Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
The CBSE board institutions recommend that their students use the RD Sharma solution books to refer to the concepts when they encounter doubts at home. This helps the majority of the students who do not find time to visit tuitions after school hours and who cannot afford to go to tuitions. When topics like the plane in mathematics are a threat to most students, those who possess the RD Sharma Class 12th Exercise 28.13 solution book do not worry about any complexities.
Also Read - RD Sharma Solutions For Class 9 to 12 Maths
The Plane Exercise 28.13 Question 1
Answer: $\vec{r}.\left ( -\hat{i}+2\hat{j}-\hat{k} \right )=7$
Hint: use vector cross product to prove
Given:$\overline{r_{1}}=(2 \hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k}) \text { and } \vec{r}_{2}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+4 \hat{k})$
Solution:
It is given that
$\begin{aligned} &\overline{r_{1}}=(2 \hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k}) \\ \end{aligned}$
$\begin{aligned} &\vec{r}_{2}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\ \end{aligned}$
Consider:$\begin{aligned} &\overline{r_{1}}=\overrightarrow{a_{1}}+\lambda \vec{b}_{1} \& \overrightarrow{r_{2}}=\overline{a_{2}}+\lambda \overline{b_{2}} \\ \end{aligned}$
$\begin{aligned} &\overrightarrow{a_{1}}=2 \hat{j}-3 \hat{k} \\ &\overrightarrow{b_{1}}=\hat{i}+2 \hat{j}+3 \hat{k} \\ &\overrightarrow{a_{2}}=2 \hat{i}+6 \hat{j}+3 \hat{k} \\ &\overline{b_{2}}=2 \hat{i}+3 \hat{j}+4 \hat{k} \\ \end{aligned}$
It can be written as
$\begin{aligned} &\overrightarrow{b_{1}} \times \overline{b_{2}}=\left(\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{array}\right) \\ \end{aligned}$
on further calculation
$\begin{aligned} &=\hat{i}(8-9)-\hat{j}(4-6)+\hat{k}(3-4) \\ &=-\hat{i}+2 \hat{j}-\hat{k} \\ \end{aligned}$
So we get
$\begin{aligned} \vec{a}_{1}\left(\vec{b}_{1} x \overline{b_{2}}\right)=(0 x(-1))+(2 x 2)+((-3) x(-1)) \\ =0+4+3=7 \end{aligned}$
$\begin{aligned} \vec{a}_{1}\left(\vec{b}_{1} \times \overline{b_{2}}\right)=7 \end{aligned}$ .....(i)
Similary :
$\begin{aligned} &\overline{a_{2}} \cdot\left(\vec{b}_{1} \times \overline{b_{2}}\right)=(2 \times(-1))+(6 \times 2)+((3) \times(-1)) \\ &=-2+12-3=7 \\ &\left.\overline{a_{2}} \cdot \vec{b}_{1} \times \overline{b_{2}}\right)=7 \\ \end{aligned}$....(ii)
Using both the equation we get
$\begin{aligned} &\left.\overrightarrow{a_{1}}\left(\vec{b}_{1} x \overline{b_{2}}\right)=\overline{a_{2}} \cdot \overrightarrow{b_{1}} x \overline{b_{2}}\right) \\ \end{aligned}$
So the lines $\vec{r_{1}}$ & $\vec{r_{2}}$ are coplanar
Hence the equation of plane containing $\begin{aligned} &\overline{r_{1}} \& \overrightarrow{r_{2}} \text { is } \vec{r} \cdot\left(\vec{b}_{1} \times \overline{b_{2}}\right)=\overrightarrow{a_{1}} \cdot\left(\vec{b}_{1} \times \overline{b_{2}}\right) \\ \end{aligned}$
$\begin{aligned} &\vec{r} \cdot(-\hat{i}+2 \hat{j}-\hat{k})=7 \\ \end{aligned}$
Hence, the given lines are coplanar and the equation of the plane determined by these lines is
$\begin{aligned} &\vec{r} \cdot(-\hat{i}+2 \hat{j}-\hat{k})=7 \end{aligned}$
The Plane Exercise 28.13 Question 2
Answer: Proud L.H.S =R.H.S
Hint: use vector cross product
Given:$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \text { and } \frac{x}{1}=\frac{y-7}{-3}=\frac{8+7}{2}$
Solution :two lines
$\begin{aligned} &\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}} \\ &=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \end{aligned}$are coplanar if$\begin{aligned} \left(\begin{array}{ccc} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{array}\right) \\ \end{aligned}$
Here, $\begin{aligned} &x_{1}=-1, y_{1}=-1, z_{1}=-2 \\ \end{aligned}$
$\begin{aligned} &{x_{2}}=0 \quad y_{2}=7 \quad z_{1}=-7 \\ &a_{1}=-3 \quad b_{1}=2 \quad c_{1}=1 \\ &a_{2}=1 \quad b_{2}=-3 \quad c_{2}=2 \\ \end{aligned}$
$\begin{aligned} &\left(\begin{array}{ccc} 0-(-1) & 7-3 & -7-(-2) \\ -3 & 2 & 1 \\ 1 & -3 & 2 \end{array}\right) \\ &=\left(\begin{array}{ccc} 1 & 4 & -5 \\ -3 & 2 & 1 \\ 1 & -3 & 2 \end{array}\right) \\ &=1(7)-4(-7)-5(-7) \\ &=0 \end{aligned}$
The given lines are coplarer . equation of the plane containing the given line is
$\begin{aligned} &\left(\begin{array}{ccc} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{array}\right)=0 \\ &\left(\begin{array}{ccc} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ -3 & 2 & 1 \\ 1 & -3 & 2 \end{array}\right)=0 \\ &(x+1)(4+3)-(y-3)(-6+1)+(z+2)(9-0)=0 \\ &7 x+7 y+7 z=0 \\ &x+y+z=0 \end{aligned}$
The Plane Exercise 28.13 Question 3
Answer:$x+y+z=0$Hint: use simultaneous equation to solve
Given:$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $\left ( 0,7,-7 \right )$
Solution: let the equation of the plane passing through $\left ( 0,7,-7 \right )$ be
$a\left ( 2-0 \right )+b\left ( y-7 \right )+c\left ( 2+7 \right )=0$ -----------(1)
The line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$passes through $\left ( -1,3-2 \right )$ and its direction ratios are proportional to $-3,2,1$
Since plane (1) contains this line, it must pass through the point $-3,2,1$
$\begin{aligned} &=a(-1-0)+b(3-7)+c(-2+7)=0 \\ &=-1-4 b+5 c=0 \\ &=a+4 b-5 c=0 \end{aligned}$......(2)
Since plane (1) contains this line, it must be parallel to the line
$=-3a+2b+c=0$............(3)
Solving (1)(2) and (3) we get
$\begin{aligned} &\left(\begin{array}{ccc} x-0 & y-7 & z+7 \\ 1 & 4 & -5 \\ -3 & 2 & 1 \end{array}\right)=0 \\ &=14 x+14(y-7)+14(z+7)=0 \\ &=14 x+14 y+14 z=0 \\ &=x+y+z=0 \end{aligned}$
The Plane Exercise 28.13 Question 4
Answer:$11x-y-3z-35=0$
Hint: use simultaneous equation to solve
Given:$\frac{x-y}{1}=\frac{y-3}{-4}=\frac{z-2}{5} \text { and } \frac{x-3}{1}=\frac{y+2}{-4}=\frac{2}{5}$
Solution: we know that equation of plane passing through $\left (x _{1}+y_{1}+ z_{1}\right )$ is given by
$a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0$....(i)
Since required plane contains lines $\frac{x-y}{1}=\frac{y-3}{-4}=\frac{z-2}{5} \text { and } \frac{x-3}{1}=\frac{y+2}{-4}=\frac{2}{5}$ , so we required plane passes through (4, 3, 2) and (3, -8, 0) so equation of required plane is
$a\left ( x-4_{1} \right )+b\left ( y-3\right )+c\left ( z-2 \right )=0$....(2)
Plane (2) also passes through (3, -3, 0) , so
$\begin{aligned} &a(3-4)+b(-2-3)+c(0-2) \\ &-a-5 b-2 z=0 \\ &a+5 b+2 c=0 \end{aligned}$....(3)
Now plane (2) is also parallel to the line with direction ratio (1, -4, 5) so
$\begin{aligned} &a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=(a)(1)+(6)(-4)+c(5)=0 \\ &a-4 c+5 c=0 \ldots-\ldots-(4) \\ \end{aligned}$
Solving equation (3) and (4) by cross multiplication
$\begin{aligned} &\frac{a}{(5)(5)-(-4)(2)}=\frac{b}{1(2)-(1)(5)}=\frac{c}{(z)(-4)-(1)(5)} \\ &\frac{a}{25+8}=\frac{b}{2-5}=\frac{c}{-5-5} \\ &\frac{a}{33}=\frac{b}{-3}=\frac{c}{-9} \\ \end{aligned}$
Multiplying by 3
$\begin{aligned} &\frac{a}{11}=\frac{b}{-1}=\frac{c}{-3}=x \\ &a=11 x, b=-x, c=3 x \\ \end{aligned}$
Put a, b, c in equation (2)
$\begin{aligned} &a(x-4)+b(y-3)+c(z-2)=0 \\ &(11 x)(2-4)+(-2)(y-3)+(-3 x)(z-2)=0 \\ &11 x_{2}-44 x-\lambda y+3 x z+6 x=0 \\ &11 x-x y-3 x_{2}-35 x=0 \end{aligned}$
Dividing by $x11x-y-3z-35=0$
So equation of required plane is $11x-y-3z-35=0$
The Plane Exercise 28.13 Question 5
Answer: equation of the plane $95x-17y+25z+53=0$ point of intersection is $\left ( 2,4,-3 \right )$Solution: we have equation of the line is $\frac{x+y}{3}=\frac{y+6}{5}=\frac{z-1}{-2} =\lambda$
Point on the line is given by $\left ( 3x-4,5x-6,-2x+1 \right )$-------(1)
Another equation of line is $3x-2y+z+5=0$
$8z+2y+4=0$
Let a, b, c be the direction ratio of the lines it will be perpendicular to normal of $3x-2y+z+5=0$and $2x+3y+4z-4=0$ so using $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0$
$\begin{aligned} &(3)(a)+(-2)(6)+(1)(c)=3 a-2 b+c=0 \\ \end{aligned}$............(2)
Agian $\begin{aligned} &(2)(a)+(3)(b)+(4)(c)=0 \\ \end{aligned}$
$\begin{aligned} &2 a+3 b+4 c=0 \ldots-\cdots-(3) \\ \end{aligned}$
Solving (2) and (3) by cross-multiplication
$\begin{aligned} &\frac{a}{(-2)(4)-(3)(1)}=\frac{b}{(2)(1)-(2)(4)}=\frac{c}{(3)(3)-(-2) 2)} \\ \end{aligned}$
$\begin{aligned} &\frac{a}{-8-3}=\frac{b}{2-12}=\frac{c}{9+4} \\ \end{aligned}$
$\begin{aligned} &\frac{a}{-11}=\frac{b}{-10}=\frac{c}{13} \\ \end{aligned}$
Directional ratios are proportional to
$\begin{aligned} &(-11,-10,13) \\ &\text { Let } z=0 \\ &3 x-2 y=-5 \ldots \cdots-(i) \\ &2 x+3 y=4 \ldots \ldots-(i i) \end{aligned}$
Solving (i) and (ii) by elimination method
$\begin{aligned} 6 x-4 y=-10 \\ \pm 6 x \pm 3 y=\pm 12 \\ \hline-13 y=-22 \\ y=\frac{22}{13} \end{aligned}$
Put y in equation (i)
$\begin{aligned} &3 x-2 y=-5 \\ &3 x-2 \frac{22}{13}=-5 \\ &3 x-\frac{44}{13}=-5 \\ &3 x=-5+\frac{44}{13} \\ &3 x=\frac{-21}{13} \\ &x=\frac{-7}{13} \end{aligned}$
So, the equation of the line (2) is symmetrical form
$\frac{x+\frac{7}{18}}{-11}=\frac{y-\frac{22}{13}}{-10}=\frac{2-0}{13}$
Put the general point of a line from equation (i)
$\begin{aligned} &\frac{3 x-4+\frac{7}{13}}{-11}=\frac{5 x-6-\frac{22}{13}}{-10}=\frac{-2 x+1}{13} \\ &\frac{39 x-52+7}{-11 x 13}=\frac{65 x-78-22}{-10 x 13}=\frac{-2 x+1}{13} \\ &\frac{39 x-45}{-11}=\frac{65 x-100}{-10}=\frac{-2 x+1}{1} \end{aligned}$
The equation of the plane is $45x-17y+25z+53$
There point of intersection is (2, 4, -3)
The Plane Exercise 28.13 Question 6
Answer: L.H.S = R.H.SSince $\vec{b}.\vec{n}=0$ and $\vec{a}.\vec{n}=d$ so the line is the given plane hence proved
The Plane Exercise 28.13 Question 7
Answer: $\frac{x}{2}=\frac{y}{0}=\frac{z}{-1}$
Hint: use simultaneous equation;
Given: $\frac{x+2}{3}=\frac{y}{-2}=\frac{z-7}{6} \text { and } \frac{x+6}{1}=\frac{x+5}{-3}=\frac{z-1}{-1}$
Solution:
Let $\begin{array}{r} \mathrm{L} 1=\frac{2+3}{3}=\frac{y}{-2}=\frac{z-7}{6} \end{array}$ and
$\begin{array}{r} { L2 }=\frac{2+6}{1}=\frac{y+5}{-3}=\frac{z-1}{2} \end{array}$
Equation of two lines .let the plane be $az+by+cz=0$ -------(i)
Given that the required plane through the intersection of the lines L1 and L2 hence the normal to the plane is perpendicular to the line L1 and L2
$\begin{array}{r} 3 x-3 y+6 z=0 \\ x-3 y+2 z=0 \\ \end{array}$
Using cross multiplication, we get
$\begin{array}{r} \frac{x}{-4+18}=\frac{y}{6-6}=\frac{z}{-9+8} \\ \end{array}$
$\begin{array}{r} \frac{x}{14}=\frac{y}{0}=\frac{z}{-1} \\ \frac{x}{2}=\frac{y}{0}=\frac{z}{-1} \end{array}$
The Plane Exercise 28.13 Question 8
Answer: $\vec{r}\left ( 5i+2j-3k \right )=17$Required plane is perpendicular to
$\begin{aligned} &2 x-5 y-15=0 \\ &\frac{2}{a}+\frac{-5}{b}+\frac{0}{c}=1 \\ &2 b=5 a \\ &b=2.5 a \\ &\frac{3}{a}+\frac{4}{2.5 a}+\frac{2}{c}=1 \\ &\frac{7}{a}+\frac{6}{2}=1 \end{aligned}$
Solving the above equation
$\begin{aligned} &a=3.4=\frac{17}{5}, b=\frac{17}{2} \mathrm{and} \\ &c=\frac{-34}{6}=\frac{-17}{3} \end{aligned}$
Substituting the values (1)
$\begin{aligned} &\frac{x}{\frac{17}{5}}+\frac{y}{\frac{17}{2}}+\frac{z}{\frac{17}{-3}}=1 \\ &\frac{5 x}{17}+\frac{2 y}{17}-\frac{3 z}{17}=1 \\ &5 x+2 y-3 z=17 \end{aligned}$
$\begin{aligned} &(x i+y j+2 k) \cdot(5 i+2 j-3 k)=17 \\ &\vec{r}(5 i+2 j-3 k)=17 \end{aligned}$
Vector equation of the plane is $\begin{aligned} &\vec{r}(5 i+2 j-3 k)=17 \end{aligned}$
The line passes through B(1,3,-2) $5\left ( 1 \right )+2\left ( 3 \right )-3\left ( -2 \right )=17$
The point B lies on the plane the line; $\vec{r}=i+3 j-2 k+\lambda(i+j+k)$ lies on the plane$\begin{aligned} &\vec{r}(5 i+2 j-3 k)=17 \end{aligned}$
The Plane Exercise 28.13 Question 9(i)
Answer: $-22x+19y+5z=31$The Plane Exercise 28.13 Question 9(ii)
The line $\frac{x-1}{-3}=\frac{y-2}{-2k}=\frac{z-3}{2}$ pass through the point (1,2,3) so putting $x=1,y=2,z=3$ is the equation we get
Therefore the equation of the plane containing the lines is $-22x+19y+5z=31$
The Plane Exercise 28.13 Question 10(i)
Answer:$\theta =\sin ^{-1}\left ( \frac{1}{\sqrt{3}\sqrt{29}} \right )$Hint: use vector dot product
Since $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$
Solution :any point on the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}=k$ is of the form $\left ( 3k+2,4k-1,2k+2 \right )$
if the point $p\left ( 2k+2,4k-1,2k+2 \right )$ lies in the plane
$\begin{aligned} &x-y+z-5=0 \\ &(3 k+z)-(4 k-1)+(2 k+2)-5=0 \\ &3 k+2-4 k+1+2 k-5=0 \\ &k=0 \\ \end{aligned}$
Thus, the coordinates of the point of intersection of the line and the planes are
$\begin{aligned} &8(0)+2,4(0)-1,2(0)+2 \\ &p(2,-1,2) \\ \end{aligned}$
Let 0 be the angle between the line and the plane thus
$\begin{aligned} &\sin \theta=\frac{\mathrm{xl}+\mathrm{ym}+\mathrm{zn}}{\sqrt{\left(x^{2}+y^{2}+z^{2}\right)} \sqrt{l^{2}++n^{2}}} \end{aligned}$
Where l, m, and n are the direction ratio of the line and x, y and z are the direction ratios of the normal to the plane
The Plane Exercise 28.13 Question 10(ii)
The Plane Exercise 28.13 Question 11(i)
Answer p(1,1,-2)The Plane Exercise 28.13 Question 11(ii)
$\begin{aligned} &\vec{n}=3 i-j-k+\lambda(2 i-2 j+k) \end{aligned}$ is of the form $\begin{aligned} p(3+2 \lambda,-1-2 \lambda,-1+\lambda) \\ \end{aligned}$ lies in the plane
$\begin{aligned} &\vec{n} \cdot(-9 i-3 j+k) \\ &9(3+2 \lambda)-3(-1-2 \lambda)-(-1+2)=14 \\ &27+18 \lambda-3-6 \lambda+1-\lambda=14 \\ &11 \lambda=-11 \\ &\lambda=-1 \\ \end{aligned}$
Thus the required point of intersection is $\begin{aligned} &p(3+2 \lambda,-1-2 \lambda,-1+\lambda) \\ \end{aligned}$ put value$\lambda$ in the equation
$\begin{aligned} &p[3+2(-1),-1-2(-1),-1+(-1)] \\ &p(1,1,-2) \end{aligned}$
The Plane Exercise 28.13 Question 13
Answer:$x-y+z-1=0$The Plane Exercise 28.13 Question 14(i)
Answer: $x-2y+z=0$So the given lines are coplanar , the equation of plane contains line is
$\begin{aligned} &\left(\begin{array}{ccc} \lambda+8 & y-1 & 3-5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{array}\right)=0 \\ &(\lambda+3)(5-10)-(y-1)(-15-(-5))+(2-5)(-6-(-1)=0 \\ &-5 \lambda-15+10 y-10-5 z+25=0 \\ &-5 \lambda+10 y-5 z=0 \end{aligned}$
Divided by -5
$x-2y+z=0$
The Plane Exercise 28.13 Question 15
Answer: $I^{2}+m^{2}=2$Multiply equation (1) by 2 and equation (2) by 3 and then subtract we get
$m=-1$
$l=1$
$l^{2}+m^{2}=2$
The Plane Exercise 28.13 Question 16(i)
Answer: $x=\pm \sqrt{2}$The Plane Exercise 28.13 Question 16(ii)
The Plane Exercise 28.13 Question 17(i)
Answer: $a=1,4,5$The Plane Exercise 28.13 Question 17
The Plane Exercise 28.13 Question 18(i)
Answer: $y+z+1=0$The Plane Exercise 28.13 Question 18(ii)
The equation of plane contain lines is
$\left(\begin{array}{ccc} x-1 & y+1 & 2 \\ 2 & 2 & 2 \\ 5 & 2 & n_{2} \end{array}\right)=0$
When k=2
$\begin{aligned} &(x-1)(4-4)-(y+1)(4-10)+(2)(4-10)=0 \\ &6 y-6 z+6=0 \\ &y+z+1=0 \end{aligned}$
The equation of plane contain line
$\left(\begin{array}{ccc} x-1 & y+1 & 2 \\ 2 & 2 & 2 \\ 5 & 2 & -2 \end{array}\right)=0$
When k=-2
$\begin{aligned} &(x-1)(4-4)-(y+1)(-4-10)+(z)(4+10)=0 \\ &14 y+14 z+14=0 \\ &y+z+1=0 \end{aligned}$
The Plane Exercise 28.13 Question 19(i)
Answer:$\sqrt{3}$ units
Hint: use vector cross products
Given: $\vec{r}=\left ( i+j \right )+\lambda \left ( i+2j-k \right )$
Solution: equation of given line is
$\vec{r}=\left ( i+j \right )+\lambda \left ( i+2j-k \right )$ and $\vec{a}=\vec{r}+\vec{\lambda b}$...................(i)
where
$\vec{a}=i+j$
$\vec{a}=i+2j-k$
Again: $\vec{r}=\left ( i+j \right )+\lambda \left ( i+2j-k \right )$
$\begin{aligned} &\overline{a^{n}}=(i+j)+u(-i+j-2 k) \\ &=\overline{a^{n}}+\bar{u}^{\bar{b}} \\ \end{aligned}$
Where$\begin{aligned} &\overline{a^{1}}=(i+j) \\ &\vec{b}=-i+j-2 k \end{aligned}$
The vector equation of the plane containing the line (i) and (ii) is given by
$\begin{aligned} &\vec{b} x \bar{b}^{\overline{1}}=\left(\begin{array}{ccc} i & j & k \\ 1 & 2 & -1 \\ -1 & 1 & -2 \end{array}\right) \\ &i(-4+1)-j(-2-1)+k(1+2)=3 i+3 j+3 k \end{aligned}$
The Plane Exercise 28.13 Question 19(ii)
The portions in the class 12 mathematics chapter 28 include fifteen exercises. The thirteenth exercise or the ex 28.13 consists of nineteen questions given in the maths textbook which deals with the concepts like to show the lines are coplanar, find the vector equation of the plane, and find the coordinates of the given points. All these concepts have various questions under level 1; there are no level 2 questions in this exercise. To clarify the doubts in this concept, the RD Sharma Class 12 Chapter 28 Exercise 28.13 will lend a helping hand.
The intensity of the questions gets more profound in exercise 13, where all the previously learned concepts are included. This makes the students struggle to solve the sums if they are unclear about the previous exercises. In such cases, they can refer to the RD Sharma Class 12th Exercise 28.13 solution book and the previous exercises to understand the concepts in-depth. All these books are based on the NCERT pattern, which explains why CBSE students must prefer these books.
Whenever students encounter a doubt, they can immediately refer to the Class 12 RD Sharma Chapter 28 Exercise 28.13 Solution material to clear those doubts. Many staff members and experts have diligently checked the accuracy of every solution given by them in the RD Sharma solution books. Any student who finds the concept of the plane challenging can use these reference materials to develop their knowledge in this topic.
Many previous batch students suggest the RD Sharma Class 12 Solutions the Plane Ex 28.13 for their juniors to practice the sums in the 28th chapter. The career 360 website provides free access to the RD Sharma Class 12th Exercise 28.13 solution material. The students can also download it in PDF format for later reference.
The RD Sharma Class 12 Solutions Chapter 28 Ex 28.13 material is used by staff to prepare questions for the tests and exams. Therefore, using this book makes the students exam-ready without any extra effort.
The RD Sharma Class 12th Exercise 28.13 material is the prescribed book to refer to the solved sums of this exercise.
The Career360 website gives access for everyone to view and download the RD Sharma solution books for free of cost.
The ex 28.13 consists of nineteen questions, and the solutions for all the sum are given in the RD Sharma Class 12th Exercise 28.13 reference material.
The solutions for every sum are given in all possible methods in the RD Sharma books. This lets the student adapt to the method they feel is easy.
The solutions for every question asked in the textbook.
Various practice questions.
An in-depth explanation of every concept is given.
Admit Card Date:05 July,2025 - 21 July,2025
Admit Card Date:05 July,2025 - 22 July,2025
Exam Date:22 July,2025 - 29 July,2025
Exam Date:22 July,2025 - 28 July,2025
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE