Careers360 Logo
RD Sharma Class 12 Exercise 5.2 Determinant Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 5.2 Determinant Solutions Maths - Download PDF Free Online

Updated on Jan 25, 2022 07:12 PM IST

The RD Sharma Solution books are the best form of tutors for the class 12 students at their home. Mathematics is a subject that gives chances for a lot of doubts to arise. Every mark that a student scores in the public exam is essential; students should not risk losing their marks. RD Sharma class 12th exercise 5.2, Determinants, is a part where students can score easily. Hence utmost care should be taken in solving the problems. With the help of the RD Sharma Class 12th exercise 5.2, students can do their homework effortlessly.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 5 Determinants - Other Exercise

determinants Exercise 5.2 Question 1

Answer:|1352610311138|=0
Hint: We will solve the determinant with respect to row one.
Given:|1352610311138|
Solution:|1352610311138|
=1|6101138|3|2103138|+5|263111|=1(6×3810×11)3(2×3810×31)+5(2×116×31)=(228110)3(76310)+5(22186)=1183(234)+5(164)=118+702820=820820=0

determinants Exercise 5.2 Question 1 Sub Question 2

Answer:

Answer: |671921391314812426|=43

Hint: First we will use column operation to get a simple determinant.

Given: |671921391314812426|

Solution: |671921391314812426|

 Applying C1C14C3=|171921171314232426| Applying R1R1R2=|067171314232426| Applying R2R22R1|0671710232426|

on expanding w.r.t row

=0|102426|6|1702326|+7|1712324|=06(17×260×23)+7(17×241×23)=6(442)+7(408+23)=2652+7(385)=26522695=43

determinants Exercise 5.2 Question 1 Sub Question 3

Answer:|ahghbfgfc||ahghbfgfc|=abcaf2ch2+2fghbg2 =abcaf2ch2+2fghbg2|ahghbfgfc|=abcaf2ch2+2fghbg2|ahghbfgfc|=abcaf2ch2+2fghbg2|ahghbfgfc|=abcaf2ch2+2fghbg2
Hint: We will expand it w.r.t R1
Given: |ahghbfgfc|=abcaf2ch2+2fghbg2|ahghbfgfc|
Solution: |ahghbfgfc|
Expanding w.r.t R1
=a|bffc|h|hfgc|+g|hbgf|=a(bcf2)h(hcgf)+g(hfbg)=abcaf2h2c+fgh+fghbg2=abcaf2ch2+2fghbg2

determinants Exercise 5.2 Question 1 sub question 4

Answer:|132412352|=40
Hint: First we will use row operation to make some element 0
Given: |132412352|
Solution:
 Applying R1R1R2 and R2R2R3=|320160352|
 Now we will expand it w.r.t R1=3|6052|(2)|1032|+0|1635|=3(125×0)+2(1×23×0)+0=3(12)+2(2)=36+4=40

determinants Exercise 5.2 Question 1 sub question 5

Answer:|149491691625|=8
Hint: We will expand it w.r.t R1
Given:|149491691625|
Solution:|149491691625|
Expanding w.r.t R1
=1|9161625|4|416925|+9|49916|=1(9×2516×16)4(4×259×16)+9(4×169×9)=(225256)4(100144)+9(6481)=31+176153=176184=8

determinants Exercise 5.2 Question 1 sub question 6

Answer:|6322121052|=0
Hint: In this question we will convert some elements into 0
Given:|6322121052|
Solution:
|6322121052|
 Applying R1R1R2 and R2R2R3=|42012601052|
On expanding it w.r.t R1
=4|6052|(2)|120102|+0|126105|=4(6×25×0)+2(12×2(10)×0)+0=4(12)+2(24)=48+48=0
Hence|6322121052|=0

determinants Exercise 5.2 Question 1 sub question 7

Answer:|13927392719271327139|=512000

Hint: First we will make a column with same elements

Given:|13927392719271327139|

Solution:|13927392719271327139|

 Applying C1C1+C2+C3+C4=|40392740927140271340139| Applying R1R1R2 and R2R2R3 and R3R3R4=|0618260182620262640139|
On changing all rows into columns
=|0004061826118262326269|
If the rows and columns of a determinant are interchanged, the value of the determinant remains the same.
Expanding the determinant w.r.t R1

=0|182612623269|0|626118232669|+0|6181182632629|40|61826182622626|=00+040{6|26226|(18)|182266|+26|1826262|}=40[6{26(6)(2)(2)}+18{(18)(6)(2)(26)}+26{(18)(2)26×26}]=40[6(1564)+18(108+52)+26(36676)]=40[6(160)+18(160)+26(640)]=40(960+288016640)=40(12800)=512000

Hence,|13927392719271327139|=512000

determinants Exercise 5.2 Question 1 Sub Question 8

Answer:|10218361341736|=0
Hint: We will solve the determinant w.r.t R1
Given: |10218361341736|
Solution:|10218361341736|
=102|3436|18|14176|+36|13173|=102(6×33×4)18(6×14×17)+36(1×317×3)=102(1812)18(668)+36(351)=102(6)18(62)+36(48)=612+11161728=17281728=0
Hence |10218361341736|=0

determinants Exercise 5.2 Question 2

Answer:|82712351643|=0
Hint: We will try to do any two column or row equal
Given:|82712351643|
Solution:|82712351643|
 On taking common 4 from C1=4|227335443|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=4×0(C1=C2)=0
Hence |82712351643|=0

determinants Exercise 5.2 Question 2 Sub Question 2

Answer:|6322121052|=0
Hint: We will try to do any two column or row equal
Given:|6322121052|
Solution:|6322121052|
 On taking (2) common from C1=(2)|332112552|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=(2)×0(C1=C2)=0
Hence |6322121052|=0

determinants Exercise 5.2 Question 2 Sub Question 3

Answer:|23713175152012|=0
Hint: We will try to do any two column or row equal
Given:|23713175152012|
Solution:|23713175152012|
 Applying R1R1+R2=|15201213175152012|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(R1=R3)
Hence,|23713175152012|=0

determinants Exercise 5.2 Question 2 Sub Question 5

Answer:|a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b|=0
Hint: We will try to do any two column or row equal
Given:|a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b|
Solution:|a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b|
 Applying C2C2C1 and C3C3C2=|a+b(2a+b)(a+b)(3a+b)(2a+b)2a+b(3a+b)(2a+b)(4a+b)(3a+b)4a+b(5a+b)(4a+b)(6a+b)(5a+b)|=|a+b2a+bab3a+b2ab2a+b3a+b2ab4a+b3ab4a+b5a+b4ab6a+b5ab|=|a+baa2a+baa4a+baa|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(C2=C3)
Hence|a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b|=0

determinants Exercise 5.2 Question 2 Sub Question 6

Answer:|1aa2bc1bb2ac1cc2ab|=0
Hint: First we will split the determinant into two determinant
Given: |1aa2bc1bb2ac1cc2ab|
Solution:|1aa2bc1bb2ac1cc2ab|
=|1aa21bb21cc2||1abc1bac1cab| Using |x1x2x3+ay1y2y3+bz1z2z3+c|=|x1x2x3y1y2y3z1z2z3|+|x1x2ay1y2bz1z2c|==|1aa21bb21cc2||1abc1bac1cab|
We will multiply and divide by abc in second determinent
=|1aa21bb21cc2|abcabc|1abc1bac1cab|
 On multiplying R1 by a,R2 by b and R3 by c in determinant (2)=|1aa21bb21cc2|1abc|aa2abcbb2abccc2abc|=|1aa21bb21cc2|abcabc|aa21bb21cc21|=|1aa21bb21cc2||aa21bb21cc21|
C1C2 in determinant (1)=|a1a2b1b2c1c2||aa21bb21cc21| and 
If any two rows or columns of a determinant are interchanged,
then sign of the determinant is changed.
 Again C2C3 in determinant (1)=()()|aa21bb21cc21||aa21bb21cc21|=|aa21bb21cc21||aa21bb21cc21|=0
Hence|1aa2bc1bb2ac1cc2ab|=0

determinants Exercise 5.2 Question 2 Sub Question 7

Answer:|491639742623|=0
Hint: We will try to do any two column or row equal
Given:|491639742623|
Solution:|491639742623|
 Applying C38×C3+C2=|4916×8+13974×8+72623×8+2|=|49148+139732+726224+2|=|491493973926226|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(C1=C3)
Hence|491639742623|=0

determinants Exercise 5.2 Question 2 Sub Question 8

Answer: |0xyx0zyz0|=0
Hint: We will try to do any two column or row equal
Given: |0xyx0zyz0|
Solution: |0xyx0zyz0|
 On multiplying C1,C2 and C3 by z,y and x respectively =1xyz|0xyyxxz0zxyzzy0|
 Take y,x and z common from R1,R2 and R3 respectively =1xyz(yzx)|0xxz0zyy0|=|0xxz0zyy0| On applying C2C2C3=|00xzzzyy0|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(C1=C2)
Hence |0xyx0zyz0|=0

determinants Exercise 5.2 Question 2 Sub Question 9

Answer:|143673543172|=0
Hint: We will try to do any two column or row equal
Given:|143673543172|
Solution:|143673543172|
 Applying C37×C3+C1=|1436×7+17354×7+73172×7+3|=|14342+173528+731714+3|=|143437353531717|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(C2=C3)
Hence |143673543172|=0

determinants Exercise 5.2 Question 10

Answer:|12223242223242523242526242526272|=0
Hint: We will try to do any two column or row equal
Given:|12223242223242523242526242526272|
Solution:|12223242223242523242526242526272|
 On applying C3C3C2 and C4C4C1=|122232224212223242325222324252426232425262527242|=|122294161223216925432422516369425236254916|=|12225152232721324292742521133| On taking common 3 from C4=3|12225522327732429942521111|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=3×0(C3=C4)=0
Hence|12223242223242523242526242526272|=0

determinants Exercise 5.2 Question 12

Answer:|(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|=0
Hint: We will try to do any two column or row equal
Given:|(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|
Solution:
 First (a+b)2(ab)2=(a2+2ab+b2)(a22ab+b2)=a2+2ab+b2a2+2abb2=4ab
|(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|
 On applying C1C1C2(2x+2x)2(2x2x)2(2x2x)21(3x+3x)2(3x3x)2(3x3x)21(4x+4x)2(4x4x)2(4x4x)21=|4×2x×2x(2x2x)214×3x×3x(3x3x)214×4x×4x(4x4x)21|
{(a+b)2(ab)2=4abam×an=am+n}=|4×2x+(x)(2x2x)214×3x+(x)(3x3x)214×4x+(x)(4x4x)21|=|4×20(2x2x)214×30(3x3x)214×40(4x4x)21|
=|4(2x2x)214(3x3x)214(4x4x)21| Taking 4 common from C1=4|1(2x2x)211(3x3x)211(4x4x)21|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=4×0(C1=C3)=0
Hence |(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|=0

determinants Exercise 5.2 Question 13

Answer:|sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|=0
Hint: We will try to do any two column or row equal
Given:|sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|
Solution:|sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|
 On applying C2cosδC2sinδ.C1|sinαcosαcosδsinαsinδcos(α+δ)sinβcosβcosδsinβsinδcos(β+δ)sinγcosγcosδsinγsinδcos(γ+δ)|{cos(α+δ)=cosαcosδsinαsinδ}=|sinαcos(α+δ)cos(α+δ)sinβcos(β+δ)cos(β+δ)sinγcos(γ+δ)cos(γ+δ)|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(C2=C3)
Hence |sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|=0

deteminants Exercise 5.2 Question 15

Answer:|cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|=0
Hint: We will try to do any two column or row identical
Given: |cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|
Solution:|cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|
 On applying R3cosy×R3siny×R2=|cos(x+y)sin(x+y)cos2ysinxcosxsiny(cosy)(cosx)sinysinx(cosy)(sinx)sinycosx(cosy)(cosy)sinysiny|
=|cos(x+y)sin(x+y)cos2ysinxcosxsinycosxcosysinysinx[sinxcosy+sinycosx](cos2ysin2y)|
cos(x+y)=cosxcosysinysinxsin(x+y)=sinxcosy+sinycosxcos2ysin2y=cos2y
=|cos(x+y)sin(x+y)cos2ysinxcosxsinycos(x+y)sin(x+y)cos2y|
If any two rows or columns of a determinant are identical.
The value of the determinant is zero
=0(R1=R3)
Hence |cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|=0

deteminants Exercise 5.2 Question 16

Answer:|23+35515+465103+115155|=0
Hint: We will try to make all the elements of two row or column zero
Given: |23+35515+465103+115155|
Solution:|23+35515+465103+115155|
 On taking 5 common from C2 and C3
=5×5|23+31115+46523+11535|
 On applying C1C13C223C3=5|23+33231115+461546523+115311535|=5|011052035|
If all the elements of a row or column are zero
The value of the determinant is zero

=5×0

=0

Hence |23+35515+465103+115155|=0

deteminants Exercise 5 .2 Question 17

Answer: |sin2AcotA1sin2BcotB1sin2CcotC1|=0where A,B,C are the angles of ΔABC
Hint: We will try to convert some elements of determinant zero or 1
Given:|sin2AcotA1sin2BcotB1sin2CcotC1|
Solution:|sin2AcotA1sin2BcotB1sin2CcotC1|
 On applying R1R1R2 and R2R2R3=|sin2Asin2BcotAcotB0sin2Bsin2CcotBcotC0sin2CcotC1|sin2Asin2B=sin(A+B)sin(AB)A+B+C=180AB=180Csin(180C)=sinCsin(180A)=sinA
 Now, cotAcotBcosAsinAcosBsinB=sinBcosAcosBsinAsinAsinBsin(BA)sinAsinB=sin{(AB)}sinAsinB=sin(AB)sinAsinB
 Now from (1) =|sin(A+B)sin(AB)sin(BA)sinAsinB0sin(B+C)sin(BC)sin(CB)sinBsinC0sin2CcotC1|
=|sin(180C)sin(AB)sin(AB)sinAsinB0sin(180A)sin(BC)sin(BC)sinBsinC0sin2CcotC1|=|sin(A)sin(BC)sin(BC)sinBsinC0sin2CcotC1|
 On taking sin(AB) common from R1 and sin(BC) from R2=sin(AB)sin(BC)|sinC1sinAsinB0sinA1sinBsinC0sin2CcotC1|
 On expanding w.r.t C3=sin(AB)sin(BC)[0|sinA1sinBsinCsin2CcotC|0|sinC1sinAsinBsin2CcotC|+1|sinC1sinAsinBsinA1sinBsinC|]=sin(AB)sin(BC)[00+1(sinCsinBsinC+sinAsinAsinB)]=sin(AB)sin(BC)[1sinB+1sinB]=sin(AB)sin(BC)×0=0
Hence |sin2AcotA1sin2BcotB1sin2CcotC1|=0

deteminants Exercise MCQs Question 2 sub question 3

Answer:-|ab+ca2bc+ab2ca+bc2|=(a+b+c)(ab)(bc)(ca)
Hint: We will try to make some elements of the determinant into zero
Given:-|ab+ca2bc+ab2ca+bc2|
Solution :-|ab+ca2bc+ab2ca+bc2|
 On applying C1C1+C2=|a+b+cb+ca2b+c+ac+ab2c+a+ba+bc2| On taking common (a+b+c) from C1=a+b+c|1b+ca21c+ab21a+bc2|
 On applying C1C1C2 and C2C2C3=a+b+c|0(b+c)(c+a)a2b20(c+a)(a+b)b2c21a+bc2|
=a+b+c|0b+cca(a+b)(ab)0c+aab(b+c)(bc)1a+bc2|(a2b2=(a+b)(ab))=a+b+c|0ba(a+b)(ab)0cb(b+c)(bc)1a+bc2|=a+b+c|0(ab)(a+b)(ab)0(bc)(b+c)(bc)1a+bc2|
 On taking common (ab) from R1 and (bc) from R2=(a+b+c)(ab)(bc)|01(a+b)01(b+c)1a+bc2|
 On expanding w.r.t R1=(a+b+c)(ab)(bc)[0|1b+ca+bc2|(1)|0b+c1c2|+(a+b)|011a+b|]=(a+b+c)(ab)(bc)[0+1{0×c21(b+c)}+(a+b){0(a+b)(1)(1)}]=(a+b+c)(ab)(bc){1(bc)+(a+b)(1)}=(a+b+c)(ab)(bc)(bc+a+b)=(a+b+c)(ab)(bc)(ac)=(a+b+c)(ab)(bc)(ca)
Hence|ab+ca2bc+ab2ca+bc2|=(a+b+c)(ab)(bc)(ca)

determinants Exercise 5.2 Question 2 sub question 4

Answer:-|1abc1bca1cab|=(ab)(bc)(ca)
Hint: We will try to make some elements of the determinant into zero
Given:|1abc1bca1cab|
Solution :|1abc1bca1cab|
 On applying R1R1R2 and R2R2R3=|0abbcca0bccaab1cab|=|0abc(ab)0bca(bc)1cab|
 On taking common (ab) from R1 and (bc) from R2=(ab)(bc)|01c01a1cab|
 On expanding w.r.t R1=(ab)(bc)[0|1acab|1|0a1ab|+(c)|011c|]=(ab)(bc)[01{0×ab(a)×1}c{0×c1×1}]=(ab)(bc)[1(+a)c(1)]=(ab)(bc)(a+c)=(ab)(bc)(ca)
Hence |1abc1bca1cab|=(ab)(bc)(ca)

determinants Exercise 5.2 Question 2 sub question 5

Answer:|x+λxxxx+λxxxx+λ|=λ2(3x+λ)
Hint: We will try to make some elements of the determinant into zero
Given:|x+λxxxx+λxxxx+λ|
Solution:|x+λxxxx+λxxxx+λ|
 On applying R1R1+R2+R3=|3x+λ3x+λ3x+λxx+λxxxx+λ|
 On taking common (3x+λ) from R1=(3x+λ)|111xx+λxxxx+λ|
 On applying C1C1C2 and C2C2C3=(3x+λ)|001x(x+λ)(x+λ)xxxxx(x+λ)x+λ|=(3x+λ)|001xxλx+λxx0xxλx+λ|=(3x+λ)|001λλx0λx+λ|
 On expanding w.r.t R1=(3x+λ)[0|λxλx+λ|0|λx0x+λ|+1|λλ0λ|]=(3x+λ)[00+1[(λ)(λ)0×λ]]=(3x+λ){1(λ20)}=λ2(3x+λ)
Hence|x+λxxxx+λxxxx+λ|=λ2(3x+λ)

determinants Exercise 5.2 Question 2 sub question 6

Answer:|abccabbca|=(a+b+c)(a2+b2+c2abbcca)
Hint :We will try to make some elements of the determinant into zero
Given :|abccabbca|
Solution: |abccabbca|
 On applying R1R1+R2+R3=|a+b+ca+b+ca+b+ccabbca|
 On taking common (a+b+c) from R1=(a+b+c)|111cabbca| On applying C1C1C2 and C2C2C3=(a+b+c)|001caabbbccaa|
 On expanding w.r.t R1=(a+b+c)[0|abbcaa|0|bab0a|+1|caabbcca|=(a+b+c)[00+1{(ca)(ca)(bc)(ab)}]=(a+b+c){(c2acac+a2)(bab2+acbc)}=(a+b+c)(a2+b2+c2abbcca)
Hence |abccabbca|=(a+b+c)(a2+b2+c2abbcca)

determinants Exercise 5.2 Question 2 sub question 7

Answer:|x111x111x|=(x+2)(x1)2
Hint: We will try to make some elements of the determinant into zero
Given:|x111x111x|
Solution:|x111x111x|
 On applying R1R1+R2+R3=|x+2x+2x+21x111x|
 On taking common (x+2) from R1=(x+2)|1111x111x| On applying C1C1C2 and C2C2C3=(x+2)|0011xx1111xx|
 On expanding w.r.t R1=(x+2)[0|x111xx|0|1x10x|+1|1xx101x|]=(x+2)[00+1{(1x)(1x)0(x1)}]=(x+2)[1{(x1)20}]=(x+2)(x1)2
Hence |x111x111x|=(x+2)(x1)2

determinants Exercise 5.2 Question 2 sub question 8

Answer:|0xy2xz2x2y0yz2x2zzy20|=2x3y3z3
Hint:We will take common from C1,C2andC3
Given:|0xy2xz2x2y0yz2x2zzy20|
Solution: |0xy2xz2x2y0yz2x2zzy20|
 On taking common x2 from C1,y2 from C2 and z2 from C3=x2y2z2|0xxy0yzz0|
 On expanding w.r.t R1=x2y2z2[0|0yz0|x|yyz0|+x|y0zz|]=x2y2z2[0x(0xyyxz)+x(yxz0xz)]=x2y2z2[x(0yz)+x(yz0)]=x2y2z2(xyz+xyz)=x2y2z2×2xyz=2x3y3z3
Hence|0xy2xz2x2y0yz2x2zzy20|=2x3y3z3

determinants Exercise 5.2 Question 2 sub question 9

Answer:|a+xyzxa+yzxya+z|=a2(a+x+y+z)
Hint:We will try to make some elements of the determinant into zero
Given :|a+xyzxa+yzxya+z|
Solution:|a+xyzxa+yzxya+z|
 On applying C1C1+C2+C3=|a+x+y+zyza+x+y+za+yza+x+y+zya+z|
 On taking common (a+x+y+z) from C1=(a+x+y+z)|1yz1a+yz1ya+z|
 On applying R1R1R2 and R2R2R3=(a+x+y+z)|0y(a+y)zz0a+yyz(a+z)1ya+z|=(a+x+y+z)|0yay00azaz1ya+z|=(a+x+y+z)|0a00aa1ya+z|
 On expanding w.r.t R1=(a+x+y+z)[0|aaya+z|(a)|0a1a+z|+0|0a1y|]=(a+x+y+z)[0+a{0×(a+z)(a)1}+0]=(a+x+y+z){a(0+a)}=(a+x+y+z)a2=a2(a+x+y+z)
Hence |a+xyzxa+yzxya+z|=a2(a+x+y+z)

deteminants Exercise 5.2 Question 10

Answer:-Δ=|1xx21yy21zz2|+Δ1=|111yzzxxyxyz|=0

Hint: First we solve Δ and after we solve for Δ1
We will try to make some elements of the determinant zero
Given:Δ=|1xx21yy21zz2|,Δ1=|111yzzxxyxyz|
Solution:Let us solve for Δ=|1xx21yy21zz2|
Δ=|1xx21yy21zz2|
 On applying R1R1R2 and R2R2R3Δ=|0xyx2y20yzy2z21zz2|Δ=|0xy(x+y)(xy)0yz(y+z)(yz)1zz2|a2b2=(a+b)(ab)
 On taking common (xy) from R1 and (yz) from R2Δ=(xy)(yz)|01(x+y)01(y+z)1zz2|
Δ=(xy)(yz)|00111z(x+y)(y+z)z2|
If we convert all columns into rows
then the value of determinant does not change
Δ=(xy)(yz)|00111z(x+y)(y+z)z2|
 On expanding w.r.t R1Δ=(xy)(yz)[0|1zy+zz2|0|1zx+yz2|+1|11x+yy+z|]Δ=(xy)(yz)[00+1{1(y+z)1(x+y)}]Δ=(xy)(yz)(y+zxy)Δ=(xy)(yz)(zx)(1)
Now Lets us Solve for Δ1=|111yzzxxyxyz|
Δ1=|111yzzxxyxyz|
 On applying C1C1C2 and C2C2C3Δ1=|001yzzxzxxyxyxyyzz|Δ1=|001z(xy)x(yz)xyxyyzz|
 On taking common (xy) from C1 and (yz) from C2Δ1=(xy)(yz)|001zxxy11z|
On expanding w.r.t R1
Δ1=(xy)(yz)[0|xxy1z|0|zxy1z|+1zx11]Δ1=(xy)(yz)[00+1{(z)(1)(x)(1)}]Δ1=(xy)(yz)(z+x)Δ1=(xy)(yz)(zx)
Now L.H.S
Δ+Δ1=(xy)(yz)(zx)+{(xy)(yz)(zx)}
From equation (1) and (2)
Δ+Δ1=0=RHS
Hence it is proved that Δ+Δ1=0


determinants Exercise 5.2 Question 11

Answer:|abcabbccab+cc+aa+b|=a3+b3+c33abc
Hint: We will try to make some elements of the determinant zero
Given:|abcabbccab+cc+aa+b|
Solution: L.H.S|abcabbccab+cc+aa+b|
 On applying C1C1+C2+C3=|a+b+cbcab+bc+cabccab+c+c+a+a+bc+aa+b|=|a+b+cbc0bcca2a+2b+2cc+aa+b|=|a+b+cbc0bcca2(a+b+c)c+aa+b|
 On taking common (a+b+c) from C1=(a+b+c)|1bc0bcca2c+aa+b|
 On expanding wr.t R1=(a+b+c)[1|bccac+aa+b|b|0ca2a+b|+c0bc2c+a]=(a+b+c)[1{(bc)(a+b)(ca)(c+a)}b{0×(a+b)2(ca)}+c{0×(c+a)2(bc)}]=(a+b+c)[1{(abca+b2bc)(c2a2)}b{02c+2a}+c{02b+2c}]=(a+b+c)[abca+b2bcc2+a2+2bc2ab2bc+2c2]
=(a+b+c)(a2+b2+c2abbcca)=a3+b3+c33abcx3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)
=RHS
Hence it is proved that
|abcabbccab+cc+aa+b|=a3+b3+c33abc

determinants Exercise 5.2 Question 12

Answer:|b+cabac+abcba+bcac|=3abca3b3c3
Hint:We will try to make some elements of the determinant zero
Given:|b+cabac+abcba+bcac|
Solution:L.H.S|b+cabac+abcba+bcac|
 On applying R1R1+R2+R3=|b+c+c+a+a+b(ab+bc+ca)a+b+cc+abcba+bcac|=|2a+2b+2c0a+b+cc+abcba+bcac|=|2(a+b+c)0a+b+cc+abcba+bcac|
 On taking common (a+b+c) from R1=(a+b+c)|201c+abcba+bcac|
 On expanding w.r.t R1=(a+b+c)[2|bcbcac|0|c+aba+bc|+1|c+abca+bca|=(a+b+c)[1{(bc)(c)(b)(ca)}0+1{(c+a)(ca)(bc)(a+b)}]=(a+b+c)[2(bcc2bc+ab)+1{c2a2(abac+b2bc)}]=(a+b+c){2(c2+ab)+1(c2a2ab+acb2+bc)}=(a+b+c)(2c2+2ab+c2a2ab+acb2+bc)=(a+b+c)(c2a2b2ab+ac+bc)=(a+b+c)(a2+b2+c2abbcca)=(a3+b3+c33abc)=a3b3c3+3abcx3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)=3abca3b3c3
=RHS
Hence it is proved that
|b+cabac+abcba+bcac|=3abca3b3c3

deteminants Exercise 5.2 Question 13

Answer:|a+bb+cc+ab+cc+aa+bc+aa+bb+c|=2|abcbcacab|
Hint: We will make R1 of L.H.S according to R.H.S
Given:|a+bb+cc+ab+cc+aa+bc+aa+bb+c|=2|abcbcacab|
Solution:L.H.S |a+bb+cc+ab+cc+aa+bc+aa+bb+c|=2|abcbcacab|
 On applying R1R1R2+R3=|(a+b)(b+c)+(c+a)(b+c)(c+a)+(a+b)(c+a)(a+b)+(b+c)b+cc+aa+bc+aa+bb+c|=|a+bbc+c+ab+cca+a+bc+aab+b+cb+cc+aa+bc+aa+bb+c|=|2a2b2cb+cc+aa+bc+aa+bb+c|
 On taking 2 common from R1=2|abcb+cc+aa+bc+aa+bb+c|
 On applying R3R3R1=2|abcb+cc+aa+bc+aaa+bbb+cc|=2|abcb+cc+aa+bcab|
 On applying R2R2R3=2|abcb+ccc+aaa+bbcab|=2|abcbcacab|=RHS
Hence it is proved that

|a+bb+cc+ab+cc+aa+bc+aa+bb+c|=2|abcbcacab|

deteminants Exercise 5.2 Question 14

Answer:|a+b+2cabcb+c+2abcac+a+2b|=2(a+b+c)3
Hint We will try to make some elements of the determinant zero
Given:|a+b+2cabcb+c+2abcac+a+2b|=2(a+b+c)3
Solution: L.H.S |a+b+2cabcb+c+2abcac+a+2b|
 On applying C1C1+C2+C3=|2a+2b+2cab2a+2b+2cb+c+2ab2a+2b+2cac+a+2b|=|2(a+b+c)ab2(a+b+c)b+c+2ab2(a+b+c)ac+a+2b|
 On taking common 2(a+b+c) from C1=2(a+b+c)|1ab1b+c+2ab1ac+a+2b|
 On applying R1R1R2,R2R2R3=2(a+b+c)|0a(b+c+2a)bb0b+c+2aab(c+a+2b)1ac+a+2b|=2(a+b+c)|0abc2a00b+c+abca2b1ac+a+2b|=2(a+b+c)|0abc00a+b+cabc1ac+a+2b|=2(a+b+c)|0(a+b+c)00a+b+c(a+b+c)1ac+a+2b|
 On taking common (a+b+c) from R2=2(a+b+c)(a+b+c)|0(a+b+c)00111ac+a+2b|=2(a+b+c)2|0(a+b+c)00111ac+a+2b|
 On expanding w.r.t R1=2(a+b+c)2[0|11ac+a+2b|{(a+b+c)}|011c+a+2b|+0011a]=2(a+b+c)2[0+(a+b+c){0(1)1}+0]=2(a+b+c)2[(a+b+c)(1)]=2(a+b+c)2(a+b+c)=2(a+b+c)3=RHS
Hence it is proved that
|a+b+2cabcb+c+2abcac+a+2b|=2(a+b+c)3

determinants Exercise 5.2 Question 15

Answer:|abc2a2a2bbca2b2c2ccab|=(a+b+c)3
Hint:We will try to make some elements of the determinant zero
Given:|abc2a2a2bbca2b2c2ccab|=(a+b+c)3
Solution:
 L.H.S |abc2a2a2bbca2b2c2ccab| On applying R1R1+R2+R3=|abc+2b+2c2a+bca+2c2a+2b+cab2bbca2b2c2ccab|
=|a+b+ca+b+ca+b+c2bbca2b2c2ccab|
 On taking common (a+b+c) from C1=(a+b+c)|1112bbca2b2c2ccab|
 On applying C1C1C2,C2C2C3=(a+b+c)|0012b(bca)bca2b2b2c2c2c(cab)cab|
=(a+b+c)|0012bb+c+abca2b2c2c2cc+a+bcab|=(a+b+c)|001a+b+c(a+b+c)2b0a+b+ccab|
 On taking common (a+b+c) from C2=(a+b+c)(a+b+c)|001a+b+c12b01cab|
 On expanding w.r.t R1=(a+b+c)2[0|12b1cab|0|a+b+c2b0cab|+1|a+b+c101|]=(a+b+c)2[00+1{(a+b+c)×1(1)×0}]=(a+b+c)2[1(a+b+c)]=(a+b+c)2(a+b+c)=(a+b+c)3=RHS
Hence it is proved that
|abc2a2a2bbca2b2c2ccab|=(a+b+c)3

determinants Exercise 5.2 Question 16

Answer:

Answer:|1b+cb2+c21c+ac2+a21a+ba2+b2|=(ab)(bc)(ca)
Hint : We will try to make some elements of the determinant zero
Given:|1b+cb2+c21c+ac2+a21a+ba2+b2|=(ab)(bc)(ca)
Solution:
 L.H.S |1b+cb2+c21c+ac2+a21a+ba2+b2|
If the rows and columns of a determinant are interchanged, the value of the determinant remains the same.
=|111b+cc+aa+bb2+c2c2+a2a2+b2|
 On applying C1C1C2 and C2C2C3=|001b+c(ca)c+a(a+b)a+bb2+c2(c2+a2)c2+a2(a2+b2)a2+b2|=|001b+ccac+aaba+bb2+c2c2a2c2+a2a2b2a2+b2|
=|001bacba+bb2a2c2b2a2+b2|=|001bacba+b(ba)(b+a)(cb)(c+b)a2+b2|x2y2=(xy)(x+y)
 On taking common (ba) from C1 and (cb) from C2=(ba)(cb)|00111a+b(b+a)(c+b)a2+b2|
 On expanding w.r.t R1=(ba)(cb)[0|1a+bc+ba2+b2|0|1a+bb+aa2+b2|+1|11b+ac+b|]=()(ab)()(bc)[00+1{(c+b)11(b+a)}]=(ab)(bc)[1{(c+bba)}]=(ab)(bc)(ca)=RH.S
Hence it is proved that
|1b+cb2+c21c+ac2+a21a+ba2+b2|=(ab)(bc)(ca)

determinants Exercise 5.2 Question 17

Answer:|aa+ba+2ba+2baa+ba+ba+2ba|=9(a+b)b2
Hint We will try to make some elements of the determinant zero
Given :|aa+ba+2ba+2baa+ba+ba+2ba|=9(a+b)b2
Solution:
 L.H.S |aa+ba+2ba+2baa+ba+ba+2ba|
 On applying R1R1+R2+R3=|a+a+2b+a+ba+b+a+a+2ba+2b+a+b+aa+2baa+ba+ba+2ba|=|3a+3b3a+3b3a+3ba+2baa+ba+ba+2ba|
 Taking common (3a+3b) from R1=(3a+3b)|111a+2baa+ba+ba+2ba| On applying R2R2R3=3(a+b)|111a+2b(a+b)a(a+2b)a+baa+ba+2ba|=3(a+b)|111a+2babaa2bba+ba+2ba|=3(a+b)|111b2bba+ba+2ba|
 Taking common (b) from R2=3(a+b)b|111121a+ba+2ba| On applying C1C1C2 and C2C2C3=3(a+b)b|0011(2)211a+b(a+2b)a+2baa|=3(a+b)b|0011+2211a+ba2ba+2baa|=3(a+b)b|001331b2ba|
 On expanding w.r.t R1=3(a+b)b[0|312ba|0|31ba|+1|33b2b|]=3(a+b)b[00+1{3×2b(3)(b)}]=3(a+b)b[1(6b3b)]=3(a+b)b×3b=9(a+b)b2
Hence it is proved that
|aa+ba+2ba+2baa+ba+ba+2ba|=9(a+b)b2

deteminants Exercise 5.2 Question 18

Answer:|1abc1bca1cab|=|1aa21bb21cc2|
Hint We will make column (3) of L.H.S abc
Given:|1abc1bca1cab|=|1aa21bb21cc2|
Solution:
 L.H.S |1abc1bca1cab|
 On multiplying by 'a' in R1= by b ' in R2 and by 'c' in Rm
=1abc|aa2abcbb2abccc2abc| Taking common (abc) from C3=abcabc|aa21bb21cc21|=|aa21bb21cc21|
If any two rows or columns of a determinant are interchanged, then sign of the determinant is changed.
C2C3=()|a1a2b1b2c1c2|C1C2=()()|1aa21bb21cc2|=|1aa21bb21cc2|=RHS
Hence it is proved that
|1abc1bca1cab|=|1aa21bb21cc2|

deteminants Exercise 5.2 Question 19.

Answer:|zxyz2x2y2z4x4y4|=|xyzx2y2z2x4y4z4|=|x2y2z2x4y4z4xyz|
=xyz(xy)(yz)(zx)(x+y+z)
Hint:We will prove all the determinant equal by using interchange column or row property
Given:|zxyz2x2y2z4x4y4|=|xyzx2y2z2x4y4z4|=|x2y2z2x4y4z4xyz|=xyz(xy)(yz)(zx)(x+y+z)
Solution:
Let us first solve for
|zxyz2x2y2z4x4y4|
If any two rows or columns of a determinant are interchanged, then sign of the determinant is changed.
C1C2
=()|xzyx2z2y2x4z4y4|
C1C2
=()()|xyzx2y2z2x4y4z4|
=|xyzx2y2z2x4y4z4|
R1R2=()|x2y2z2xyzx4y4z4|R2R3=()()|x2y2z2x4y4z4xyz|=|x2y2z2x4y4z4xyz|.....2
Fromequation(1)and(2)weget|zxyz2x2y2z4x4y4|=|xyzx2y2z2x4y4z4|=|x2y2z2x4y4z4xyz|(3)
Nowconsider|x2y2z2x4y4z4xyz|TakingcommonxfromC1,yfromC2andzfromC3=xyz|xyzx3y3z3111|OnapplyingC1C1C2andC2C2C3=xyz|xyyzzx3y3y3z3z3001|=xyz|xyyzz(xy)(x2+xy+y2)(yz)(y2+yz+z2)z3001|
x3y3=(xy)(x2+xy+y2)
 On taking common (xy) common from C1 and (yz) from C2=xyz(xy)(yz)|11z(x2+xy+y2)(y2+yz+z2)z3001|
 On expanding w.r.t R3=xyz(xy)(yz)[0|1zy2+yz+z2z3|0|1zx2+xy+y2z3|+1|11x2+xy+y2y2+yz+z2|]=xyz(xy)(yz)[00+1{(y2+yz+z2)(x2+xy+y2)}]=xyz(xy)(yz)(y2+yz+z2x2xyy2)=xyz(xy)(yz)(z2x2+yzxy)=xyz(xy)(yz){(z+x)(zx)+y(zx)}=xyz(xy)(yz)(zx)(z+x+y)=xyz(xy)(yz)(zx)(x+y+z)
From equation (1), (2),(3) and (4)
Hence it is proved that
|zxyz2x2y2z4x4y4|=|xyzx2y2z2x4y4z4|=|x2y2z2x4y4z4xyz|
=xyz(xy)(yz)(zx)(x+y+z)

determinants Exercise 5.2 Question 20

Answer:|(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)
Hint We will try to make (ab)and (bc)any two elements of determinant
Given:|(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab|=(ab)(bc)(ca)(a2+b2+c2)
Solution: L.H.S |(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab|
 On applying R1R1R2 and R2R2R3=|(b+c)2(c+a)2a2b2bcca(c+a)2(a+b)2b2c2caab(a+b)2c2ab|x2y2=(x+y)(xy)
=|(b+c+c+a)(b+cca)(a+b)(ab)c(ab)(c+a+a+b)(c+aab)(b+c)(bc)a(bc)(a+b)2c2ab|=|(a+b+2c)(ba)(a+b)(ab)c(ab)(2a+b+c)(cb)(b+c)(bc)a(bc)(a+b)2c2ab|=|(a+b+2c)(ab)(a+b)(ab)c(ab)(2a+b+c)(bc)(b+c)(bc)a(bc)(a+b)2c2ab|
 Taking common (ab) from R1,(bc) from R2=(ab)(bc)|(a+b+2c)(a+b)c(2a+b+c)(b+c)a(a+b)2c2ab| On applying R1R1R2=(ab)(bc)|ab2c+2a+b+ca+bbcc+a(2a+b+c)(b+c)a(a+b)2c2ab|
=(ab)(bc)|acacac(2a+b+c)(b+c)a(a+b)2c2ab| Taking common (ac) from R1=(ab)(bc)(ac)|111(2a+b+c)(b+c)a(a+b)2c2ab|
 On applying C1C1C2 and C2C2C3=(ab)(bc)(ac)|0012abcbcb+c+aa(a+b)2c2c2abab|=(ab)(bc)(ac)|0012a2b2ca+b+ca(a+b+c)(a+bc)c2abab|=(ab)(bc)(ac)|0012(a+b+c)a+b+ca(a+b+c)(a+bc)c2abab|
Taking common(a+b+c)fromC1
=(a+b+c)(ab)(bc)(ac)|0012a+b+ca(a+bc)c2abab|=(a+b+c)(ab)(bc)(ca)|001(a+bc)c2abab|
 On expanding w.r.t R1=(a+b+c)(ab)(bc)(ca)[0|a+b+cac2abab|0|2aa+bcab|+1|2a+b+ca+bcc2ab|]=(a+b+c)(ab)(bc)(ca)[00+1{2(c2ab)(a+bc)(a+b+c)}]=(a+b+c)(ab)(bc)(ca)[2c2+2ab{(a+b)2c2}]=(a+b+c)(ab)(bc)(ca)[2c2+2ab{a2+b2+2abc2}](a+b)2=a2+b2+2ab=(a+b+c)(ab)(bc)(ca)(2c2+2aba2b22abc2)=(a+b+c)(ab)(bc)(ca)(a2b2c2)
=()()(ab)(bc)(ca)(a+b+c)(a2+b2+c2)=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)
Hence it is proved that
|(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)

deteminants Exercise 5.2 Question 21

Answer:|(a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|=2

Hint:  First we will make two elements of C3 zero. then we will expand it 

Given:|(a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|=2

Solution:

 L.H.S |(a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|

 On applying R1R1R2 and R2R2R3=|(a+1)(a+2)(a+2)(a+3)(a+2)(a+3)0(a+2)(a+3)(a+3)(a+4)(a+3)(a+4)0(a+3)(a+4)a+41|=|(a+2)(a+1a3)a+2a30(a+3)(a+2a4)a+3a40(a+3)(a+4)a+41|=|(a+2)(2)10(a+3)(2)10(a+3)(a+4)a+41|

 On expanding w.r.t C3=0|(a+3)(2)1(a+3)(a+4)a+4|0|(a+2)(2)1(a+3)(a+4)a+4|+1(a+2)(2)1(a+3)(2)1=00+1{(a+2)(2)(1)(1)(2)(a+3)}=1{2(a+2)2(a+3)}=2a+42a6=2=RHS

Hence it is proved that

|(a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|=2

deteminants Exercise 5.2 Question 22

Answer:

Answer:|a2a2(bc)2bcb2b2(ca)2cac2c2(ab)2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)
Hint  We will try to convert some elements of the determinant (ab),(bc) and (ca) to get the final answer 
Given:|a2a2(bc)2bcb2b2(ca)2cac2c2(ab)2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)
Solution:
 L.H.S |a2a2(bc)2bcb2b2(ca)2cac2c2(ab)2ab|
 On applying C1C22C12C3=|a2a2(bc)22a22bcbcb2b2(ca)22b22cacac2c2(ab)22c22abab|=|a2a2(bc)22bcbcb2b2(ca)22cacac2c2(ab)22abab|=|a2{a2+(bc)2+2bc}bcb2{b2+(ca)2+2ca}cac2{c2+(ab)2+2ab}ab|=|a2(a2+b2+c22bc+2bc)bcb2(b2+c2+a22ca+2ca)cac2(c2+a2+b22ab+2ab)ab|
=|a2(a2+b2+c2)bcb2(a2+b2+c2)cac2(a2+b2+c2)ab| Taking common (a2+b2+c2) from C2=(a2+b2+c2)|a21bcb21cac21ab|
 On applying R2R2R1 and R3R3R1=(a2+b2+c2)|a21bcb2a20c(ab)c2a20b(ac)|=(a2+b2+c2)|a21bc(a+b)(ab)0c(ab)(c+a)(ca)0b(ca)| On taking common (ab) from R2 and (ca) from R3=(a2+b2+c2)(ab)(ca)|a21bc(a+b)0c(c+a)0b|
 On expanding w.r.t R1=(a2+b2+c2)(ab)(ca)[a2|0c0b|1|(a+b)cc+ab|+bc(a+b)0c+a0]]=(a2+b2+c2)(ab)(ca)[a2(00)1{(b)((a+b)c(c+a))+bc(00)}]=(a2+b2+c2)(ab)(ca)[01{b(a+b)c2ac}]=(a2+b2+c2)(ab)(ca){1(ab+b2c2ac)}=(a2+b2+c2)(ab)(ca)(abb2+c2+ac)
=(a2+b2+c2)(ab)(ca)(acabb2+c2)=(a2+b2+c2)(ab)(ca){a(bc)(b2c2)}=(a2+b2+c2)(ab)(ca){a(bc)(b+c)(bc)}=(a2+b2+c2)(ab)(ca)(bc)(abc)=()()(a2+b2+c2)(ab)(ca)(bc)(a+b+c)=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)=RH.S
Hence it is proved that
|a2a2(bc)2bcb2b2(ca)2cac2c2(ab)2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)

determinants Exercise 5.2 Question 23

Answer:|1a2+bca31b2+cab31c2+abc3|=(ab)(bc)(ca)(a2+b2+c2)
Hint We will make some elements of the determinant zero
Given:|1a2+bca31b2+cab31c2+abc3|=(ab)(bc)(ca)(a2+b2+c2)
Solution:
 L.H.S |1a2+bca31b2+cab31c2+abc3|
 On applying R1R1R2 and R2R2R3=|0a2+bc(b2+ca)a3b30b2+ca(c2+ab)b3c31c2+abc3|=|0a2+bcb2ca(ab)(a2+ab+b2)0b2+cac2ab(bc)(b2+bc+c2)1c2+abc3|..(1)
 Consider a2+bcb2ca=a2b2+bcca=(ab)(a+b)(ab)=(ab)(a+bc)
 Similarly b2+cac2ab=(bc)(b+ca)a3b3=(ab)(a2+ab+b2)
 Now from (1)=|0(ab)(a+bc)(ab)(a2+ab+b2)0(bc)(b+ca)(bc)(b2+bc+c2)1c2+abc3|
 On taking common (ab) from R1 and (bc) from R2=(ab)(bc)|0(a+bc)(a2+ab+b2)0(b+ca)(b2+bc+c2)1c2+abc3|
 On applying R1R1R2=(ab)(bc)|0(a+bc)(b+ca)(a2+ab+b2)(b2+bc+c2)0(b+ca)(b2+bc+c2)1c2+abc3|=(ab)(bc)|0a+bcbc+aa2+ab+b2b2bcc20(b+ca)(b2+bc+c2)1c2+abc3|=(ab)(bc)|02a2ca2+abbcc20(b+ca)(b2+bc+c2)1c2+abc3|..(2)
 Consider a2+abbcc2=a2c2+abbc=(a+c)(ac)+b(ac)=(ac)(a+c+b)
From (2)
=(ab)(bc)|02(ac)(ac)(a+c+b)0b+cab2+bc+c21c2+abc3| On taking common (ac) from R1=(ab)(bc)(ac)|02(a+c+b)0b+cab2+bc+c21c2+abc3|
 On expanding w.r.t C1=(ab)(bc)(ca)[0|b+cab2+bc+c2c2+abc3|0|2a+b+cc2+abc3|+12a+b+cb+c+ab2+bc+c2]=(ab)(bc)(ca)[00+{2(b2+bc+c2)(b+ca)(b+ca)}]=(ab)(bc)(ca)[2b2+2bc+2c2{(b+c)2a2}]=(ab)(bc)(ca){2b2+2bc+2c2(b2+2bc+c2a2)}=(ab)(bc)(ca)(2b2+2bc+2c2b22bcc2+a2)=(ab)(bc)(ca)(a2+b2+c2)
Hence it is proved that
|1a2+bca31b2+cab31c2+abc3|=(ab)(bc)(ca)(a2+b2+c2)

determinants Exercise 5.2 Question 24

Answer:|a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2
Hint We will convert some elements of the determinant into zero
Given: |a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2
Solution:
 L.H.S |a2bcac+c2a2+abb2acabb2+bcc2|=|a2bcc(a+c)a(a+b)b2acabb(b+c)c2|
 Taking out 'a' common from C1, and b from C2 and c from C3=abc|aca+ca+bbabb+cc|
 On applying C1C1+C2+C3=abc|a+c+a+cca+ca+b+b+abab+b+c+cb+cc|=abc|2a+2cca+c2a+2bba2b+2cb+cc|=abc|2(a+c)ca+c2(a+b)ba2(b+c)b+cc|
 On taking 2 common from C1=2abc|(a+c)ca+c(a+b)ba(b+c)b+cc|
 On applying C1C2C1,C3C3C1=2abc|(a+c)cac(a+c)(a+c)(a+b)babaab(b+c)(b+c)(b+c)cbc|=2abc|(a+c)a0(a+b)ab(b+c)0b|
 On taking (a) common from C2 and (b) from C3
=2abc(a)(b)|(a+c)10(a+b)11(b+c)01|
 On expanding w.r.t R1=2a2b2c[(a+c)|1101|1|a+b1b+c1|+0|a+b1b+c0|]=2a2b2c[(a+c)(10)1(a+bbc)+0]=2a2b2c[a+c1(ac)]=2a2b2c(a+ca+c)=2a2b2c×2c=4a2b2c2=RHS
Hence it is proved that
|a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2

determinants Exercise 5.2 Question 25

Answer:

Answer:|x+4xxxx+4xxxx+4|=16(3x+4)
Hint First we will try to convert some elements into zero
Given:|x+4xxxx+4xxxx+4|=16(3x+4)
Solution:
 L.H.S |x+4xxxx+4xxxx+4|
 On applying R1R1+R2+R3=|3x+43x+43x+4xx+4xxxx+4| On taking 3x+4 common from R1=(3x+4)|111xx+4xxxx+4|
 On applying C1C1C2,C2C2C3=(3x+4)|001xx4x+4xxxxxx4x+4|=(3x+4)|00144x04x+4|
 On taking (4) common from C1 and (4) from C2=(3x+4)(4)(4)|00111x01x+4|=16(3x+4)|00111x01x+4|
 On expanding w.r.t R1=16(3x+4)[0|1x1x+4|0|1x0x+4|+1|1101|]=16(3x+4)[00+1(10)]=16(3x+4)×1=16(3x+4)=RHS
Hence it is proved that
|x+4xxxx+4xxxx+4|=16(3x+4)

determinants Exercise 5.2 Question 26

Answer:

Answer:|11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q|=1
Hint we will convert element of C1 into zero
Given:|11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q|=1
Solution:
 L.H.S |11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q| On applying R2R22R1 and R3R33R1=|11+p1+p+q012+p037+3p|
 On expanding w.r.t C1=1|12+p37+3p|0|1+p1+p+q37+3p|+0|1+p1+p+q12+p|=1{1(7+3p)3(2+p)}0+0=7+3p63p=1=RHS
Hence it is proved that
|11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q|=1

determinants Exercise 5.2 Question 27

Answer:|abccbacbcaabbac|=(a+bc)(b+ca)(c+ab)
Hint First we will make elements of C1(a+bc) or 0
Given:|abccbacbcaabbac|=(a+bc)(b+ca)(c+ab)
Solution:
 L.H.S |abccbacbcaabbac| On applying C1C1+C2 and C2C2+C3=|a+bc0cba+bcb+caca0b+cac|
 On taking (a+bc) common from C1 and (b+ca) common from C2
=(a+bc)(b+ca)|10cb11ca01c|
 On expanding w.r.t R1=(a+bc)(b+ca)[1|1ca1c|0|1ca0c|+(cb)|1101|]=(a+bc)(b+ca)[1{c(ca)}0+(cb)(10)]=(a+bc)(b+ca)(cc+a+cb)=(a+bc)(b+ca)(c+ab)=RHS
Hence it is proved that
|abccbacbcaabbac|=(a+bc)(b+ca)(c+ab)

deteminants Exercise 5.2 Question 28

Answer:

Answer:|a22abb2b2a22ab2abb2a2|=(a3+b3)2
Hint First we will try to make some elements of R1 or C1(a+b)2=a2+2ab+b2
Because from R.H.S (a3+b3)2=[(a+b)(a2ab+b2)]2=(a+b)2(a2ab+b2)2
Given: |a22abb2b2a22ab2abb2a2|=(a3+b3)2
Solution:
 L.H.S |a22abb2b2a22ab2abb2a2|
 On applying R1R1+R2+R3=|a2+b2+2ab2ab+a2+b2b2+2ab+a2b2a22ab2abb2a2|(a+b)2=a2+2ab+b2=|(a+b)2(a+b)2(a+b)2b2a22ab2abb2a2|
 On taking (a+b)2 common from R1=(a+b)2|111b2a22ab2abb2a2|
 On expanding w.r.t R1=(a+b)2[0|a22ab2abb2a2a2|0|b2a22ab2abb2a2|+1|b2a2a22ab2abb2b2a2|]=(a+b)2[00+1{(b2a2)(b2a2)}(a22ab)(2abb2)]=(a+b)2(b4+a42a2b22a3b+a2b2+4a2b22ab3)
=(a+b)2[(a2)2+(b2)2+2a2b22a3b2ab3+a2b2]=(a+b)2[(a2)2+(ab)2+(b2)22a3b2ab3+2a2b2]=(a+b)2(a2ab+b2)2=(a3+b3)2=RH.S
Hence it is proved that
|a22abb2b2a22ab2abb2a2|=(a3+b3)2

determinants Exercise 5.2 Question 29

Answer:

Answer:|a2+1abacabb2+1bccacbc2+1|=1+a2+b2+c2
Hint We will try to convert some elements of determinant into zero
Given:|a2+1abacabb2+1bccacbc2+1|=1+a2+b2+c2
Solution:
 L.H.S |a2+1abacabb2+1bccacbc2+1|
=|1+a2abacab1+b2bccacb1+c2| Multiply C1 by a,C2 by b and C3 by c=1abc|a(1+a2)ab2ac2a2bb(1+b2)bc2ca2cb2c(1+c2)|
 On taking a common from R1, b from R2 and c from R3=abcabc|1+a2b2c2a21+b2c2a2b21+c2|=|1+a2b2c2a21+b2c2a2b21+c2| On applying C1C1+C2+C3=|1+a2+b2+c2b2c21+a2+b2+c21+b2c21+a2+b2+c2b21+c2|
 On taking (1+a2+b2+c2) common from C1=(1+a2+b2+c2)|1b2c211+b2c21b21+c2| On applying R1R1R2,R2R2R3=(1+a2+b2+c2)|0b21b2c201+b2b2c21c21b21+c2|=(1+a2+b2+c2)|0100111b21+c2|
 On expanding w.r.t R1=(1+a2+b2+c2)[0|11b21+c2|(1)|0111+c2|+0|011b2|]=(1+a2+b2+c2)[0+1{0(1)1}+0]=(1+a2+b2+c2)(1×1)=(1+a2+b2+c2)=RHS
Hence it is proved that
|a2+1abacabb2+1bccacbc2+1|=1+a2+b2+c2

determinants Exercise 5.2 Question 30

Answer: |1aa2a21aaa21|=(a31)2
Hint We will try to convert some elements of determinant into zero
Given:|1aa2a21aaa21|=(a31)2
Solution:
 L.H.S |1aa2a21aaa21|
 On applying R1R1+R2+R3=|1+a2+aa+1+a2a2+a+1a21aaa21|
 On taking (a2+a+1) common from R1=(a2+a+1)|111a21aaa21| On applying C1C1C2,C2C2C3=(a2+a+1)|001a211aaaa2a211|=(a2+a+1)|001(a+1)(a1)(a1)aa(a1)(a+1)(a1)1|a2b2=(a+b)(ab)
 On taking common (a1) from C1 and (a1) from C2=(a2+a+1)(a1)(a1)|001(a+1)1aa(a+1)1|
 On expanding w.r.t R1=(a2+a+1)(a1)2[0|1aa+11|0|a+1aa1|+1|a+11aa+1|]=(a1)2(a2+a+1)[00+1{(a+1)2(a)(1)}]=(a1)2(a2+a+1)(a2+2a+1a)=(a1)2(a2+a+1)(a2+a+1)={(a1)(a2+a+1)}2=(a31)2=RHS
Hence it is proved that
|1aa2a21aaa21|=(a31)2

determinants Exercise 5.2 Question 31

Answer: 2(a+b)(b+c)(c+a)
Hint Use determinant formula
Given:|a+b+ccbca+b+cabaa+b+c|=2(a+b)(b+c)(c+a)
Solution:
 L.H.S |a+b+ccbca+b+cabaa+b+c| Use C1C1+C2 and C2C2+C3|Δ|=|a+bbcba+bb+caabb+ca+b+c|
 Common (a+b)(b+c) from C1&C2|Δ|=(a+b)(b+c)|11b11a11a+b+c| Use R1R1+R2 and R2R2+R3|Δ|=(a+b)(b+c)|20b+a02b+c11a+b+c|
 Expanding w.r.t C1|Δ|=(a+b)(b+c)[2(2a+2b+2cbc)+(1)(2b+2a)]|Δ|=(a+b)(b+c)[4a+4b+4c2b2c2b2a]|Δ|=2(a+b)(b+c)(c+a)

determinants Exercise 5.2 Question 32

Answer:4abc
Hint: Use determinant formula
Given: |b+caaba+cbcca+b|=4abc
Solution:
 L.H.S |b+caaba+cbcca+b|
 Use R1R1+R2+R3|Δ|=|2(b+c)2(c+a)2(a+b)ba+cbcca+b| Now R2R2R1 and R3R3R1 and 2 common |Δ|=2|b+cc+aa+bc0aba0|
 Use R1R1+R2+R3|Δ|=2|0cbc0aba0| Expanding w.r.t C1|Δ|=2[c(0ab)+b(ac0)]|Δ|=2(abc+abc)|Δ|=2(2abc)=4abc=RH.S

determinants Exercise 5.2 Question 33

Answer: 4a2b2c2
Hint: Use determinant formula
Given: |b2+c2abacbac2+a2bccacba2+b2|=4a2b2c2
Solution:
 L.H.S |b2+c2abacbac2+a2bccacba2+b2| Use R1aR1,R2bR2,R3cR3=1abc|a(b2+c2)a2ba2cb2ab(c2+a2)b2cc2ac2bc(a2+b2)|
 Take common a from R1,b from R2 and c from R3=abcabc|(b2+c2)a2a2b2(c2+a2)b2c2c2(a2+b2)|
 Use R1R1R2R3=|02c22b2b2(c2+a2)b2c2c2(a2+b2)|
 Expanding w.r.t C1=b2|2c22b2c2a2+b2|+c2|2c22b2c2+a2b2|=b2(2a2c22b2c2+2b2c2)+c2(2c2b2+2b2c2+2a2b2)=2a2b2c2+2a2b2c2=4a2b2c2=R.H.S

deteminants Exercise 5.2 Question 34

Answer:2a3b3c3
Hint Use determinant formula
Given: |0ab2ac2a2b0bc2a2cb2c0|=2a3b3c3
Solution:
 L.H.S |0ab2ac2a2b0bc2a2cb2c0|
 Use R1R1+R2+R3|Δ|=|a2(b+c)b2(a+c)c2(a+b)a2b0bc2a2cb2c0| Taking out a2 from C1,b2 from C2 and c2 from C3=a2b2c2|b+ca+ca+bb0bcc0|
 Use R1R1(R2+R3)=a2b2c2|b+c(b+c)a+cca+bbb0bcc0|=a2b2c2|0aab0bcc0| Expanding w.r.t R1=a2b2c2(a(0bc)+a(bc0))=a2b2c22abc=2a3b3c3=RH.S

determinants Exercise 5.2 Question 35

Answer:4abc
Hint Use determinant formula
Given :|a2+b2cccab2+c2aabbc2+a2b|=4abc
Solution:
 L.H.S |a2+b2cccab2+c2aabbc2+a2b|
R1cR1,R2cR2,R3bR3=1abc|a2+b2c2c2a2b2+c2a2b2b2c2+a2|
 Use R1R1R2R3=1abc|02b22a2a2b2+c2a2b2b2c2+a2| Now C2C2C1 and C3C3C1=1abc02b22a2a2b2+c2a2a2b2b2c2+a2b2
 Expanding w.r.t C1=1abc[ca2(2b2(c2+a2b2)a)+b2(0(2a2)(b2+c2a2))]=1abc[2a2b2(c2+a2b2)+b2((2a2)(b2+c2a2))]=2a2b2abc(c2+a2b2+b2+c2a2)=2abc(2c2)=4abc=RHS

determinants Exercise 5.2 Question 36

Answer:(ab+bc+ca)3
Hint Use determinant formula
Given:|bcb2+bcc2+aba2+acacc2+aca2+abb2+abab|=(ab+bc+ca)3
Solution:
 L.H.S |bcb2+bcc2+aba2+acacc2+aca2+abb2+abab|R1aR1,R2bR2,R3cR3=1abc|abcab2+abcac2+abca2+abcabcc2+abca2+abcb2c+abcabc|
 Common a from C1,b from C2 and c from C3=abcabc|bcab+acac+abab+bcacbc+abac+bcbc+acab| Use R1R1+R2+R3=|ab+bc+acab+bc+acab+bc+acab+bcacbc+abac+bcbc+acab|
(ab+bc+ac) common from R1=(ab+bc+ac)|111ab+bcacbc+abac+bcbc+acab| Now C2C2C1 and C3C3C1=(ab+bc+ac)100ab+bc(ab+bc+ac)ab+bc+acac+bc0(ab+bc+ac)
(ab+bc+ac) common from C2&C3=(ab+bc+ac)3|100ab+bc11ac+bc01| Expanding w.r.t R1=(ab+bc+ac)3{1(10)+0}=(ab+bc+ac)3=RHS

determinants Exercise 5.2 Question 37

Answer:(5x+λ)(λx)2
Hint: Use determinant formula
Given: |x+λ2x2x2xx+λ2x2x2xx+λ|=(5x+λ)(λx)2
Solution:
 L.H.S |x+λ2x2x2xx+λ2x2x2xx+λ| Use C1C1+C2+C3=|5x+λ2x2x5x+λx+λ2x5x+λ2xx+λ|
(5x+λ) common from C1=(5x+λ)|12x2x1x+λ2x12xx+λ| Now R2R2R1 and R3R3R1=(5x+λ)|12x2x0xλ000xλ|=(5x+λ)(1)(1)|12x2x0x+λ000x+λ|
 Expanding w.r.t R1
=(5x+λ)[1(λx)20+0]=(5x+λ)(λx)2=RH.S

deteminants Exercise 5.2 Question 38

Answer:(5x+4)(4x)2
Hint Use determinant formula
Given:|x+42x2x2xx+42x2x2xx+4|=(5x+4)(4x)2
Solution:
 L.H.S |x+42x2x2xx+42x2x2xx+4| Use C 1C1+C2+C3=|5x+42x2x5x+4x+42x5x+42xx+4|
(5x+4) common from C1=(5x+4)|12x2x1x+42x12xx+4|
 Now R2R2R1 and R3R3R1=(5x+4)|0x4004+x2x2xx412xx+4|
(x4) from R1 common (x4)(5x+4)|0x4004+x2x2xx412xx+4|
Expanding w.r.t C1
=(x4)(5x+4)[(x4)(x4)0]=(5x+4)(x4)2=R.H.S

deteminants Exercise 5.2 Question 39

Answer:4xyz
Hint Use determinant formula
Given: |y+zzyzz+xxyxx+y|=4xyz
Solution:
 L.H.S |y+zzyzz+xxyxx+y| Apply C 1C1+C2+C3=|2(y+z)zy2(x+z)z+xx2(x+y)xx+y|
2 common from C1=2|(y+z)zy(x+z)z+xx(x+y)xx+y| Now C1C1C2=2|yzy0z+xxyxx+y|
 Now C3C3C1=2|yz00z+xxyxx|Now R3R3R1=2|yz00z+xx0xzx|
Expanding w.r.t C1
=2y(z+x)xx(xz)0+0=2y(zx+x2x2+xz)=4xyz=RH.S

determinants Exercise 5.2 Question 40

Answer: abc(a2+b2+c2)3
Hint Use determinant formula
Given: |a(b2+c2a2)2b32c32a3b(c2+a2b2)2c32a32b3c(a2+b2c2)|=abc(a2+b2+c2)3
Solution:
 L.H.S |a(b2+c2a2)2b32c32a3b(c2+a2b2)2c32a32b3c(a2+b2c2)| Common a from C1,b from C2 and c from C3=abc|(b2+c2a2)2b22c22a2(c2+a2b2)2c22a22b2(a2+b2c2)|
 Apply C1C1+C2+C3=abc|b2c2+a2+2b2+2c22b22c22a2+2c2c2a2+b2c2+a2b22c22a2+2b2a2b2+c22b2a2+b2c2|=abc|a2+b2+c22b22c2a2+b2+c2c2+a2b22c2a2+b2+c22b2a2+b2c2|=abc(a2+b2+c2)|12b22c21c2+a2b22c212b2a2+b2c2|
 Now R2R2R1,R3R3R1=abc(a2+b2+c2)|12b22c20(a2+b2+c2)000(a2+b2+c2)|
Expanding w.r.t C1
=abc(a2+b2+c2)(a2+b2+c2)2=abc(a2+b2+c2)3=RHS


Question:41.1

determinants Exercise 5. 2 Question 41

Answer: a3+3a2
Hint Use determinant formula
Given:|1+a1111+a1111+a|=a3+3a2
Solution:
 L.H.S |1+a1111+a1111+a| Apply C1C1+C2+C3=|a+311a+31+a1a+311+a|
(a+3) common from C1[C1C1a+3]=(a+3)|11111+a1111+a|
 Now C3C3C1=(a+3)|11011+a011a|
Expanding w.r.t C3
=(a+3){a1111+a}=(a+3){a(1+a1)}=(a+3)a2=a3+3a2=RH.S

determinants Exercise 5.2 Question 41 sub question 2

Answer:

Answer:(a1)3
Hint Use determinant formula
Given: |a2+2a2a+112a+1a+21331|=(a1)3
Solution:
 L.H.S |a2+2a2a+112a+1a+21331|
 Apply C1C1C2&C2C2C3=|a212a1a1a+11021|(a1) common from C1=(a1)|a+12a11a+11021|
 Apply R1R1R2&R2R2R3=(a1)|a(a1)01a10021| Expanding w.r.t C3=(a1)(1(a2aa+1))=(a1)(a22a+1)=(a1)(a1)2=(a1)3=R.HS

deteminants Exercise 5.2 Question 42

Answer: (x+y+z)3
Hint Use determinant formula
Given:|2yyzx2y2z2zzxyxyz2x2x|=(x+y+z)3
 L.H.S |2yyzx2y2z2zzxyxyz2x2x|
Solution:
 Apply R1R1+R2+R3=|x+y+zx+y+zx+y+z2z2zzxyxyz2x2x|(x+y+z) common from C1=(x+y+z)|1112z2zzxyxyz2x2x|
 Apply C2C2C1&C3C3C1=(x+y+z)|1012z0(x+y+z)xyzx+y+zx+y+z|(x+y+z) common from C2&C3=(x+y+z)3|1012z01xyz11|
Expanding w.r.t C3
=(x+y+z)3[1|0111|0(1+0)1]
=(x+y+z)3|0111|=(x+y+z)3(0(1)(1)1)=(x+y+z)3=RH.S

determinants Exercise 5.2 Question 43

Answer:(x+y+z)(xz)2
Hint Use determinant formula
Given:|y+zxyz+xzxx+yyz|=(x+y+z)(xz)2
Solution:
 L.H.S |y+zxyz+xzxx+yyz| Apply R1R1+R2+R3=|2(x+y+z)x+y+zx+y+zz+xzxx+yyz|
(x+y+z) common from R1=(x+y+z)|211z+xzxx+yyz| Apply R1R1R2=(x+y+z)|111xzxxyz| Apply C2C2C1&C3C3C1=(x+y+z)|100xzx0xyxzx|
Expanding w.r.t C3
=(x+y+z)((zx)20)=(x+y+z)(xz)2=RHS

determinants Exercise 5.2 Question 44

Answer:a2(a+x+y+z)
Hint Use determinant formula
Given:|a+xyzxa+yzxya+z|=a2(a+x+y+z)
Solution:
 L.H.S |a+xyzxa+yzxya+z| Apply C1C1+C2+C3=|a+x+y+zyza+x+y+za+yza+x+y+zya+z|
(a+x+y+z) common from C1
=(a+x+y+z)|1yz1a+yz1ya+z| Apply R1R1R2&R2R2R3=(a+x+y+z)|0a00aa1ya+z| Expanding w.r.t C3=(a+x+y+z)(1(a2))=(a+x+y+z)a2=RH.S

deteminants Exercise 5.2 Question 45

Answer: 2(ab)(bc)(ca)(a+b+c)
Hint Use determinant formula
Given:|a32ab32bc32c|=2(ab)(bc)(ca)(a+b+c)
Solution:
 L.H.S |a32ab32bc32c| Apply R2R2R1&R3R3R1=|a32ab3a30bac3a30ca| Use a3b3=(ab)(a2+ab+b2)=|a32a(ba)(b2+ab+a2)0ba(ca)(c2+ac+a2)0ca|
=(1)(1)|a32a(ab)(b2+ab+a2)0ab(ca)(c2+ac+a2)0ca|(ab)(ca) common from R2&R3=(ab)(ca)|a32a(b2+ab+a2)01(c2+ac+a2)01| Expanding w.r.t C2=(ab)(ca)[2(b2+ab+a2c2aca2)]=2(ab)(ca)[(b+c)(bc)+a(bc)]=2(ab)(bc)(ca)(a+b+c)=R.H.S

determinants Exercise 5.2 Question 46

Answer: Proved
Hint Use determinant formula
Given: |abcxyzpqr|=|xyzpqrabc|=|ybqxapzcr|
Solution:
|abcxyzpqr|=|xyzpqrabc|R1R3,R2R1,R3R1=()()|xyzabcpqr|

For interchanging R2↔R3
negative sign will be added

Now convert rows in columns and column in row
|xyzpqrabc|=|xpayqbzrc| Now R1R2,C2C3()()|yqbxpazrc|=|ybqxapzcr|



deteminants Exercise 5.2 Question 47

Answer: 0
Hint a,b,c are in AP 
Given: |x+1x+2x+ax+2x+3x+bx+3x+4x+c|=0 where a,b,c are in AP
Solution:
 L.H.S |x+1x+2x+ax+2x+3x+bx+3x+4x+c| Now R32R2+R1+R3=|x+1x+2x+ax+2x+3x+b00a+c2b|
As ab2c are in AP,2 b=a+c
Substituting the value in the denominator,
=|x+1x+2x+ax+2x+3x+b00a+cac|=|x+1x+2x+ax+2x+3x+b000|
Expanding along R3
=0

deteminants Exercise 5.2 Question 48

Answer:0
Hint α,β,γ are in AP 
Given:|x3x4xαx2x3xβx1x2xγ|=0 where α,β,γ are in AP
Solution:
$$α,β,γ are in APa2a1=a3a1βγ=γββ+β=γ+α2β=γ+αγ+α2β=0 ...(1)
$$ L.H.S |x3x4xαx2x3xβx1x2xγ| Now R1R1+R32R2=|002β(α+γ)x2x3xβx1x2xγ|
$$=|002β2βx2x3xβx1x2xγ| from(1) =|000x2x3xβx1x2xγ|
Expanding along R1,
=0 ..hence proved

determinants Exercise 5.2 Question 49

Answer: a+b+c=0&a=b=c
Hint Use determinant formula
Given: $$ If a,b,c are real no. such that |b+cc+aa+bc+aa+bb+ca+bb+cc+a|=0 show that either a+b=c or a=b=c
Solution:
$$ L.H.S |b+cc+aa+bc+aa+bb+ca+bb+cc+a| Apply R1R1+R2+R3=|2(a+b+c)2(a+b+c)2(a+b+c)c+aa+bb+ca+bb+cc+a|
$$2(a+b+c) common from R1=2(a+b+c)|111c+aa+bb+ca+bb+cc+a|
$$ Apply C 1C1C2&C2C2C3=2(a+b+c)|001cbacb+cacbac+a|
$$ Expand from R1=2(a+b+c){1cbacacba}(a+b+c)=0 or bcb2ac+ab(ac)2=0bcb2ac+ab=a2+c22aca2+b2+c2a2abac=02(a2+b2+c2)2ac2ab2bc=0(ab)2+(bc)2+(ca)2=0ab=0,bc=0,ca=0a=b,b=c,c=a
Hence,a+b+c=0&a=b=c

deteminants Exercise 5.2 Question 50

Answer: 2
Hint Use determinant formula
Given: $$|pbcqqcabr|=0 Find value of ppa+qqb+rrc&pa,qb,rc
Solution:
$$ L.H.S |pbcqqcabr| Apply R1R1R3&R2R2R3|pa0cp0qbcpa0r|=0
$$ Expand from R1=pa|qbcpbr|+(cr)|0qbab|=0=(pa)[r(qb)b(cr)+(cr)(a(qb))]=0=r(qb)(pa)(pa)(qb)(rc)b(pa)(cr)(pa)(qb)(rc)a(cr)(qb)(pa)(qb)(rc)=0
$$=rrc+bqb+apa=0=rrc+b+qqqb+a+pppa=0=rrc+bqqb+qqb+appappa=0=rrc1+qqb1ppa=0=ppa+qqb+rrc=2

determinants Exercise 5.2 Question 51

Answer: $$x=1,2,3
Hint Use determinant formula
Given: $$ S.T x=2 is root of equation |x6123xx332xx+3|=0
Solution:
$$|x6123xx332xx+3|=0
$$ Expand from C1=x(3x26x2x2+6x)+(2x+4+3x9)+30x30+5x=0=5x2+30x30+5x=0=5(x3+7x+6)=0=x3+7x+6=0=(x1)(x2+x6)=0=(x1)(x2+3x2x6)=0=(x1)(x+3)(x2)=0x=1,2,3

determinants Exercise 5.2 Question 52

Answer: 0
Hint Use determinant formula
Given: $$|x+abcax+bcabx+c|=0
Solution:
$$ Apply C 1C1+C2+C3|x+a+b+cbcx+a+b+cx+bcx+a+b+cbx+c|(x+a+b+c) common from C1=(x+a+b+c)|1bc1x+bc1bx+c|
$$ Apply R2R2R1&R3R3R1=(x+a+b+c)|1bc0x000x| Expand from C1=(x+a+b+c)((x20)0+0)=0x+a+b+c=0,x2=0x=(a+b+c),x=0

deteminants Exercise 5.2 Question 52 sub question 2

Answer:x=a3
Hint: Use determinant formula
Given: $$|x+axxxx+axxxx+a|=0
Solution:
$$ Apply C 1C1+C2+C3|3x+axx3x+ax+ax3x+axx+a|(3x+a) common from C1=(3x+a)|1xx1x+ax1xx+c|
$$ Apply R2R2R1&R3R3R1=(3x+a)|1xx0a000a| Expand from C1=(3x+a)a2=03x+a=0,a2=03x=a,a=0x=a3,a=0

deteminants Exercise 5.2 Question 52 sub question 3

Answer: x=23,113,113
Hint: Use determinant formula
Given: $$|3x83333x83333x8|=0
Solution:
$$ L.H.S |3x83333x83333x8|
$$ Apply C 1C1+C2+C3|3x2333x23x833x233x8|
$$(3x2) common from C1=(3x2)|13313x83133x8| Apply R2R2R1&R3R3R1=(3x2)|13303x110003x11|
 Expand from C1=(3x2)(3x11)2=03x2=0,3x11=03x=2,3x=11x=23,x=113,113x=23,113,113

deteminants Exercise 5.2 Question 52 sub question 4

Answer: x=a,b
Hint Use determinant formula
Given:|1xx21aa21bb2|=0
Solution:
$$LHS|1xx21aa21bb2|
$$ Apply R2R2R1&R3R3R1|1xx20axa2x20bxb2x2|
$$(ax)(bx) common from R2&R3=(ax)(bx)|1xx201a+x01b+x|
Expand from C1
(ax)(bx)[b+xa+x]=0(ax)(bx)[a+b]=0a=xb=xa=b neglect 

deteminants Exercise 5.2 Question 52 sub question 5

Answer:

Answer: x=1,1,9
Hint: Use determinant formula
Given: |x+1352x+2523x+4|=0
Solution:
 Apply C1C1+C2+C3|x+935x+9x+25x+93x+4|=0
(x+9) common from C1=(x+9)|1351x+2513x+4| Apply R2R2R1&R3R3R1=(x+9)|1350x1000x1|
 Expand from C1(x+9)(x1)2=0x+9=0,(x1)2=0x=9,x=1,1x=1,1,9

deteminants Exercise 5.2 Question 52 Sub Question 6

Answer: x=b,c,(b+c)
Hint: Use determinant formula
Given:|1xx31bb31cc3|=0
Solution:
 LHS |1xx31bb31cc3|
 Apply R2R2R1&R3R3R11xx30bxb3x30cxc3x3 Use b3x3=(bx)(b2+bx+x2)|1xx30bx(bx)(b2+bx+x2)0cx(cx)(c2+cx+x2)|
(bx)(cx) common from R2&R3=(bx)(cx)|1xx301(b2+bx+x2)01(c2+cx+x2)|
 Expand from C1(bx)(cx)(c2+cx+x2b2bxx2)=0bx=0,cx=0,c2b2bx+cx=0x=b,c=x,(c+b)(cb)x(cb)=0

deteminants Exercise 5.2 Question 52 Sub Question 7

Answer: x=4
Hint: Use determinant formula
Given: |152x113x7x111714101613|=0
Solution:
 Apply R3R3R2152x113x7x111714111∣=0 Now C1C1C2&C2C2C3|4+x42x7x6314001|=0
 Expand from R30|4+x42x63|0|4+x7x614|+1|4+x42x63|=01(3(4+x)(6)(42x))=012+3x+2412x=036=9xx=4

deteminants Exercise 5.2 Question 52 Sub Question 8

Answer:x=2,1
Hint: Use determinant formula
Given: |11xp+1p+1p+x3x+1x+2|
Solution:
 Apply C1C1C2|01x0p+1p+x2xx+1x+2|=0 Expand from C1(2x)(p+xx(p+1))=0(2x)(p+xpxx)=0(2x)(1x)=02x=0,1x=0x=2,x=1

deteminants Exercise 5.2 Question 52 Sub Question 9

Answer: θ=nπ+(1)nπ6,nz or nπ
Hint: Use determinant formula
Given:|32sin3θ78cos2θ11142|=0
Solution:
 Apply C 1C1+C212sin3θ18cos2θ3142∣=0 Apply R2R2R3&R3R3R1|12sin3θ010cos2θsin3θ02023sin3θ|=0
 Expand from C11[10(23sinθ)20(cos2θsin3θ)]=023sin3θ2(cos2θsin3θ)=023sin3θ2cos2θ+2sin3θ=023sin3θ2cos2θ=02=3sinθ4sin3θ+2(12sin2θ)2=3sinθ4sin3θ+24sin2θ0=sinθ(34sin2θ4sinθ)4sin2θ4sinθ+3=04sin2θ+4sinθ3=0sinθ=x4x2+4x3=0
4x2+6x2x3=02x(2x+3)1(2x+3)=02x+3=0,2x1=0,2x=0x=32,x=12,x=0,sinθ=32,sinθ=12,sinθ=0 As sinθ=0,θ=nπ& as sinθ=12,θ=nπ+(1)nπ6,nz

deteminants Exercise 5.2 Question 52.1

Answer: x=12,0
Hint: Use determinant formula
Given: |4x4+x4+x4+x4x4+x4+x4+x4x|=0
Solution:
 Apply C 1C1+C2+C3|12+x4+x4+x12+x4x4+x12+x4+x4x|=0
(12+x) common from C1(12+x)|14+x4+x14x4+x14+x4x|=0
 Apply R2R2R1&R3R3R1(12+x)|14+x4+x02x0002x|=0 Expand from C1(12+x)(4x2)=012+x=0,4x2=0x=12,x=0

determinants Exercise 5.2 Question 53

Answer: 1+1a+1b+1c=0
Hint Use determinant formula
Given:|1+a1111+b1111+c|=0 p.t 1a+1b+1c+1=0
Solution:
 Divide a to C1, b to C2 and c to C3(a×b×c)|1a+11b1c1a1b+11c1a1b1c+1|=0
 Apply C1C1+C2+C3 (abc) |1a+1b+1c+11b1c1a+1b+1c+11b+11c1a+1b+1c+11b1c+1|=0
(1a+1b+1c+1) common from C1(abc)(1a+1b+1c+1)|11b1c11b+11c11b1c+1|=0 Apply R2R2R1&R3R3R1abc(1a+1b+1c+1)|11b1c01b+11b1c1c01b1b1c+11c|abc|1a+1b+1c+1||11b1c010001|
 Expand from R3abc|1a+1b+1c+1|=0a,b,c0,1a+1b+1c+1=0abc0

determinants Exercise 5.2 Question 5

Answer: 2
Hint: Use determinant formula
Given:|abyczaxbczaxbyc|=0 then using property of determinant. Find ax+by+cz where x,y,z=0
Solution:
 Take x,y,z common from C1,C2,C3(xyz)|axby1cz1a1xbycz1ax1by1cz|=0
 Apply C1C1+C2+C3ax+by+cz2by1cz1ax+by+cz2bycz1ax+by+cz2by1cz∣=0
(ax+by+cz2)|1by1cz11bycz11by1cz|=0
 Apply R2R2R1&R3R3R1(ax+by+cz2)|1by1cz1010001|=0
(ax+by+cz2)1=0 or ax+by+cz=2

determinants Exercise 5.2 Question 55

Answer: 9(3xyz+xy+yz+zx)
Hint: Use determinant formula
Given: |111+3x1+3y1111+3z1|=9(3xyz+xy+yz+zx)
Solution:
 L.H.S |111+3x1+3y1111+3z1| Apply R1R1R3&R2R2R3|03z3x3y3z011+3z1|
3 common from R1&R23×3|0zxyz011+3z1|
 Expand from R19[z(y)+x(y+3zy+z)9(3xyz+xy+yz+zx)

The class 12 chapter 5, Determinants, is where the tendency to score marks easily as possible. The students need to make use of this opportunity to the best level. The concepts present in the RD Sharma class 12th exercise 5.2, are to evaluate the determinants, prove the determinant's value is zero, Arithmetic Progression in Determinants, and prove using the properties of determinants. A total of eighty-eight questions, including its subparts, are present in this exercise. It would take much time to solve or recheck the answers. Hence a copy of the RD Sharma Class 12 Chapter 5 Exercise 5.2 solutions book is a must.

Every answer here is provided and verified by experts. And the solutions follow the NCERT method, which gives a good reason for the CBSE students to adapt to it. An abundance of students has scored high marks in this chapter by preparing with the help of the Class 12 RD Sharma Class 12 Solutions Determinant Ex 5.2. Not only can students prepare for exams, but they can also use it to complete their daily homework and assignments.

For the welfare of the students, they can download the RD Sharma class 12th exercise 5.2 solution books for free of cost from the Career360 website. So they need not pay even a single penny for it. All you need is to visit the Career 360 website, search for the Class 12 RD Sharma Chapter 5 Exercise 5.2 Solution, and click the download button. It saves you hundreds to thousands of rupees that you would spend on other solution books.

If you strive to cross your benchmark score in the Determinants chapter, download the RD Sharma Class 12 Solutions Chapter 5 ex 5.2 and start preparing your exams with it. As the problems given in the RD Sharma books are solved in various methods, the students get the opportunity to decide which way they can follow. It clears the air for the people who are confused and also helps in rechecking their solutions.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Questions (FAQs)

1. Which is the best solution book for class 12 students to understand the concept of determinants clearly?

The RD Sharma Class 12th exercise 5.2 solutions book is the best guide to understand the determinants concepts quickly. Moreover, the various methods of solving a problem would make you more transparent regarding the idea. 


2. Is the RD Sharma solution book enough for a class 12 student to prepare for the public exam?

The accurate solutions and the numerous practice questions given in the book make students sharpen their knowledge reading the concept. This eventually leads to scoring high marks in the public exam. 


3. Are the solutions given in the RD Sharma books easy to work out?

Yes, the solution in the RD Sharma book is given most straightforwardly to make the students solve the mathematical questions easily. Everyone can use this set of books for their homework and assignments too.

4. Where can I find the RD Sharma Class 12 Solutions Chapter 5 ex 5.2 for the concept of Determinants?

The RD Sharma Class 12 Chapter 5 Exercise 5.2 solution can be found on the career360 websites. You can instantly download it from the website.

5. How much does the RD Sharma Solutions cost?

Downloading the RD Sharma Class 12 Solutions Determinant Ex 5.2 books from the career360 websites is entirely free. No one is required to pay even a single rupee to access this best resource material. 


Articles

Upcoming School Exams

View All School Exams
Back to top