RD Sharma Class 12 Exercise 22.7 Algebra of vectors Solutions Maths - Download PDF Free Online

# RD Sharma Class 12 Exercise 22.7 Algebra of vectors Solutions Maths - Download PDF Free Online

Edited By Lovekush kumar saini | Updated on Jan 24, 2022 06:20 PM IST

Class 12 RD Sharma chapter 22 exercise 22.7 solution is the best book which is available when it comes for the practice of mathematics for the class 12th CBSE students. Class 12th board exams are very important for every student. That's why RD Sharma class 12th exercise 22.7 has been recommended by great experts to grab each concept properly.

Also read - RD Sharma Solutions For Class 9 to 12 Maths

## Algebra of Vectors Excercise: 22.7

Algebra of vectors exercise 22.7 question 1

Point A, B and C are collinear
Hint:
Prove, that the position vectors are parallel to each other, so that they have one common point
Given:
Point A, B and C with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c} \: \text { and }-7 \vec{b}+10 \vec{c}$ respectively
Solution:
Let O be the point of origin for the position vectors
\begin{aligned} &\therefore \overrightarrow{O A}=(\vec{a}-2 \vec{b}+3 \vec{c})-(0+0+0)=\vec{a}-2 \vec{b}+3 \vec{c} \\\\ &\text { Similarly } \overrightarrow{O B}=2 \vec{a}+3 \vec{b}-4 \vec{c} \text { and } \overrightarrow{O C}=-7 \vec{b}+10 \vec{c} \end{aligned}
Now, $\overrightarrow{A B}=$ Position vector B – position vector A
\begin{aligned} &=\overline{O B}-\overline{O A}\\ & \end{aligned}
$=(2 \vec{a}+3 \vec{b}-4 \vec{c})-(\vec{a}-2 \vec{b}+3 \vec{c})\\$
$=[(2-1) \vec{a}]+[(3+2) \vec{b}]+[(-4-3) \vec{c}]\\$
$\overrightarrow{A B}=\vec{a}+5 \vec{b}-7 \vec{c}$ …(i)
$\overrightarrow{BC}$ Position of vector C – Position of vector B
\begin{aligned} &\overrightarrow{B C}=[-7 \vec{b}+10 \vec{c}]-[2 \vec{a}+3 \vec{b}-4 \vec{c}] \\ & \end{aligned}
$=[(0-2) \vec{a}]+[(-7-3) \vec{b}]+[(10+4) \vec{c}] \\$
$=-2 \vec{a}-10 \vec{b}+14 \vec{c}$
$=-2(\vec{a}+5 \vec{b}-7 \vec{c})$ …(ii)
Substituting (i) in (ii)
$\overrightarrow{B C}=-2(\overline{A B})$
Thus, $\overrightarrow{AB }\: and \: \overrightarrow{B C}$ are parallel vectors
As both vectors have one common point in B
$\overrightarrow{AB }\: and \: \overrightarrow{B C}$ are collinear
Thus, point A, B and C are collinear.

Algebra of vectors exercise 22.7 question 2(i)

Point A, B and C are collinear
Hint:
Prove, that the position vectors are parallel to each other.
Given:
Point A, B and C with position vectors $\vec{a}, \vec{b} \text { and } 3 \vec{a}-2 \vec{b}$ respectively
Solution:
So, $\overrightarrow{A B}=$ Position of B vector – Position of A vector
$\overrightarrow{A B}=\vec{b}-\vec{a}$ …(i)
Similarly find $\overrightarrow{B C}$
$\overrightarrow{B C}=$ Position of C vector – Position of B vector
\begin{aligned} &=(3 \vec{a}-2 \vec{b})-(\vec{b}) \\ & \end{aligned}
$=3 \vec{a}-2 \vec{b}-\vec{b}$
$=3 \vec{a}-3 \vec{b}$
\begin{aligned} &=3(\vec{a}-\vec{b}) \\ \end{aligned}
$=-3(\vec{b}-\vec{a})$ …(ii)
Substituting (i) in (ii)
Thus, $\overrightarrow{B C}=-3 \overrightarrow{A B}$
So we say that $\overrightarrow{B C}\; \text{and}\; \overrightarrow{A B}$ parallel to each other.
Here B is a common point in both vector
Thus, point A, B and C are collinear.

Algebra of vectors exercise 22.7 question 2(ii)

Point A, B and C are collinear
Hint:
Prove, that the position vectors are parallel to each other
Given:
$\vec{a}, \vec{b} \& \vec{c}$ Are non-coplanar vectors
Solution:
Let, points A, B and C be the position vectors for $\vec{a}+\vec{b}+\vec{c}, 4 \vec{a}+3 \vec{b}, 10 \vec{a}+7 \vec{b}-2 \vec{c}$ respectively
$\overrightarrow{A B}$ Position vector B – Position vector A
$=(4 \vec{a}+3 \vec{b})-(\vec{a}+\vec{b}+\vec{c}) \\$
$=3 \vec{a}+2 \vec{b}+(-\vec{c}) \\$
\begin{aligned} & &\overrightarrow{A B}=3 \vec{a}+2 \vec{b}-\vec{c} \end{aligned} …(i)
Similarly,
\begin{aligned} &\overrightarrow{B C}=(10 \vec{a}+7 \vec{b}-2 \vec{c})-(4 \vec{a}+3 \vec{b})\\ & \end{aligned}
$=6 \vec{a}+4 \vec{b}-2 \vec{c}\\$
$=2(3 \vec{a}+2 \vec{b}-\vec{c})$ …(ii)
Substitute (i) in (ii)
$\therefore \overline{B C}=2 \overrightarrow{A B}$
Hence, $\overrightarrow{A B} \& \overline{B C}$ are parallel vectors.
As B point is common in both vectors
Thus, A, B and C are collinear points.

Algera of vectors excercise 22.7 question 3

Point A, B and C are collinear
Hint:
Obtain the parallel vectors and if any common points is there they are parallel to each other
Given:
Three vectors are given.
Solution:
Let,
\begin{aligned} &A=\hat{i}+2 \hat{j}+3 \hat{k}\\ & \end{aligned}
$B=3 \hat{i}+4 \hat{j}+7 \hat{k}\\$
$C=-3 \hat{i}-2 \hat{j}-5 \hat{k}\\$
$\therefore \overrightarrow{A B}=(3 \hat{i}+4 \hat{j}+7 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\\$
$=(3-1) \hat{i}+(4-2) \hat{j}+(7-3) \hat{k}\\$
$=2 \hat{i}+2 \hat{j}+4 \hat{k}$ … (i)
Similarly
\begin{aligned} &\overrightarrow{B C}=(-3 \hat{i}-2 \hat{j}-5 \hat{k})-(3 \hat{i}+4 \hat{j}+7 \hat{k})\\ & \end{aligned}
$=(-3-3) \hat{i}+(-2-4) \hat{j}+(-5-7) \hat{k}\\$
$=-6 \hat{i}-6 \hat{j}-12 \hat{k}\\$
$=-6(\hat{i}+\hat{j}+2 \hat{k})\\$
\begin{aligned} &\overrightarrow{B C}=-3(2 \hat{i}+2 \hat{j}+4 \hat{k}) \end{aligned} … (ii)
Put (i) in (ii)
Thus, $\overrightarrow{B C}=-3 \overrightarrow{A B}$
From above result, B is the common point in $\overline{A B} \& \overline{B C}$
A, B and C points are collinear.

Algera of vectors excercise 22.7 question 4

$8$
Hint:
As the given vectors are collinear, then use formula $\overrightarrow{A B}=\lambda \overrightarrow{B C}$
Given:
Three vectors are collinear.
Solution:
Let,
\begin{aligned} &A=10 \hat{i}+3 \hat{j} \\ \end{aligned}
$B=12 \hat{i}-5 \hat{j} \\$
$C=a \hat{i}+11 \hat{j}$
So the above three points A, B and C represents three vectors collinear to each other
\begin{aligned} &\overrightarrow{A B}=(12 \hat{i}-5 \hat{j})-(10 \hat{i}+3 \hat{j}) \\ & \end{aligned}
$=(12-10) \hat{i}+(-5-3) \hat{j} \\$
$=2 \hat{i}-8 \hat{j} \\$
$\overrightarrow{B C}=(a \hat{i}+11 \hat{j})-(12 \hat{i}-5 \hat{j}) \\$
$=(a-12) \hat{i}+(11+5) \hat{j} \\$
$=(a-12) \hat{i}+16 \hat{j}$
As, A,B and C are collinear, then there exists $\overrightarrow{A B}=\lambda \overrightarrow{B C}$
$\therefore(2 \hat{i}-8 \hat{j})=\lambda(a-12) \hat{i}+\lambda 16 \hat{j}$
Comparing
\begin{aligned} &-8 j=\lambda 16 \hat{j} \\ & \end{aligned}
$-8=\lambda 16 \\$
$\lambda=\frac{-1}{2} \\$
$2 \hat{i}=\lambda(a-12) \hat{i} \\$
$2=\lambda(a-12)$
Put the value of $\lambda$
\begin{aligned} &2=\frac{-1}{2}(a-12) \\ \end{aligned}
$-4=a-12 \\$
$a=8$

Algera of vectors excercise 22.7 question 5

Given position vectors are collinear for all the real values of $\lambda$
Hint:
To be collinear, vectors must be a multiple of another.
Given:
$\vec{a}, \vec{b}$ Are non collinear vectors .
Solution:
Let, position vectors of points X, Y and Z are $\vec{a}+\vec{b}, \vec{a}-\vec{b} \& \vec{a}+\lambda \vec{b}$ respectively.
Then, $\overrightarrow{XY}$ Position of vector Y – Position of vector X
\begin{aligned} &=(\vec{a}-\vec{b})-(\vec{a}+\vec{b}) \\ & \end{aligned}
$=-2 \vec{b}$
Similarly
$\overrightarrow{YZ}$ Position of vector Z – Position of vector Y
\begin{aligned} &=(\vec{a}+\lambda \vec{b})-(\vec{a}-\vec{b})\\ \end{aligned}
$=\lambda \vec{b}+\vec{b}\\$
$=\vec{b}(\lambda+1)$ … (i)
Now,
$\overrightarrow{Z X}$ Position of vector X – Position of Z
\begin{aligned} &=(\vec{a}+\vec{b})-(\vec{a}+\lambda \vec{b}) \\ \end{aligned}
$=\vec{b}-\lambda \vec{b} \\$
$=\vec{b}(1-\lambda) \\$
$=-\vec{b}(\lambda-1)$ …(ii)
From (i) and (ii)
$\overrightarrow{Z X}=-K \overrightarrow{Y Z}$
Here point Z is common
Thus, we can say that for all real values of $\lambda$ given position vectors are parallel.

Algebra of vectors exercise 22.7 question 6

A, B and C are collinear points
Hint:
From the origin, point O towards a point ‘A’. $\overrightarrow{O A}=-\overrightarrow{A O}$

Given:
A, B and C are collinear
Solution:
As per shown figure above
\begin{aligned} \overrightarrow{O A} &=-\overrightarrow{A O} \\ \overrightarrow{O B} &=-\overrightarrow{B O} \\ \overrightarrow{O C} &=-\overrightarrow{C O} \end{aligned}
Where O must be the origin
We have,
\begin{aligned} &\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{B O}+\overrightarrow{O C} \\ &\overrightarrow{A O}-\overrightarrow{B O}=\overrightarrow{O C}-\overrightarrow{O B} \\ &(-\overrightarrow{O A})-(-\overrightarrow{O B})=\overrightarrow{O C}-\overrightarrow{O B} \\ &\overrightarrow{O B}-\overrightarrow{O A}=\overrightarrow{O C}-\overrightarrow{O B} \end{aligned}
From above figure we can say
$\overrightarrow{A B}=\overrightarrow{B C}$

Algebra of vectors exercise 22 .7 question 7

Given position vectors are collinear
Hint:
Just prove that one vector can be represented in form of another
Given:
$2 \hat{i}-3 \hat{j}+4 \hat{k} \text { And }-4 \hat{i}+6 \hat{j}-8 \hat{k}$
Solution:
Let,
\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k} \\ & \end{aligned} … (i)
$\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k} \\$
$\vec{b}=-2(2 \hat{i}-3 \hat{j}+4 \hat{k}) \\$
$\vec{b}=-2 \vec{a}$ (From (i))
Thus $\vec{a} \& \vec{b}$ are collinear.

Algebra of vectors exercise 22.7 Question 8

$1$
Hint:
Represent point in form of vectors and use $\overrightarrow{A B}=\lambda \overrightarrow{B C}$
Given:
Points $A(m,-1), B(2,1), C(4,5)$ are collinear
Solution:
\begin{aligned} &A=m \hat{i}-\hat{j} \\ & \end{aligned}
$B=2 \hat{i}+\hat{j} \\$
$C=4 \hat{i}+5 \hat{j} \\$
$\overrightarrow{A B}=(2 \hat{i}+\hat{j})-(m \hat{i}-\hat{j}) \\$
$=(2-m) \hat{i}+(1+1) \hat{j} \\$
$=(2-m) \hat{i}+2 \hat{j} \\$
$\overrightarrow{B C}=(4 \hat{i}+5 \hat{j})-(2 \hat{i}+\hat{j}) \\$
$=(4-2) \hat{i}+(5-1) \hat{j} \\$
$=2 \hat{i}+4 \hat{j}$
If they are collinear then
\begin{aligned} &\overrightarrow{A B}=\lambda \overrightarrow{B C} \\ &(2-m) \hat{i}+2 \hat{j}=\lambda(2 \hat{i}+4 \hat{j}) \end{aligned}
Comparing
\begin{aligned} &2=\lambda(4) \\ &\lambda=\frac{1}{2} \\ &(2-m)=\lambda(2) \end{aligned}
Put the value of $\lambda$
\begin{aligned} &2-m=\frac{1}{2} \times 2 \\ &2-m=1 \\ &m=2-1 \\ &m=1 \end{aligned}

Algebra of vectors exercise 22.7 question 9

Given points are collinear
Hint:
If the points are collinear then they are parallel.
Given:
$(3,4),(-5,16) \&(5,1)$ Are collinear
Solution:
Let,
\begin{aligned} &A=3 \hat{i}+4 \hat{j} \\ &B=-5 \hat{i}+16 \hat{j} \\ &C=5 \hat{i}+\hat{j} \end{aligned}
$\therefore \overrightarrow{A{B}}=$ Position of B – Position of A
$=(-5 \hat{i}+16 \hat{j})-(3 \hat{i}+4 \hat{j}) \\$
$=(-5-3) \hat{i}+(16-4) \hat{j} \\$
$=-8 \hat{i}+12 \hat{j} \\$
\begin{aligned} & &=-4(2 \hat{i}-3 \hat{j}) \end{aligned} … (i)
$\overrightarrow{B C}$ Position of C – Position of B
$=(\hat{5} \hat{i}+\hat{j})-(-5 \hat{i}+16 \hat{j}) \\$
$=(5+5) \hat{i}+(1-16) \hat{j} \\$
$=10 \hat{i}-15 \hat{j} \\$
\begin{aligned} & &=5(2 \hat{i}-3 \hat{j}) \end{aligned} … (ii)
From (i) and (ii)
$\overrightarrow{B C}=\frac{-5}{4} \overrightarrow{A B}$
Thus $\overrightarrow{B C} \& \overrightarrow{A B}$ are parallel to each and B being the common point
A, B and C are collinear
Thus, $(3,4),(-5,16) \&(5,1)$ are collinear.

Algebra of vectors exercise 22.7 question 10

$9$
Hint:
If one vector is scalar product of another vector, then they are parallel and collinear.
Given:
\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j} \\ &\vec{b}=-6 \hat{i}+m \hat{j} \end{aligned} Are collinear
Solution:
\begin{aligned} &\vec{a}=2 \hat{i}-3 \hat{j} \\ & \end{aligned}
$\vec{b}=-6 \hat{i}+m \hat{j} \\$
$\vec{b}=\lambda \vec{a} \\$
$(-6 \hat{i}+m \hat{j})=\lambda(2 \hat{i}-3 \hat{j})$
Comparing we get
$-6=2 \lambda \\$
$\lambda=-3 \\$ … (i)
$m=-3 \lambda \\$
$m=-3(-3) \\$ … (From (i))
\begin{aligned} & &m=9 \end{aligned}
$\therefore$ Value of m is 9

Algebra of vectors exercise 22.7 question 11

$2:3$
Hint:
When, in a three collinear points A, B and C, if B divides AC then formula is $\frac{n \vec{a}+m \vec{b}}{n+m}$
Given:
$A(1,-2,-8), B(5,0,-2) \& C(11,3,7)$ Are collinear points
Solution:
\begin{aligned} &A=\hat{i}-2 \hat{j}-8 \hat{k} \\ &B=5 \hat{i}-2 \hat{k} \\ &C=11 \hat{i}+3 \hat{j}+7 \hat{k} \\ &\overrightarrow{A B}=(5 \hat{i}-2 \hat{k})-(\hat{i}-2 \hat{j}-8 \hat{k}) \\ &=(5-1) \hat{i}+(0+2) \hat{j}+(-2+8) \hat{k} \end{aligned}
$=4 \hat{i}+2 \hat{j}+6 \hat{k} \\$ … (i)
$\overrightarrow{B C}=(11 \hat{i}+3 \hat{j}+7 \hat{k})-(5 \hat{i}-2 \hat{k}) \\$
$=(11-5) \hat{i}+(3-0) \hat{j}+(7+2) \hat{k} \\$
\begin{aligned} & &=6 \hat{i}+3 \hat{j}+9 \hat{k} \end{aligned} … (ii)
Rewriting (i) and (ii)
$\overrightarrow{A B}=2(2 \hat{i}+\hat{j}+3 \hat{k}) \\$ … (iii)
\begin{aligned} & &\overrightarrow{B C}=3(2 \hat{i}+\hat{j}+3 \hat{k}) \end{aligned} … (iv)
From (iii)
$\overrightarrow{B C}=\frac{3}{2} \overline{A B}$
Thus, $\overrightarrow{B C} \& \overrightarrow{A B}$ are parallel to each other
Therefore they are collinear
Now,

Now, if B is dividing AC internally into m and n then,
\begin{aligned} &B=\left(\frac{11 m+n}{m+n}\right) \hat{i}+\left(\frac{3 m-2 n}{m+n}\right) \hat{j}+\left(\frac{7 m-8 n}{m+n}\right) \hat{k} \\\\ &5 \hat{i}-2 \hat{k}=\left(\frac{11 m+n}{m+n}\right) \hat{i}+\left(\frac{3 m-2 n}{m+n}\right) \hat{j}+\left(\frac{7 m-8 n}{m+n}\right) \hat{k} \end{aligned}
Comparing,
\begin{aligned} &5=\frac{11 m+n}{m+n} \\ &5 m+5 n=11 m+n \\ &\therefore 6 m-4 n=0 \end{aligned} … (v)
$\begin{gathered} 0=\frac{3 m-2 n}{m+n} \\ 0=3 m-2 n \\ 3 m-2 n=0 \end{gathered}$ … (vi)
\begin{aligned} &-2=\frac{7 m-8 n}{m+n} \\ &-2 m-2 n=7 m-8 n \\ &9 m-6 n=0 \end{aligned} … (vii)
Now, solving equation (v) and (VI) by elimination method
\begin{aligned} &6 m-4 n=0 \\ &2(3 m-2 n)=0 \\ &3 m-2 n=0 \\ &3 m=2 n \end{aligned}
If we suppose n=1 then
$3 m=2(1) \\$
\begin{aligned} & &m=\frac{2}{3} \end{aligned} For all the three equation.

Algebra of vectors exercise 22.7 question 12

AB and CD intersect at the point P
Hint:
If $\overrightarrow{A B} \& \overrightarrow{C D}$ intersect at P, it makes A-P-B collinear and C-P-D collinear. So prove they are collinear
Given:
\begin{aligned} &A=-2 \hat{i}+3 \hat{j}+5 \hat{k} \\ & \end{aligned}
$B=7 \hat{i}+0 \hat{j}-\hat{k}=7 \hat{i}-\hat{k} \\$
$C=-3 \hat{i}-2 \hat{j}-5 \hat{k} \\$
$D=3 \hat{i}+4 \hat{j}+7 \hat{k} \\$
$P=1 \hat{i}+2 \hat{j}+3 \hat{k}$
Solution:
\begin{aligned} &A=-2 \hat{i}+3 \hat{j}+5 \hat{k} \\ &B=7 \hat{i}+0 \hat{j}-\hat{k}=7 \hat{i}-\hat{k} \\ &C=-3 \hat{i}-2 \hat{j}-5 \hat{k} \\ &D=3 \hat{i}+4 \hat{j}+7 \hat{k} \\ &P=1 \hat{i}+2 \hat{j}+3 \hat{k} \end{aligned}
$\overrightarrow{A P}=$ Position vector of P – Position vector of A
\begin{aligned} &=(\hat{i}+2 \hat{j}+3 \hat{k})-(-2 \hat{i}+3 \hat{j}+5 \hat{k})\\ &=(1+2) \hat{i}+(2-3) \hat{j}+(3-5) \hat{k}\\ &=3 \hat{i}-\hat{j}-2 \hat{k} \end{aligned} … (i)
$\overrightarrow{P B}$ Position vector of B – Position vector of P
\begin{aligned} &=(7 \hat{i}-\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\\ & \end{aligned}
$=(7-1) \hat{i}+(0-2) \hat{j}+(-1-3) \hat{k}\\$
$=6 \hat{i}-2 \hat{j}-4 \hat{k}\\$
$=2(3 \hat{i}-\hat{j}-2 \hat{k}) \\$ cgfy… (ii)
$\overline{P B}=2 \overrightarrow{A P}$
Thus, A-P-B are collinear
$\overrightarrow{C P}=$ Position vector of P – Position vector C
\begin{aligned} &=(\hat{i}+2 \hat{j}+3 \hat{k})-(-3 \hat{i}-2 \hat{j}-5 \hat{k}) \\ &=(1+3) \hat{i}+(2+2) \hat{j}+(3+5) \hat{k} \\ &=4 \hat{i}+4 \hat{j}+8 \hat{k} \\ &=4(\hat{i}+\hat{j}+2 \hat{k}) \end{aligned}
$\overrightarrow{P D}=$ Position vector of D – Position vector of P
\begin{aligned} &=(3 \hat{i}+4 \hat{j}+7 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k}) \\ &=(3-1) \hat{i}+(4-2) \hat{j}+(7-3) \hat{k} \\ &=2 \hat{i}+2 \hat{j}+4 \hat{k} \\ &=2(\hat{i}+\hat{j}+2 \hat{k}) \\ &\overrightarrow{P D}=\frac{2}{4} \overrightarrow{C P} \\ &\overrightarrow{P D}=\frac{1}{2} \overrightarrow{C P} \end{aligned}
Thus, $\overrightarrow{P D} \& \overline{C P}$ are collinear
If A-P-B are collinear and also C-P-D are collinear
Hence $\overrightarrow{A B} \text { and } \overrightarrow{C D}$ intersect at P

Algebra of vectors exercise 22.7 Question 13

$-2$
Hint:
Use the formula $\overrightarrow{A B}=K \overrightarrow{B C}$ to prove it is collinear
Given:
\begin{aligned} &A=\lambda \hat{i}-10 \hat{j}+3 \hat{k} \\ &B=\hat{i}-\hat{j}+3 \hat{k} \\ &C=3 \hat{i}+5 \hat{j}+3 \hat{k} \end{aligned}
Solution:
\begin{aligned} &A=\lambda \hat{i}-10 \hat{j}+3 \hat{k} \\ &B=\hat{i}-\hat{j}+3 \hat{k} \\ &C=3 \hat{i}+5 \hat{j}+3 \hat{k} \end{aligned}
\begin{aligned} &\overrightarrow{A B}=(\hat{i}-\hat{j}+3 \hat{k})-(\lambda \hat{i}-10 \hat{j}+3 \hat{k}) \\ &=(1-\lambda) \hat{i}+(-1+10) \hat{j}+(3-3) \hat{k} \\ &=(1-\lambda) \hat{i}+9 \hat{j} \end{aligned}
\begin{aligned} &\overrightarrow{B C}=(3 \hat{i}+5 \hat{j}+3 \hat{k})-(\hat{i}-\hat{j}+3 \hat{k}) \\ &=(3-1) \hat{i}+(5+1) \hat{j}+(3-3) \hat{k} \\ &=2 \hat{i}+6 \hat{j} \\ &\overline{A B}=K \overline{B C} \\ &(1-\lambda) \hat{i}+9 \hat{j}=K(2 \hat{i}+6 \hat{j}) \end{aligned}
Comparing

\begin{aligned} &6 K=9 \\ &\therefore K=\frac{9}{6}=\frac{3}{2} \\ &K=\frac{3}{2} \\ &1-\lambda=2 K \end{aligned}
\begin{aligned} &1-\lambda=2\left(\frac{3}{2}\right) \\ &1-\lambda=3 \\ &1-3=\lambda \\ &\lambda=-2 \end{aligned}

RD Sharma Class 12th Exercise 22.7 material is a good alternative for exam preparation as it follows the CBSE syllabus and covers all topics. The RD Sharma Class 12 solution of Algebra of Vectors exercise 22.7 contains 14 questions that help students get a good idea about the concept used.

• Dot and cross product of two vectors

• Unit vectors and position vector

• Collinear vectors

• Non-collinear vectors

• Non-planar vectors

The benefits of RD Sharma class 12th exercise 22.7 are:

• RD Sharma Class 12 Solutions Chapter 22 Exercise 22.7 material contains easy to understand Solutions for which the answers are given step-by-step. Students can refer to this material to ensure efficient preparation while saving time. It is comprehensive, detailed and follows the CBSE syllabus.

• RD Sharma class 12th exercise 22.7 material is prepared by a group of subject experts who have years of experience with the question paper pattern. This is why students can rest assured that the material they are referring to has the best quality answers.

• As RD Sharma class 12th chapter 22 exercise 22.7 material covers the entire syllabus there is a possibility that the questions from RD Sharma class 12th exercise 22.7 material can appear in exams as well. In order to prepare well for the board exams, students can use this material to get more knowledge on the subject.

• RD Sharma class 12th exercise 22.7 material is available on Career360's website and is free to access. Students can access all the answers through any device with an internet connection. They can simply search the book name and exercise number on the website to get relevant results. RD Sharma class 12th exercise 22.7 is an easy and convenient alternative to textbooks.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%

RD Sharma Chapter wise Solutions

1. What is a vector?

A vector consists of both a magnitude and a direction.

2. What is a collinear vector?

Vectors are considered to be collinear vectors when it is said that two or more vectors lie on the same line segment.

Yes, it is entirely safe to download the solutions from Careers360 for trusted authenticated study material.

4. How many exercises do the Algebra of vectors chapter consist of?

12 exercises can be solved easily with the help of RD Sharma solutions in much less time.

5. Where can I find the latest version of RD Sharma Solutions class 12?

The Careers360 website provides all the updated copies of every class and chapter's RD Sharma solutions.

## Upcoming School Exams

#### National Means Cum-Merit Scholarship

Application Date:01 August,2024 - 16 September,2024

Exam Date:19 September,2024 - 19 September,2024