors exercise 22.8 is divided into two levels- Level 1 and Level 2. The level 1 questions are quite the basic ones to clear up the introductory concepts of the chapter, and the level 2 questions are the ones that ask for brief solutions so that the students can prepare themselves for any questions that can be asked in the exam. The RD Sharma class 12 solutions chapter 22 exercise 22.8 consist a total of 18 questions that gives a brief of all the essential concepts of this chapter mentioned below-

  • Using vector method, prove the points are Collinear or Non-collinear vectors

  • Prove the vectors are Coplanar or Non-coplanar

  • Linear combination of vectors

Hence, we can find more benefits of using the RD Sharma class 12 solution chapter 22 exercise 22.7 in the list given below:-

  • The RD Sharma class 12th exercise 22.8 consists of questions designed by experts from the academics field across the country. They provide you with useful tips to evaluate the questions in alternate ways that the school might not teach.

  • The RD Sharma class 12 chapter 22 exercise 22.8 is trusted by thousands of students in the entire country and recommended to other students as well for performing better in any public examination.

  • The RD Sharma class 12th exercise 22.8 is revised every year and is updated according to the syllabus of NCERT, thus making it the best source for taking help while solving NCERT textbook for examination.

  • Students also find the RD Sharma class 12th exercise useful in completing their homework, as teachers refer to the solution for assigning homework.

  • Students should rigorously practice the RD Sharma class 12th exercise 22.8 as most of the board exams' questions are similar to the book questions.

  • You can easily get access to the RD Sharma class 12th exercise 22.8 by just downloading the online PDFs from the website of Career360, and that is also free of cost, making it worthy for any student to own it.

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Can I take the help of the RD Sharma class 12th exercise 22.8 for solving homework?

Yes, it is beneficial to take the help of the RD Sharma solution to solve homework as it gives alternate ways to solve questions to save time.

2. What is the charge of the RD Sharma class 12th chapter 22 solution?

It is free of cost to own the solution by downloading it from the website of Career360.

3. What is a coplanar vector?

Coplanar vectors are defined as the vectors which are lying on the same in a three-dimensional plane. The vectors are parallel to the same plan. The Co-planarity of two lines lies in a three-dimensional space, which is represented in vector form.

4. Are the other chapters of the RD Sharma also available on the Career360 website?

Yes, you can find all the material of the RD Sharma solution in one place that is the Career360 website.

5. Are the RD Sharma solutions of the updated version?

Yes, the solutions are updated yearly to correspond with the syllabus of NCERT to prepare students for any public exam.

Articles

Back to top