JEE Main Important Physics formulas
ApplyAs per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
Students who are looking for some excellent study materials can end their search here. The RD Sharma class 12th exercise 28.3 will be their ultimate one-stop solution for maths questions from the NCERT book. The RD Sharma class 12 chapter 28 exercise 28.3 contains valuable answers to help students quickly and accurately solve their question papers.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
The Plane exercise 28.3 question 2(i)
Answer:
Hint:
Given:
Solution:
The Plane exercise 28.3 question 2(ii)
Answer:
Hint:
Given:
Solution:
The Plane exercise 28.3 question 3
Answer:cartesian equ of xz-plane ∴y=0
The vector equation of co-ordinate plane is
The Plane exercise 28.3 question 4(i)
Answer:
Hint:
Given:
Solution:
Vector equation of the plane is
The Plane exercise 28.3 question 4(ii)
Answer:
Hint:
Given:
Solution:
Vector equation of the plane
The Plane exercise 28.3 question 4(iii)
Answer:
Hint:
Given:
Solution:
Vector equation of the plane
The Plane exercise 28.3 question 5
Answer:
Hint:
Equation of plane,
Given:
Plane passing through the point (1,-1,1) and normal to the line joining the points (1,2,5) and (-1,3,1).
Solution:
Equation of plane,
Where a, b, c are direction ratio
and
are direction ratio.
Direction ratio of the plane will be equal to direction ratio of the line joining two point
Put the value of a, b, c in equ (1)
Equ of plane
Vector equation
For cartesian equation, substitute
The Plane exercise 28.3 question 6
Answer:The Plane exercise 28.3 question 7
Answer:The Plane exercise 28.3 question 8
Answer:
Hint:
Given:
Equation of Plane passing through & d.r.
Solution:
Equation of Plane passing through and DR of the plane proportional to
The Plane exercise 28.3 question 9
Answer:
The answer of given question is
Hint:
By using formula
Given:
P is the point and the require plane is passing through P at right angle to OP.
Solution:
As per the given criteria, it means that the plane is passing through P and OP is the vector normal to the plane.
Let the position vector of the point P be.
And it is also given the planes is normal to the line joining the points O(0,0,0) and P(2,-3,1).
Then
? =position vector of Position vector of
We know that
Substituting the values from equ (i) and equ (ii) in the above equ we get
By multiplying the two vectors using the formula
Then, the above vector equation of the plane becomes
By multiplying the two vectors using the formula
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 10
Answer:
The answer of given question is
Hint:
Dividing by 3 on both sides.
Given:
The given equation of the plane is
Solution:
Dividing by 3 on both sides, we get
We know that if a,b,c are the intercepts by the plane on thee co-ordinates axes, then equation of the plane is
Comparing the equation (i) and (ii) we get
Again the given equation of the plane is writing this in vector form, we get
So vector normal to the plane is given by
Direction vector of
Direction vector of
So,
Intercepts by the plane on the co-ordinate axes are
Direction cosines of normal to the plane are
The Plane exercise 28.3 question 11
Answer:The Plane exercise 28.3 question 12
Answer:
The answer of given question is
Hint:
Given:
The given plane bisects the line segment joining points and and is at right angle to it..
Solution:
As the given plane bisects the line segment
Therefore,
And it is also given the plane B normal to the line joining the points and
Then
? = position vector of Position vector of
We know that
Substituting the values from equation (i) and equation (ii) in the above equation we get
By multiplying the two vectors using the formula
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 13(i)
Answer:
The normal to the given pairs of planes are perpendicular to each other.
Hint:
Given:
Solution:
The vector equation of the planes can be written as
The normal to this plane is
The vector equation of the plane can be written as
The normal to this plane is
Now,
Hence is perpendicular to
Therefore, the normal to the given pair of planes are perpendicular to each other.
The Plane exercise 28.3 question 13(ii)
Answer:
The normal to the given pairs of planes are perpendicular to each other.
Hint:
Given:
Solution:
The equation of the first plane is
The normal to this plane is
The equation of the second plane is
The normal to this plane is
Now,
Hence is perpendicular to
Therefore, the normal to the given pair of planes are perpendicular to each other.
The Plane exercise 28.3 question 14
Answer:
The answer of given question is the normal vector to the plane is equally inclined with the co-ordinate axes.
Hint:
Let α,β,γ be the angle that normal makes with the co-ordinate axes
Given:
Solution:
The vector equation of the plane can be written as
The normal to this plane is
Direction ratio of
Direction cosine of
Direction cosine of
So,
Let α,β,γ be the angle that normal makes with the co-ordinate axes respectively.
Hence α = β = γ
So the normal vector to the plane is equally inclined with the co-ordinate axes.
12 chapter The Plane exercise 28.3 question 15
Answer:
The answer of given question is
Hint:
Given:
Solution:
The vector equation of the plane can be written as
The normal to this plane is
The unit vector becomes
Now a vector normal to the plane with the magnitude 26 will be
A vector of magnitude 26 units normal to the plane is
The Plane exercise 28.3 question 16
Answer:
The answer of given question is or
Hint:
By using formula
Given:
and
Solution:
It means that the plane is passing through
Therefore, the position vector of this point is,
And also given the line segment joining the points and and is at right angle to it.
Then
? =position vector of Position vector of
We know that
Substituting the values from equation (i) and equation (ii) in the above equation we get
By multiplying the two vectors using the formula
is the vector equation of a required plane.
Then the above vector equation of a plane becomes,
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 17
Answer:
is the vector equation of a required plane &
is the cartesian form of equation of the required plane.
Hint:
By using formula
Given:
Solution:
It means that the plane is passing through the midpoint of the line AB.
And also given the plane B normal to the line joining the points
Then
? = position vector of Position vector of
We know that
Substituting the values from equation (i) and equation (ii) in the above equation we get
By multiplying the two vectors using the formula
is the vector equation of a required plane.
Then the above vector equation of a plane becomes,
Now multiplying the two vectors using the formula
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 18
Answer:The Plane exercise 28.3 question 19
Answer:
The answer of given question is
Hint:
By using formula
Given:
The plane is passing through and perpendicular to OP
Solution:
The required plane is passing through and perpendicular to OP. let the position vector of this point P be
And it is also given the planes is normal to the line joining the points and position vector of point
Then
? = position vector of Position vector of
We know that
Substituting the values from equation (i) and equation (ii) in the above equation we get
By multiplying the two vectors using the formula
is the vector equation of the required plane
Then, the above vector equation of the plane becomes
Now multiplying the two vectors using the formula
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 20
Answer:
The answer of given question is
Hint:
Given:
The required plane is passing through A(a,b,c) and perpendicular to OA.
Solution:
Let the position vector of this point A be
And it is also given the planes is normal to the line joining the points O(0,0,0) and position vector of point A(a,b,c)
Then
= position vector of - Position vector of
The direction ratio of OA are proportional to a,b,c.
Hence, the direction cosines are
We know that
Substituting the values from equation (i) and equation (ii) in the above equation we get
By multiplying the two vectors using the formula
Then, the above vector equation of the plane becomes
Now multiplying the two vectors using the formula
This is the cartesian form of equation of the required plane.
The Plane exercise 28.3 question 21
Answer:
The answer of given question is
Hint:
Let the equation be
Given:
Plane with intercepts 3,-4 and 2 on x, y and z axes
Solution:
Let the equation be ….(i)
Let the plane meets the x,y,z axes (3,0,0), (0,-4,0) and (0,0,2) respectively.
Putting (0,0,2), we get
Putting (0,-4,0), we get
And putting (3,0,0) we get
Substituting the values of A, B, C in equation (i) we get by putting B(0,-4,0), we get
This is the cartesian form of equation of the required plane.
Now vector equation form of the plane
RD Sharma class 12 solutions The Plane 28.3 is one NCERT solution that is a must-have for all class 12 students who have maths in their board exams. This chapter covers concepts like Direction cosines and ratios, vector equation of a plane, a cartesian form of the equation, etc. Exercise 28.3 has 25 questions that are based on fundamentals and are relatively more straightforward. The RD Sharma class 12th exercise 28.3 has many questions which can be practiced by students to perfect their maths skills.
Students who want to avail of the class 12 RD Sharma chapter 28 exercise 28.3 solution won't have to look far and wide to access the book. The free copy of the book is readily available on the Career360 website. Students will be able to download the copy any time they like.
The book is easily available and comes with a ton of benefits. It is highly favored by students in India because the answers are accurate and of high quality. RD Sharma solutions Experts in maths were selected to draft the answers and create the RD Sharma class 12th exercise 28.3 book. They have included some fast and improved methods of calculations that only professionals know about. Even teachers trust these solutions and use them to give them to students.
Students will be able to practice these solutions by comparing their answers with the book and mark their performance. The RD Sharma class 12th exercise 28.3 has an updated syllabus which is changed with the latest edits of the NCERT books and CBSE syllabus. Therefore, students will find all the answers they require. If they study the RD Sharma class 12 solutions chapter 28 ex 28.3 well, they will even find common questions in boards.
RD Sharma Chapter wise Solutions
You will not be needed to purchase the RD Sharma class 12th exercise 28.3. However, you will actually want to download the free duplicate of the book at the Career360 site.
Students who use class 12 RD Sharma chapter 28 exercise 28.3 solution will want to contrast their answers and the ones in the book to check if they are right. This method of self-testing will assist them with discovering and work on their powerless regions.
RD Sharma Solutions contains the most recent and refreshed prospectus, which is also a piece of the JEE mains exams. Therefore, students can utilize RD Sharma Solutions to plan for their JEE mains exams.
The ideas that are covered under the RD Sharma class 12 solutions The Plane ex 28.3 books are Direction cosines and proportions, condition of Plane, Coplanarity of 2 lines, Equation of line under planes condition, the distance between slant lines, and points between two lines.
The RD Sharma solutions are the best NCERT solutions with regards to mathematics.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters