Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 22 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 22 MCQ

Updated on Jan 24, 2022 06:20 PM IST

The RD Sharma solution chapters are said to be of the highest quality when it comes under the consideration of practicing maths with effective results from students all across the country. The Class 12 RD Sharma chapter 22 exercise MCQ solution are the multiple-choice questions, where each question has four options to choose from, thus making it easy for the students to confidently answer the questions. The RD Sharma class 12th exercise MCQ contains questions covering the basics and the tough level questions, all in the same solution paper.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter22 MCQ Algebra of vectors - Other Exercise
  2. Algebra of Vectors Excercise: MCQ
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter22 MCQ Algebra of vectors - Other Exercise

Background wave

Algebra of Vectors Excercise: MCQ

Algebra of Vectors exercise Multiple choice question 1

Answer: (13)i^+(1+3)j^
Hint: You have to find circumcenter of ΔABC
Given: In ΔABC,A=(0,0),B=(3,33),C=(33,3), magnitude 22
Solution:

|AO|=22|AO|=|BO|=|CO|=22=R
Let Positive vector of be xi^+yj^
|AO|=x2+y2x2+y2=8 ...................(1)
 Also |BO|=|CO|(x3)2+(y33)2=(x+33)2+(y3)2x26x+9+y263y+27=x2+63x+27+y26y+9y(663)=x(63+6)
y=x(3+1)13 ......................(2)
Substituting from (2) and (1) we get
(13)2x2+(1+3)2x2=8(13)2x2×8=8(13)2x=13y=1+3
The positive vector of O is (13)i^+(1+3)j^
AO=(13)i^+(1+3)j^


Algebra of Vectors exercise Multiple choice question 2

Answer: ba
Hint: AD=2BC
Given: If a,b are vector forming consecutive side of rectangular Hexagon ABCDEF the vector representing side CD is
Solution: Let ABCDEF be rectangular Hexagon such that
AB=a and BC=b
We know
AD is parallel BC such that AD=2BC
AD=2BC=2b
In ΔABC, we know
AB+BC=ACa+b=AC
In ΔACD, we have
AC+CD=ADCD=ADACCD=2b(a+b)CD=ba


Algebra of Vectors exercise Multiple choice question 3

Answer:3AC=5CB
Hint: ONAB
Given: Forces 3OA,5OB act along OA and OB. If resultant pass through C on AB then
Solution: Draw ON the perpendicular to line AB
Let i be unit actor along ON
The Resultant Force R=3OA+5OB ……….. (1)
The angle between i and force
R,3OA,5OB are CON,AON,BON

Ri=3OAi+5OBi
 R.1.cos CON=3OA1.cosBONRONOC=3OA×ONOA+5OB×ONOBROC=3+5,R=8
OC we know that
OA=OC+CA3OA=3OC+3CA ..................(i)
OB=OC+CB5OB=5OC+5CB ..................(ii)
On adding (i) and (ii)
3OA+5OB=8OC+3CA+5CB
R=8OC+3CA+5CB
8OC=8OC+3CA+5CB
|3AC|=|5CB|
3AC=5CB


Algebra of Vectors exercise Multiple choice question 4

Answer: None of these
Hint: Find a+b+c
Given: If a,b,c are three non-vectors no two of which are collinear and vector a+b is collinear with c,b+c is collinear with a then a+b+c=?
Solution: Let a+b=xc …………. (1)
b+c=ya …………. (2)
Then a+b+c=?
Multiply equation (2) by 2
2(b+c)=(ya)2 ...............(3)
2b+2c=2ay
Subtract equation (3) by eq (1)
2b+2c2ayab+xcb+(2+x)c+(2y1)a=0
Comparing both sides
b=0(2+x)c=02c=xcx=2
(2y1)a=02ya=1y=12a


Algebra of Vectors exercise Multiple choice question 5

Answer:40
Hint: Find a
Given: If A(60i^+3j^),B(40i^8j^) and C(ai^52j^) are collinear then equal to
Solution:
A=60i^+3j^B=40i^8j^C=ai^52j^
Now find AB and BC
AB=20i^11j^BC=(a40)i^44j^
Take cross product
AB×BC=(20i^11j^)×(a40)i^44j^0i^+0j^+(880+11(a40))=0a40=80a=80+40a=40


Algebra of Vectors exercise Multiple choice question 6

Answer: 4OG
Hint: Find OA+OB+OC+OD=?
Given: If G is intersection of diagonal of parallelogram. ABCD and O is any point that OA+OB+OC+OD=?
Solution: Let consider the point O as origin G is the midpoint of AC

OG=OA+OC22OG=OA+OC ................(1)
Also G is midpoint of BD
OG=OB+OD22OG=OB+OD
On add (1) and (2)
2OG+2OG=OA+OC+OB+OD4OG=OA+OB+OC+ODOA+OB+OC+OD=4OG


Algebra of Vectors exercise Multiple choice question 7

Answer: Unit vector
Hint: k^ is which vector
Given: The vector cosαcosβi^+cosαsinβi^+sinαk^
Solution:
|A|=(cosαcosβ)2+(cosαsinβ)2+sin2α=cos2α(cos2β+sin2β)+sin2α=cos2α+sin2α=1 (Unit vector) (cos2β+sin2β=1)


Algebra of Vectors exercise Multiple choice question 8

Answer: b+c
Hint: Find AE
Given: In regular Hexagon  ABCDEF, AB=a,BC=b,CD=c then AE=?
Solution: We have
AB=a,BC=b,CD=c

AC=a+b
In ΔACD we have
AC+CD=ADa+b+c=AD
In ΔAED we have
AD+DE=AEa+b+ca=AEAE=b+c(DE=BA=a)


Algebra of Vectors exercise Multiple choice question 9

Answer: α+β+γ=1
Hint: Find plane of vector equation
Given: The vector equation of plane passing through a,b,c,r=αa+βb+γc provide that
Solution: r=αa+βb+γc ................(1)
r=a+λ1a+λ1cλ1bλ2ar=a(λ1λ2)+b(λ1)+λ2c ..............(2)
By comparing (1) and (2)
α+β+γ=1+λ1λ2λ1+λ2α+β+γ=1



Algebra of Vectors exercise Multiple choice question 10

Answer:OO1
Hint:OA+OB+OC
Given : If O and O1 are circumcenter and orthocenter of ΔABC , then OA+OB+OC
Solution: According to properties of triangle circumcenter O in ΔABC the sum of distance from circumcentre to orthocentre
OA+OB+OC=OO1


Algebra of Vectors exercise Multiple choice question 11

Answer: Parallelogram
Hint: Find ABCD
Given: If a,b,c&d are position vectors of points A,B,C and D such that no three of them are collinear a+c=b+d then ABCD is
Solution: Given a+c=b+d
cd=baAB=DC and a+c=b+dcd=baAD=BC
Since a+c=b+d
12(a+c)=12(b+d)
So position vector midpoint of BD= position vector of midpoint of AC
Hence bisect each other
The given point ABCD is parallelogram.


Algebra of Vectors exercise Multiple choice question 12

Answer:13(a+b)
Hint: Find the centroid G
Given: Let G is centroid of ΔABCAB=a,AC=b then bisector AG in terms of a&b
Solution: TakeA as origin them position vector A,B,C are given 0,a and b respectively
The centroid =0+a+b3=a+b3=13(a+b)


Algebra of Vectors exercise Multiple choice question 13

Answer: 4AB
Hint: Find AD+EB+FC equals - ?
Given: If ABCDEF is regular Hexagon then AD+EB+FC
Answer: We have

AD+EB+FC(AB+BC+CD)+(ED+DC+CB)+FC
AB+(BC+CB)+(CD+DC)+ED+FCAB+0+0+AB+2AB=4AB(ED=AB,FC=2AB)



Algebra of Vectors exercise Multiple choice question 14

Answer: Form as isosceles triangle.
Hint:ABC for which triangle
Given: The position vector of pointsA,B and Care 2i+jk,3i2j+k,i+4j3k
Solution:
OA=2i^+j^k^,OB=3i^2j^+k^,OC=i^+4j^3k^
AB=OBOA=(32)i^+(21)j^+(1+1)k^=i^3j^+2k^
|AB|=12+32+22=1+9+4=14BC=OCOB=(13)i^+(4+2)j^+(31)k^=2i^+6j^4k^
|BC|=(2)2+62+(4)2=4+36+16=56=214CA=OAOC=(21)i^+(14)j^+(1+3)k^
=i^3j^+2k^|CA|=12+32+22=1+9+4=14

Hence AB&CA=14
It forms isosceles triangle.


Algebra of Vectors exercise Multiple choice question 15

Answer: (2,3)
Hint:(x,y) value find
Given: If three points A,B,C have position vectors i^+xj^+3k^3i^+4j^+7k^yi^2j^5k^ respective are collinear , then (x,y)=
Solution: If
i^+xj^+3k^3i^+4j^+7k^yi^2j^5k^
AB=3i^+4j^+7k^i^xj^3k^=2i^+(4x)j^+4k^BC=yi^2j^5k^3i^4j^7k^=(y3)i^6j^12k^
Since vectors are collinear.
AB=λBC2i^+(4x)j^+4k^=λ((y3)i^6j^12k^)2=λ(y3) ...................(1)
(4x)=6λ ....................(2)
4=12λλ=13

Substitute λ in (1) and (2)

2=13(y3)6=y3y=34x=6×134x=2x=2x=2,y=3



Algebra of Vectors exercise Multiple choice question 16

Answer:2AB
Hint: ACBD=?
Given:ABCD is parallelogram with AC and BS as diagonal
Solution: ABCD is parallelogram So ABCD&ADBC
AC=ABBC (Subtraction theorem)
BD=BAAD (Subtraction theorem)
ACBD=ABBCBA+AD=ABBC+AB+BC(ABCD&ADBC)
= 2AB


Algebra of Vectors exercise Multiple choice question 17

Answer: 12(ab)
Hint: OA=?
Given: If OACB is parallelogram OC=a,AB=b
Solution: OC=a,AB=b
$\overrightarrow{O B}+\overrightarrow{B C}=\overrightarrow{O C} $ (BC=OA)
OB=OCOAOB=aOAOA+AB=OB
2OA=abOA=ab2


Algebra of Vectors exercise Multiple choice question 18

Answer: Both a&bhave same direction but different magnitude
Hint: Talk about a&b
Given: If a&b are collinear vector, then which of the following are incorrect?
Solution: If a&b are two collinear vectors then they are parallel
Therefore, b=λa
 If λ=±1 then a=±b If a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^ then b=λa
b1=λa1,b2=λa2 and b3=λa3b1a1=b2a2=b3a3=λ
Thus, respective component of a&b proportional. However, vector a&b have different direction.
So Statement D is incorrect
That both a&b have same direction but different magnitude.


Algebra of Vectors exercise Multiple choice question 19

Answer: AB+BCCA=0
Hint: According to diagram
Given: Which of the following is not true?
Solution:

 From the given diagram 
AB+BC=ACAB+BCCA=ACCAAB+BCCA=2AC
Hence, AB+BCCA=0 is not true.



Algebra of Vectors exercise Multiple choice question 20

Answer: 13(4a+b)
Hint: Measure by 1:2
Given: The position vector of point which divide the join of point with position a+b and 2abin ratio 1:2 is:
Solution: Apply section formula the position vector require point
2(a+b)+1(2ab)2+1=4a+b3
Since position vector of point R divide line segment joining the point P and Q where position vector are p&q in ration m:n
=mq+npm+n


Algebra of Vectors exercise Multiple choice question 21

Answer: i^j^+2k^
Hint: Initial vector find
Given: The vector with initial point P(2,3,5) terminal point Q(3,4,7)is
Solution: Require vector AB=(32)i^+(4+3)j^+(75)k^
=i^j^+2k^


Algebra of Vectors exercise Multiple choice question 22

Answer: 352
Hint: The length of median by median formula
Given: The vector 2j^+k^&3i^j^+4k^ represent two side AB&AC of ΔABC. Find length of median,
Solution:
BC=ACAB=(3i^j^+4k^)(2j^+k^)=3i^3j^+3k^
BD=12BC32i^32j^+32k^AD=AB+BD=(2j^+k^)+(32i^32j^+32k^)
AD=32ı^+12ȷ^+52k^|AD|=(32)2+(12)2+(52)2
=94+14+254=354=352


Algebra of Vectors exercise Multiple choice question 23

Answer: [0,6]
Hint: Find interval of |λa|
Given: If |a|=3 and 1λ2 then |λa| lies in
Solution:|λa|=?
|a|=31λ2
0λa203λ20λ6λa[0,6]


Algebra of Vectors exercise Multiple choice question 25

Answer: 54a
Hint: According to ratio 3:1
Given: The position vector of point which divide the join of points 2a3b&a+b in ratio 3:1
Solution: Position vector R=3(a+b)+1(2a3b)3+1
Since point vector are joint by R divide line segment join P and Q whose positive vector p&q in ratio m:n given mq+npm+n

R=54a



Algebra of Vectors exercise Multiple choice question 26

Answer: 0
Hint: EA+EB+EC+ED=?
Given:ABCD is rhombus whose diagonal intersect E then EA+EB+EC+ED equal
Solution: Since in rhombus diagonal bisects each other, |EA|=|EC| and |EB|=|ED|
But since they are opposite to each other they are opposite signs
EA=ECEB=EDEA+EC=0 ...................(1)
EB+ED=0 ...................(2)
EA+EB+EC+ED=0


Algebra of Vectors exercise Multiple choice question 27

Answer:209
Hint: |a+b+c|
Given: If a,b,c are position vectors of point A(2,3,4),B(3,4,5)&C(3,2,3)
Then |a+b+c|is equal to
Solution:
a=2i^+3j^4k^b=3i^4j^5k^c=3i^+2j^3k^
|a+b+c|=(2+3+3)i^+(34+2)j^+(453)k^
=8i^+j^12k^
Magnitude:
=82+12+(12)2=64+1+144=209


The RD Sharma class 12 solution of Algebra of vectors exercise MCQ consists of a total of 27 questions, all covering the essential concepts of the chapter and you have to choose the correct option among all the options given in the question. RD Sharma solutions The RD Sharma class 12th exercise MCQ covers the below-given concepts of the Algebra of vectors chapter-

  • Scalar and Vector product

  • Addition and subtraction of vectors

  • Multiplication and division by a scalar quantity

  • Collinear and non-collinear

  • Unit vectors and position vector

The benefits that accrue by using the RD Sharma class 12 solution chapter 22 exercise MCQ are listed below-

  • The RD Sharma class 12th exercise MCQ can easily be accessed by downloading it from the official website of careers360 And any student can reach the solutions by sitting at home.

  • The RD Sharma class 12 chapter 22 exercise MCQ is the multiple choice question where students are provided with four options to choose from the given section which automatically makes their burden less.

  • The RD Sharma class 12th exercise MCQ is prepared by a group of people who have the expertise in this department and present you with the best of questions that have the probability of being asked in the board exams.

  • The solutions that you download from the Careers360 website doesn't ask you to pay any amount for the online PDFs and study materials, so it comes free of cost.

  • The RD Sharma class 12th exercise MCQ can also be used for solving homework as most of the teachers refer to these solutions while providing homework.

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. What is the magnitude of a vector?

The magnitude of a Vector is the distance between the initial point P and the endpoint Q.

2. What is scalar in vector algebra?

A scalar is an element of a field that is used to define a vector space. A quantity described by multiple scalars, such as having both directions and magnitude, is called a vector.

3. What is the vector B formula?

Vectors A and B are said to be equal if lAl = lBl as well as their directions are said to be the same.

4. What are the types of vectors?

There are a few vectors mainly, zero vector, unit vector, position vector, co-initial vector, like and unlike vectors, coplanar vector, collinear vector, equal vector..

5. Can I take the help of the RD Sharma solution to solve homework?

Yes, as teachers refer to these solutions for assigning homework, it is helpful and less time-consuming.

Articles

Get answers from students and experts
Back to top