RD Sharma Class 12 Exercise 28.6 The Plane Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 28.6 The Plane Solutions Maths - Download PDF Free Online

Edited By Satyajeet Kumar | Updated on Jan 25, 2022 11:42 AM IST

RD Sharma textbooks are widely used by students and teachers all over the country. They are detailed, exam-oriented, and contain a variety of concepts. It includes a vast amount of topics that help students strengthen their fundamentals. RD Sharma class 12 solution of The plane exercise 28.6 material is made to prepare for exams.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter28 The Plane - Other Exercise
  2. The Plane Excercise: 28.6
  3. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solutions For Class 9 to 12 Maths

RD Sharma class 12th exercise 28.6 contains solutions prepared by a group of subject experts who have years of experience in the field. Moreover, every answer goes through quality checks to ensure that the solutions provided provide the best information.

RD Sharma Class 12 Solutions Chapter28 The Plane - Other Exercise

The Plane Excercise: 28.6

The Plane exercise 28.6 question 1 (i)

Answer:
\theta=\cos ^{-1} \frac{-5}{\sqrt{58}}
Hint:
\cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}
Given:
\overrightarrow{\boldsymbol{r}} \cdot(\mathbf{2} \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+\mathbf{4} \widehat{\boldsymbol{k}})=\mathbf{1} \text { And } \vec{r} \cdot(-\hat{\imath}+\hat{\jmath})=4
Solution:
\begin{aligned} &\vec{r} \cdot(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k})=1 \\ &\vec{n}_{1}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \\ &\vec{r} \cdot(-\hat{\imath}+\hat{\jmath})=4 \\ &\vec{n}_{2}=-\hat{\imath}+\hat{\jmath} \\ &\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}=\frac{(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}) \cdot(-\hat{\imath}+\hat{\jmath})}{\sqrt{2^{2}+(-3)^{2}+(4)^{2}} \cdot \sqrt{(-1)^{2}+\left ( 1 \right )^{2}}} \\ &=\frac{-2-3}{\sqrt{29 \times \sqrt{2}}}=\frac{-5}{\sqrt{58}} \\ \end{aligned}
\theta=\cos ^{-1}\frac{-5}{\sqrt{58}}


The Plane exercise 28.6 question 1 (ii)

Answer:
\cos ^{-1}\left ( -\frac{4}{21} \right )
Hint:
\cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}
Given:
\overrightarrow{\boldsymbol{r}} \cdot(\mathbf{2} \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}+2 \widehat{\boldsymbol{k}})=\mathbf{6} \text { And } \vec{r} \cdot(3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k})=9
Solution:
\begin{aligned} &\vec{n}_{1}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k} \\ &\vec{n}_{2}=3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k} \\ &\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}=\frac{(2 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \cdot(3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k})}{|2 \hat{\imath}-\hat{\jmath}+2 \hat{k}| \cdot|3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k}|} \\ &=\frac{6-6-4}{\sqrt{2^{2}+(-1)^{2}+2^{2}} \cdot \sqrt{3^{2}+6^{2}+(-2)^{2}}}=\frac{-4}{3 \times 7}=-\frac{4}{21} \\ &\theta=\cos ^{-1}\left(-\frac{4}{21}\right) \end{aligned}


The Plane exercise 28.6 question 1 (iii)

Answer:
\cos ^{-1}\left ( -\frac{16}{21} \right )
Hint:
\cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}
Given:
\vec{r} \cdot(2 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}-6 \hat{\boldsymbol{k}})=\mathbf{5} \text { And } \vec{r} \cdot(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})=9
Solution:
\begin{aligned} &\vec{n}_{1}=2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k} \\ &\vec{n}_{2}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k} \\ &\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}=\frac{(2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})}{|2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k}| \cdot|\hat{\imath}-2 \hat{\jmath}+2 \hat{k}|} \\ &=\frac{2-6-12}{\sqrt{4+9+36} \cdot \sqrt{1+4+4}}=\frac{-16}{3 \times 7} \\ &=-\frac{16}{21} \\ &\theta=\cos ^{-1}\left(-\frac{16}{21}\right) \end{aligned}


The Plane exercise 28.6 question 2 (i)

Answer:
\frac{\pi }{3}
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
Given:
2 x-y+z=4 \text { and } x+y+2 z=3
Solution:
\begin{aligned} &2 x-y+z=4 \\ &a_{1}=2, b_{1}=-1, c_{1}=1 \\ &x+y+2 z=3 \\ &a_{2}=1, b_{2}=1, c_{2}=2 \\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &=\frac{2(1)+(-1)(1)+(1)(2)}{\sqrt{4+1+1} \cdot \sqrt{1+1+4}} \\ &=\frac{3}{\sqrt{6} \cdot \sqrt{6}}=\frac{1}{2} \\ & \end{aligned}
\theta=\frac{\pi}{3}


The Plane exercise 28.6 question 2 (ii)

Answer:
\cos ^{-1}\left ( -\frac{\sqrt{2}}{3\sqrt{3}} \right )
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1} 2} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2} 2}}
Given:
x+y-2z=3 And 2x-2y+z=5
Solution:
\begin{aligned} &x+y-2 z=3 \\ &a_{1}=1, b_{1}=1, c_{1}=-2 \end{aligned}
\qquad \begin{array}{c} 2 x-2 y+z=5 \\ a_{2}=2, b_{2}=-2, c_{2}=1 \\ \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ = \frac{(1)(2)+(1)(-2)+(-2)(1)}{\sqrt{(1)^{2}+(1)^{2}+(-2)^{2}} \cdot \sqrt{(2)^{2}+(-2)^{2}+(1)^{2}}} \\ = \frac{-2}{\sqrt{6} \times 3} \\ = \frac{-\sqrt{2}}{3 \sqrt{3}} \\ \theta=\cos ^{-1}\left(-\frac{\sqrt{2}}{3 \sqrt{3}}\right) \end{array}


The Plane exercise 28.6 question 2 (iii)

Answer:
\frac{\pi }{2}
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
Given:
x-y+z=5\hspace{0.2cm} And\hspace{0.2cm} x+2y+z=9
Solution:
Here,
\begin{aligned} &a_{1}=1, b_{1}=-1, c_{1}=1, \text { comparing with } x-y+z=5 \\ &a_{2}=1, b_{2}=2, c_{2}=1, \text { comparing with } x+2 y+z=9 \\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &=\frac{(1)(1)+(-1)(2)+(1)(1)}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \cdot \sqrt{(1)^{2}+(2)^{2}+(1)^{2}}} \\ &=0 \\ &\theta=\frac{\pi}{2} \end{aligned}


The Plane exercise 28.6 question 2 (iv)

Answer:
\cos ^{-1}\left ( -\frac{\sqrt{5}}{\sqrt{58}} \right )
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1} 2}^{2} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2} 2}}
Given:
2x-3y+4z=1 \hspace{0.2cm}And \hspace{0.2cm} -x+y=4
Solution:
Here,
\begin{aligned} &a_{1}=2, b_{1}=-3, c_{1}=4, \text { on comparing with } 2 x-3 y+4 z=1 \\ &a_{2}=-1, b_{2}=1, c_{2}=0, \text { on comparing with }-x+y=4 \\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &=\frac{(2)(-1)+(-3)(1)+(4)(0)}{\sqrt{2^{2}+(-3)^{2}+\left(4^{2}\right)} \cdot \sqrt{(-1)^{2}+(1)^{2}}} \\ &=\frac{-5}{\sqrt{29} \times \sqrt{2}} \\ &=-\frac{\sqrt{5}}{\sqrt{58}} \\ & \end{aligned}
\theta=\cos ^{-1}\left(-\frac{\sqrt{5}}{\sqrt{58}}\right)


The Plane exercise 28.6 question 2 (v)

Answer:
\cos ^{-1}\left ( \frac{4}{21} \right )
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
Given:
2x+y+2z=5 And 3x-6y-2z
Solution:
Here,
\begin{aligned} &a_{1}=2, b_{1}=1, c_{1}=-2, \text { on comparing with } 2 x+y-2 z=5 \\ &a_{2}=3, b_{2}=-6, c_{2}=-2, \text { on comparing with } 3 x-6 y-2 z=7 \\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &=\frac{(2)(3)+(1)(-6)+(-2)(-2)}{\sqrt{(2)^{2}+(1)^{2}+(-2)^{2}} \cdot \sqrt{(3)^{2}+(-6)^{2}+(-2)^{2}}} \\ &=\frac{4}{3 \times 7}=\frac{4}{21} \\ &\theta=\cos ^{-1}\left(\frac{4}{21}\right) \end{aligned}


The Plane exercise 28.6 question 3 (i)

Answer:
We need to show that the following planes are at right angle
Hint:
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}=0
Given:
\overrightarrow{\boldsymbol{r}} \cdot(2 \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{j}}+\widehat{\boldsymbol{k}})=\mathbf{5} \text { And } \vec{r} \cdot(-\hat{\imath}-\hat{\jmath}+\hat{k})=3
Solution:
Here
\begin{aligned} &\vec{n}_{1}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \text { on comparing with } \overrightarrow{\boldsymbol{r}} \cdot(\mathbf{\imath} \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{j}}+\widehat{\boldsymbol{k}})=\mathbf{5}\\ &\vec{n}_{2}=-\hat{\imath}-\hat{\jmath}+\widehat{k} \text { on comparing wit } \vec{r} \vec{r} \cdot(-\hat{\imath}-\hat{\jmath}+\hat{k})=3\\ &\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}\\ &=\frac{(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \cdot(-\hat{\imath}-\hat{\jmath}+\hat{k})}{|2 \hat{\imath}-\hat{\jmath}+\hat{k}| \cdot|-\hat{\imath}-\hat{\jmath}+\hat{k}|}\\ &=\frac{-2+1+1}{\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}} \cdot \sqrt{(-1)^{2}+(-1)^{2}+(1)^{2}}}\\ &=0 \end{aligned}
\theta =\frac{\pi }{2} .......hence proved


The Plane exercise 28.6 question 3 (ii)

Answer:
We need to show that the following planes are at right angle
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
Given:
x=2y+4z=10\hspace{0.2cm} And \hspace{0.2cm}18x+17y+4z=49
Solution:
Here,
\begin{aligned} &a_{1}=1, b_{1}=-2, c_{1}=4, \text { on comparing with } x-2 y+4 z=10\\ &a_{2}=18, b_{2}=17, c_{2}=4, \text { on comparing with } 18 x+17 y+4 z=49\\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\\ &=\frac{1(18)-2(17)+(4)(4)}{\sqrt{(1)^{2}+(-2)^{2}+(4)^{2}} \cdot \sqrt{(18)^{2}+(17)^{2}+(4)^{2}}}\\ &=0\\ &\theta=\frac{\pi}{2} \text {....hence proved } \end{aligned}


The Plane exercise 28.6 question 4 (i)

Answer:
\lambda =17
Hint:
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot \vec{n}_{2} \mid}=0
Given:
\overrightarrow{\boldsymbol{r}} \cdot(\hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+3 \hat{\boldsymbol{k}})=7 \text { And } \vec{r} \cdot(\lambda \hat{\imath}+2 \hat{\jmath}-7 \hat{k})=26
Solution:
Here
\begin{aligned} &\vec{n}_{1}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \text { on comparing wit } \overrightarrow{\boldsymbol{r}} \cdot(\hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{j}}+3 \widehat{\boldsymbol{k}})=\mathbf{7}\\ &\vec{n}_{2}=\lambda \hat{\imath}+2 \hat{\jmath}-7 \hat{k}, \text { on comparing with } \vec{r} \cdot(\lambda \hat{\imath}+2 \hat{\jmath}-7 \hat{k})=26\\ &\vec{n}_{1} \cdot \vec{n}_{2}=0 \quad\left[\because\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right| \neq 0\right]\\ &(\hat{\imath}+2 \hat{\jmath}+3 \hat{k}) \cdot(\lambda \hat{\imath}+2 \hat{\jmath}-7 \hat{k})=0\\ &\lambda+4-21=0\\ &\lambda=17 \end{aligned}


The Plane exercise 28.6 question 4 (ii)

Answer:
2
Hint:
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=0
Given:
2x-4y+3z=5\hspace{0.2cm} And \hspace{0.2cm}x+2y+\lambda z=5\\
Solution:
Here
\begin{aligned} &a_{1}=2, b_{1}=-4, c_{1}=3, \text { on comparing with } 2 x-4 y+3 z=5\\ &a_{2}=1, b_{2}=2, c_{2}=\lambda, \text { on comparing with } x+2 y+\lambda z=5\\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=0, \text { as t } \text { e planes are penpendicular } \cos \left(\frac{\pi}{2}\right)\\ &=0\\ &a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\\ &2-8+3 \lambda=0\\ &\lambda=2 \end{aligned}


The Plane exercise 28.6 question 4 (iii)

Answer:
\lambda =0
Hint:
a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0
Given:
3x-6y-2z=7 And 2x+y-\lambda=5
Solution:
Here
\begin{aligned} &a_{1}=3, b_{1}=-6, c_{1}=-2, \text { on comparing with } 3 x-6 y-2 z=7\\ &a_{2}=2, b_{1}=1, c_{2}=-\lambda, \text { on comparing with } 2 x+y-\lambda z=5\\ &\text { Since the planes are perpendicular }\\ &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=0\\ &\therefore a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\\ &6-6+2 \lambda=0\\ &\lambda=0 \end{aligned}


The Plane exercise 28.6 question 5

Answer:
Therefore, required equation of the plane is 5x+9y+11z-8=0
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
\text { Point }(-1,-1,2) \text { and planes } 3 x+2 y-3 z=1 \text { and } 5 x-4 y+z=5
Solution:
We know that equation of the plane passing through \left ( x_{1},y_{1},z_{1} \right ) is given as
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane passes through \left ( -1,- 1,2\right )so the equation of the plane is
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
ax+by+cz=2c-a-b (1)
Now the required plane is also perpendicular to the planes. 3x+2y-3z=1And
5x-4y+z=5
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1} =0 and a_{2}x+b_{2}y+c_{2}z+d_{2} =0are at right angles
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have,
3a+2b-3c=0 (b)
5a-4b+c=0 (c)
Solving (b) and (c) we get
\begin{aligned} &\frac{a}{2 \times 1-(-3) \times(-4)}=\frac{b}{5 \times(-3)-3 \times(1)}=\frac{c}{3 \times(-4)-2 \times(5)} \\ &\frac{a}{2-12}=\frac{b}{-15-3}=\frac{c}{-12-10} \\ &\frac{a}{-10}=\frac{b}{-18}=\frac{c}{-22}=\lambda \\ &a=-10 \lambda, b=-18 \lambda, c=-22 \lambda \end{aligned}
Putting the values of a, b and c in equation (1) we have
\begin{aligned} (-10 \lambda) x+(-18 \lambda) y+(-22 \lambda) z &=2(-22 \lambda)-(-10 \lambda)-(-18 \lambda) \\ -10 \lambda x-18 \lambda y-22 \lambda z &=-44 \lambda+10 \lambda+18 \lambda \\ -10 \lambda x-18 \lambda y-22 \lambda z &=-16 \lambda \end{aligned}
Divide both sides by\left ( -2\lambda \right ), we get
5x+9y+11z=8
So, the required of the plane equation is 5x+9y+11z-8=0


The Plane exercise 28.6 question 6

Answer:
Therefore, required equation of the plane is 2x-4y+3z=8
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Point \left ( 1,-3,-2 \right ) and planes x+2y+2z=5and 3x+3y+2z=8
Solution:
We know that equation of the plane passing through \left ( x_{1},y_{1},z_{1} \right ) is given as,
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane passes through \left ( 1,-3,-2 \right ) so the equation of the plane is
a\left ( x-1\right )+b\left ( y+3 \right )+c\left ( z+2 \right )=0
ax+by+cz=a-3b-2c (1)
Now the required plane is also perpendicular to the planes
x+2y+2z=5 And 3x+3y+2z=8
We know that the plane a_{1}x+b_{1}y+c_{1}z+d_{1}=0and a_{2}x+b_{2}y+c_{2}z+d_{2}=0 are at right angles
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have,
a+2b+2c=0 (b)
3a+3b+2c=0 (c)
Solving (b) and (c) we get
\begin{aligned} &\frac{a}{2 \times 2-3 \times 2}=\frac{b}{3 \times 2-1 \times 2}=\frac{c}{1 \times 3-2 \times 3} \\ &\frac{a}{4-6}=\frac{b}{6-2}=\frac{c}{3-6} \\ &\frac{a}{-2}=\frac{b}{4}=\frac{c}{-3}=\lambda \\ &a=-2 \lambda, b=4 \lambda, c=-3 \lambda \end{aligned}
Putting values of a, b and c in equation (1) we get
\begin{aligned} &(-2 \lambda) x+(4 \lambda) y+(-3 \lambda) z=(-2 \lambda)-3(4 \lambda)-2(-3 \lambda) \\ &-2 \lambda x+4 \lambda y-3 \lambda z=-2 \lambda-12 \lambda+6 \lambda \\ &-2 \lambda x+4 \lambda y-3 \lambda z=-8 \lambda \end{aligned}
Divide both sides by \left ( -\lambda \right ) we get
2x-4y+3z=8
So, the equation of the required planes is 2x-4y+3z=8


The Plane exercise 28.6 question 7

Answer:
Therefore, required equation of the plane is x+2y+5z=0
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Passing through the origin is \left ( 0,0,0 \right )and planes x+2y-z=1and 3x-4y+z=5
Solution:
We know that solution of the plane passing through \left ( x_{1} ,y_{1},z_{1}\right ) is given as a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane passes through \left ( 0,0,0 \right )
So the equation of the plane is
a\left ( x-0 \right )+b\left ( y-0 \right )+c\left ( z-0 \right )=0
ax+by+cz=0 (1)
Now, the required plane is also perpendicular to the planes
x+2y-z=1 And 3x-4y+z=5
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0 are at right angles
If a_{1}a2+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we get
a+2b-c=0 (b)
3a-4b+c=0 (c)
Solving (b) and (c) we get
\begin{aligned} &\frac{a}{2 \times 1-(-4)(-1)}=\frac{b}{3 \times(-1)-1 \times 1}=\frac{c}{1 \times(-4)-(2) \times 3} \\ &\frac{a}{2-4}=\frac{b}{-3-1}=\frac{c}{-4-6} \\ &\frac{a}{-2}=\frac{b}{-4}=\frac{c}{-10}=\lambda \\ &a=-2 \lambda, b=-4 \lambda, c=-10 \lambda \end{aligned}

Putting values of a,b,c in equation (1) we get
\begin{aligned} &(-2 \lambda) x-4 \lambda y-10 \lambda z=0 \\ &-2 \lambda x-4 \lambda y-10 \lambda z=0 \end{aligned}
Divide both sides by (-2 \lambda)we get
x+2y+5z=0
So the required equation of plane is
x+2y+5z=0


Plane exercise 28.6 question 8

Answer:
Therefore, required equation of the plane is x+y-2z+4=0
Hint:
Using the formula a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
Given:
Points \left ( 1,-1,2 \right )and\left ( 2,-2,2 \right ) plane 6x-2y+2z=9
Solution:
We know that solution of plane passing through \left ( x,y,z \right )is given as,
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
The require plane passes through \left ( 1,-1,2 \right )
So, the equation of plane is
a\left(x-1\right)+b\left(y+1\right)+c\left(z-2\right)=0 (1)
Plane (1) is also passing through\left ( 2,-2,2 \right ). So, \left ( 2,-2,2 \right )must satisfy the equation of plane
So, we know
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
a-b=0 (2)
Plane 6x-2y+2z=9 is perpendicular to the required plane
We know that plane a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0are at right angle
If a_{1}a2+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have
a\left ( 6 \right )+b\left ( -2 \right )+c\left ( 2 \right )=0
a\left ( 6 \right )+b\left ( -2 \right )+c\left ( 2 \right )=0 (3)
Solving (2) and (3) we get
\begin{aligned} &\frac{a}{(-1) \times 2-(-2) \times 0}=\frac{b}{6 \times 0-1 \times 2}=\frac{c}{1 \times(-2)-6 \times(-1)} \\ &\frac{a}{-2-0}=\frac{b}{0-2}=\frac{c}{-2+6} \end{aligned}
\begin{aligned} &\frac{a}{-2}=\frac{b}{-2}=\frac{c}{4}=\lambda \\ &a=-2 \lambda, b=-2 \lambda, c=4 \lambda \end{aligned}
Putting values of a, b and c in equation (1)
We get
\begin{aligned} &(-2 \lambda)(x-1)+(-2 \lambda)(y+1)+(4 \lambda)(z-2)=0 \\ &-2 \lambda x+2 \lambda-2 \lambda y-2 \lambda+4 \lambda z-8 \lambda=0 \\ &-2 \lambda x-2 \lambda y+4 \lambda z-8 \lambda=0 \end{aligned}
Divide by \left ( -2\lambda \right )we get
x+y-2z+4=0
So, the required plane is x+y-2z+4=0


The Plane exercise 28.6 question 9

Answer:
Therefore, required equation of the plane is 3x+4y-5z=9
Hint:
Using the formula a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
Given:
Points \left ( 2,2,1\right )and\left ( 9,3,6\right ) plane 3x+4y-5z=9
Solution:
We know that solution of a plane passing through \left ( x_{1} ,y_{1},z_{1}\right )is given as,
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
The required plane passing through \left ( 2,2,1 \right )
So the equation of the plane is
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 (1)
Plane (1) is also passing through \left ( 9,3,6 \right )
So \left ( 9,3,6 \right ) must satisfy the equation of plane
a\left ( 9-2 \right )+b\left ( 3-2 \right )+c\left ( 6-1 \right )=0
7a+b+5c=0 (2)
Plane 2x+6y+6z=1is perpendicular to required plane
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0and a_{2}x+b_{2}y+c_{2}z+d_{2}=0are the right angle if
a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have
2a+6b+6c=0 (3)
Solving (2) and (3) we get
\begin{aligned} &\frac{a}{1 \times 6-5 \times 6}=\frac{b}{2 \times 5-7 \times 6}=\frac{c}{7 \times 6-2 \times 1} \\ &\frac{a}{6-30}=\frac{b}{10-42}=\frac{c}{42-2} \\ &\frac{a}{-24}=\frac{b}{-32}=\frac{c}{40}=\lambda \\ &a=-24 \lambda, b=-32 \lambda, c=40 \lambda \end{aligned}

Putting the values of a, b and c in equation (1)
\begin{aligned} &(-24 \lambda)(x-2)+(-32 \lambda)(y-2)+(40 \lambda)(z-1)=0 \\ &-24 \lambda x+48 \lambda-32 \lambda y+64 \lambda+40 \lambda z-40 \lambda=0 \\ &-24 \lambda x-32 \lambda y+40 \lambda z+72 \lambda=0 \end{aligned}
Divide by \left ( -8\lambda \right )we get
3x+4y-5z-9=0
So, required plane is 3x+4y-5z-9=0


The Plane exercise 28.6 question 10

Answer:
Therefore, required equation of the plane is 2x+2y+-3x+3=0
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Points \left ( -1,1,1 \right )and\left ( 1,-1,1 \right ) plane x+2y+2z=5
Solution:
We know that solution of a plane passing through \left ( x_{1} ,y_{1},z_{1}\right )is given as
a\left ( x+x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane is passing through \left ( -1,1,1 \right )
So, the equation of the plane is,
a\left ( x+1 \right )+b\left ( y-1 \right )+c\left ( z-1 \right )=0 (1)
Plane (1) also passing through \left ( 1,-1,1 \right )
So \left ( 1,-1,1 \right )must satisfy the equation of plane
a\left ( 1+1 \right )+b\left ( -1-1 \right )+c\left ( 1-1 \right )=0
2a-2b=0 (2)
Plane x+2y+2z=5is perpendicular to the required plane
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0are right angle
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have
a\left ( 1 \right )+b\left ( 2 \right )+c\left ( 2 \right )=0
a+2b+2c=0 (3)
Solving (2) and (3) we get
\begin{gathered} \frac{a}{(-2) \times 2-2 \times 0}=\frac{b}{1 \times 0-2 \times 2}=\frac{c}{2 \times 2-1 \times(-2)} \\ \frac{a}{-4-0}=\frac{b}{0-4}=\frac{c}{4+2} \\ \frac{a}{-4}=\frac{b}{-4}=\frac{c}{6}=\lambda \\ a=-4 \lambda, b=-4 \lambda, c=6 \lambda \end{gathered}
Putting the value of a, b and c in equation (1) we get
\begin{aligned} &(-4 \lambda)(x+1)+(-4 \lambda)(y-1)+6 \lambda(z-1)=0 \\ &-4 \lambda x-4 \lambda-4 \lambda y+4 \lambda+6 \lambda z-6 \lambda=0 \\ &-4 \lambda x-4 \lambda y+6 \lambda z-6 \lambda=0 \end{aligned}
Dividing by \left ( -2\lambda \right )we get
2x+2y-3z+3=0
So the required plane is 2x+2y-3z+3=0


The Plane exercise 28.6 question 11

Answer:
Therefore, required equation of the plane is y=3
Hint:
Using the properties of plane
Given:
Plane with intercept 3 on the y-axis and parallel to ZOX plane
Solution:
We know that the equation of ZOX plane will is y=0. So, a plane parallel to plane ZOX will have the equation
y=constant
Now, it is given that the plane makes an intercept of 3 on y-axis. So, the value of constant is equal to 3
Therefore, the required equation of plane is y=3.


The Plane exercise 28.6 question 12

Answer:
Therefore, required equation of the plane is 5x-4y-z=7
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Points \left ( 1,-1,2 \right )
Plane 2x+3y-2z=5and x+2y-3z=8
Solution:
We know that solution of a plane passing through \left ( x_{1},y_{1},z_{1}\right )is given as
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane passes through\left ( 1,-1,2 \right ).
So the equation plane is a\left ( x-1\right )+b\left ( y+1 \right )+c\left ( z-2 \right )=0
ax+by+cz=a-b+2c (1)
Now the required plane is also perpendicular to the planes,
2x+3y-2z=5 & x+2y-3z=8
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0 & a_{2}x+b_{2}y+c_{2}z+d_{2}=0are the right angle
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we get
2a+3b-2c=0 (b)
a+2b-3c=0 (c)
Solving (b) and (c) we get
\begin{aligned} &\frac{a}{3 \times(-3)-2 \times(-2)}=\frac{b}{1 \times(-2)-2 \times(-3)}=\frac{c}{2 \times 2-1 \times 3} \\ &\frac{a}{-9+4}=\frac{b}{-2+6}=\frac{c}{4-3} \\ &\frac{a}{-5}=\frac{b}{4}=\frac{c}{1}=\lambda \\ &a=-5 \lambda, b=4 \lambda, c=\lambda \end{aligned}
Putting values of a, b and c in equation (1) we get
\begin{aligned} &\frac{a}{3 \times(-3)-2 \times(-2)}=\frac{b}{1 \times(-2)-2 \times(-3)}=\frac{c}{2 \times 2-1 \times 3} \\ &\frac{a}{-9+4}=\frac{b}{-2+6}=\frac{c}{4-3} \\ &\frac{a}{-5}=\frac{b}{4}=\frac{c}{1}=\lambda \\ &a=-5 \lambda, b=4 \lambda, c=\lambda \end{aligned}
Dividing both the sides by\left ( -\lambda \right ), we get
5x-4y-z=7
So, the required plane is 5x-4y-z=7


The Plane exercise 28.6 question 13

Answer:
Therefore, required equation of the plane is x+y+z=a+b+c
Hint:
Using properties of plane
Given:
Points \left ( a,b,c \right ) and plane \overrightarrow{r}\cdot \left ( \hat{i}+\hat{j}+\hat{k} \right )=2
Solution:
The required plane is parallel to the plane \overrightarrow{r}\cdot \left ( \hat{i}+\hat{j}+\hat{k} \right )=2
Any plane parallel to \overrightarrow{r}\cdot \left ( \hat{i}+\hat{j}+\hat{k} \right )=2 is given as \overrightarrow{r}\cdot \left ( \hat{i}+\hat{j}+\hat{k} \right )=k
Further, it is given that the plane is passing through \left ( a,b,c \right ). So point \left ( a,b,c \right )should satisfy the equation of the plane
We have \left ( a\hat{i}+b\hat{j}+c\hat{k} \right )\cdot \left (\hat{i}+\hat{j}+\hat{k} \right )=k
a+b+c=k
Hence, the equation of the required plane is,
\overrightarrow{r}\cdot \left ( \hat{i}+\hat{j}+\hat{k} \right )= a+b+c
Or, x+y+z= a+b+c


The Plane exercise 28.6 question 14

Answer:
Therefore, required equation of the plane is 7x-8y+3z+25=0
Hint:
Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Points \left ( -1,3,2 \right )
Plane x+2y+3z=5and 3x+3y+z=0
Solution:
We know that solution of a plane passing through \left ( x_{1} ,y_{1},z_{1}\right ) are given as
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The required plane passes through
So, the equation of plane is
a\left ( x+1 \right )+b\left ( y-3 \right )+c\left ( z-2 \right )=0
ax+by+cz=3b+2c-a (1)
Now, the required plane is also perpendicular to the planes,
x+2y+3z=5 & 3x+3y+z=0
We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0 & a_{2}x+b_{2}y+c_{2}z+d_{2}=0 are right angle
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we get
a+2b+3c=0 (b)
3a+3b+c=0 (c)
Solving (b) and (c) we get
\begin{aligned} &\frac{a}{2 \times 1-3 \times 3}=\frac{b}{3 \times 3-1 \times 1}=\frac{c}{1 \times 3-3 \times 2} \\ &\frac{a}{2-9}=\frac{b}{9-1}=\frac{c}{3-6} \\ &\frac{a}{-7}=\frac{b}{8}=\frac{c}{-3}=\lambda \\ &a=-7 \lambda, b=8 \lambda, c=-3 \lambda \end{aligned}
Putting values of a, b and c in equation (1) we get
\begin{aligned} &(-7 \lambda) x+(8 \lambda) y+(-3 \lambda) z=3(8 \lambda)+2(-3 \lambda)+7 \lambda \\ &-7 \lambda x+8 \lambda y-3 \lambda z=24 \lambda-6 \lambda+7 \lambda \\ &-7 \lambda x+8 \lambda y-3 \lambda z=25 \lambda \end{aligned}
Dividing both \left ( -\lambda \right )we get
7x-8y+3z+25=0


The Plane exercise 28.6 question 15

Answer:
Therefore, required equation of the plane is 18x+17y+4z=49a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Hint:
Using the formula
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
Given:
Points \left ( 2,1,-1 \right ) and \left ( -1,3,4 \right )
Plane x-2y+4z=10
Solution:
We know that solution of plane passing through \left ( x_{1},y_{1} ,z_{1}\right )is given as,
a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0
The require plane passes through \left ( 2,1,-1 \right )
So, the equation of plane is
a\left ( x-2 \right )+b\left ( y-1 \right )+c\left ( z+1 \right )=0 (1)
Plane (1) is also passing through \left ( -1,3,4 \right ). So, \left ( -1,3,4 \right )must satisfy the equation of plane
So, we know
a\left ( -1-2 \right )+b\left ( 3-1 \right )+c\left ( 4+1 \right )=0
-3a+2b+5c=0 (2)
Planex-2y+4z=10 is perpendicular to the required plane
We know that plane a_{1}x+b_{1}y+c_{1}z+d_{1}=0and a_{2}x+b_{2}y+c_{2}z+d_{2}=0are at right angle
If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0 (a)
Using (a) we have
a-2b+4c=0 (3)
Solving (2) and (3) we get
\begin{aligned} &\frac{a}{4 \times 2+5 \times 2}=\frac{b}{5 \times 1+3 \times 4}=\frac{c}{3 \times 2-2 \times 1} \\ &\frac{a}{18}=\frac{b}{17}=\frac{c}{4} \\ &\frac{a}{18}=\frac{b}{17}=\frac{c}{4}=\lambda \\ &a=18 \lambda, b=17 \lambda, c=4 \lambda \end{aligned}
Putting values of a, b and c in equation (1)
We get
\begin{aligned} &18 \lambda(x-2)+17 \lambda(y-1)+4 \lambda(z+1)=0 \\ &18 \lambda x-36 \lambda+17 \lambda y-17 \lambda+4 \lambda z+4 \lambda=0 \\ &18 \lambda x+17 \lambda y+4 \lambda z-49 \lambda=0 \end{aligned}
Divide by \left ( \lambda \right )we get
18x+17y+4z-49=0
So, the required plane is
18x+17y+4z-49=0


The Class 12 RD Sharma chapter 28 exercise 28.6 solution covers the chapter 'The Plane.' There are about 24 questions in this exercise that are extremely basic and simple. The RD Sharma class 12th exercise 28.6 covers all the essential concepts of this chapter that are mentioned below,

  • Equation of plane

  • Vector equation of plane

  • Equation of plane passing through points

  • Equation of line under planes condition

  • Angles between the two planes

  • Equation of plane passing through the point and perpendicular to the plane.

Mentioned below are few benefits of the RD Sharma class 12th exercise 28.6 :-

  • The RD Sharma class 12 chapter 28 exercise 28.6 is used by teachers to assign homework therefore practice from this solution can help you solve homework easily.

  • The questions given in the RD Sharma class 12th exercise 28.6 are often similar to the ones that are asked in the board exams so, if you keep a thorough practice of the book then it's an easy task for you to score high in exams.

  • The RD Sharma class 12 solution chapter 28 exercise 28.6 is updated every year to the latest version so that no concept is missed out for students to practice.

  • The RD Sharma solutions are of the same syllabus that is of the NCERT and therefore it is useful for considering it for the practice for public exams as well.

  • Many solved questions and useful tips are provided in the solution to take in reference when having a problem in solving any question.

  • The online study material and PDFs of the RD Sharma class 12th exercise 28.6 is available on the Career360 website and you don't have to pay any amount for downloading these solutions.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is a plane?

A plane is a flat, 2-dimensional surface having infinite dimensions but for having zero thickness. Such that if any two points are taken on it, the line segment joining them lies completely on the surface

2. What is the equation of a 3-dimensional plane?

A plane in 3-dimensional space has the following equation

ax + by + cz + d = 0, where at least one of the values of a, b, c, d, must be a non-zero.

3. What are the three possible planes in the 3-D coordinate system?

They are, 

XY plane where the value of z coordinates is zero

YZ plane, where the value of x coordinates is zero

ZX plane, where the value of y coordinates is zero

4. Is the RD Sharma class 12 chapter 28 of the latest version?

Yes, these solutions are regularly updated to correspond with the syllabus of NCERT textbooks, which helps crack public examinations.

5. From where can I download the RD Sharma class 12 chapter 28 solution?

You can download the E-book and PDF from the Career360 website that also free of cost.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top