The CBSE board students are recommended to use the RD Sharma solutions books for their references. This is due to the high standard answers provided in the book. It makes the students less dependent on the tutors to clear their silly doubts. When it comes to mathematics, there are high chances that students get more doubts while solving it. Significantly, the students who find it hard to cope with the Determinants portions can use the RD Sharma Class 12th exercise 5.3 solution books.
Also Read - RD Sharma Solution for Class 9 to 12 Maths
Determinants Excercise: 5.3
Determinants exercise 5.3 question 1 (ii)
$Answer\! : \frac{47}{2}sq.units$
Hints: By putting the values of the co-ordinate in the formulaof area, we will calculate the area of the triangle.
$Given\, \! : \left ( 2,7 \right )\! ,\left ( 1,1 \right )\: and \: \left ( 10,8 \right )\, \! .$
$Explanation\! : V\! ertices\: are \left ( 2,7 \right )\! ,\left ( 1,1 \right )\! , \left ( 10,8 \right )\, \! .$
$Area\; o\! f\; triangles\; is =\! \Delta\! =\frac{1}{2}\begin{vmatrix} X_{1} &Y_{1} & 1\\ X_{2} &Y_{2} & 1\\ X_{3} & Y_{3}& 1 \end{vmatrix}$
$\Rightarrow where, \begin{matrix} X_{1}=2 &Y_{1}=7 & \\ X_{2}=1 &Y_{2}=1 & \\ X_{3}=10 &Y_{3}=8 & \end{matrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\begin{vmatrix} 2 &7 &1 \\ 1 &1 &1 \\ 10 &8 &1 \end{vmatrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\left ( 2\! \begin{vmatrix} 1 &1 \\ 8 &1 \end{vmatrix}-7\! \begin{vmatrix} 1 &1 \\ 10 &1 \end{vmatrix}+1\! \begin{vmatrix} 1 &1 \\ 10 &8 \end{vmatrix} \right )$
$=\frac{1}{2}\left [ 2\! \left ( 1-8 \right ) -7\! \left ( 1-10 \right )+1\! \left ( 8-10 \right )\right ]$
$=\frac{1}{2}\left [ 2\! \left ( -7 \right )-7\! \left ( -9 \right )+1\! \left ( -2 \right ) \right ]$
$=\frac{1}{2}\left [ -14+63-2 \right ]$
Determinants exercise 5.3 question 1 (iii)
$Answer\! : 15sq.units.$
Hints: By putting the values of the co-ordinate in the formulaof area, we will calculate the area of the triangle.
$Given\, \! : \left ( -1,-8 \right )\! ,\left ( -2,-3 \right )\: and \: \left ( 3,2 \right )\, \! .$
$Explanation\! : V\! ertices \; are \left ( -1,-8 \right )\! ,\left ( -2,-3 \right )\! , \left ( 3,2 \right )\, \! .$
$Area\; o\! f\; triangles\; is =\! \Delta\! =\frac{1}{2}\begin{vmatrix} X_{1} &Y_{1} & 1\\ X_{2} &Y_{2} & 1\\ X_{3} & Y_{3}& 1 \end{vmatrix}$
$\Rightarrow where, \begin{matrix} X_{1}=-1 &Y_{1}=-8 & \\ X_{2}=-2 &Y_{2}=-3 & \\ X_{3}=3 &Y_{3}=2 & \end{matrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\begin{vmatrix} -1 &-8 &1 \\ -2 &-3 &1 \\ 3 &2 &1 \end{vmatrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\left ( -1\! \begin{vmatrix} -3 &1 \\ 2 &1 \end{vmatrix}-\left ( -8 \right )\! \begin{vmatrix} -2 &1 \\ 3 &1 \end{vmatrix}+1\! \begin{vmatrix} -2 &-3 \\ 3 &2 \end{vmatrix} \right )$
$=\frac{1}{2}\left [ -1\! \left ( -3-2 \right ) +8\! \left ( -2-3 \right )+1\! \left ( -4+9 \right )\right ]$
$=\frac{1}{2}\left [ -1\! \left ( -5 \right )+8\! \left ( -5 \right )+1\! \left ( 5\right ) \right ]$
$=\frac{1}{2}\left [ 5-40+5\right ]$
$=\frac{1}{2}\times 30$
$=15sq. units$
Determinants exercise 5.3 question 1 (iv)
$Answer\! : 9sq.units.$
Hints: By putting the values of the co-ordinate in the formulaof area, we will calculate the area of the triangle.
$Given\, \! : \left ( 0,0 \right )\! ,\left ( 6,0 \right )\: and \: \left ( 4,3 \right )\, \! .$
$Explanation\! : V\! ertices \; are \left ( 0,0 \right )\! ,\left (6,0 \right )\! , \left ( 4,3 \right )\, \!.$
$Area\; o\! f\; triangles\; is =\! \Delta\! =\frac{1}{2}\begin{vmatrix} X_{1} &Y_{1} & 1\\ X_{2} &Y_{2} & 1\\ X_{3} & Y_{3}& 1 \end{vmatrix}$
$\Rightarrow where, \begin{matrix} X_{1}=0 &Y_{1}=0 & \\ X_{2}=6 &Y_{2}=0 & \\ X_{3}=4 &Y_{3}=3 & \end{matrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\begin{vmatrix} 0 &0 &1 \\ 6 &0 &1 \\ 4 &3 &1 \end{vmatrix}$
$\Rightarrow \! \Delta \, \! =\frac{1}{2}\left ( 0\! \begin{vmatrix} 0 &1 \\ 3 &1 \end{vmatrix}-0\! \begin{vmatrix} 6 &1 \\ 4 &1 \end{vmatrix}+1\! \begin{vmatrix} 6 &0 \\ 4 &3 \end{vmatrix} \right )$
$=\frac{1}{2}\left [ 0\! \left ( 0-3 \right ) -0\! \left ( 6-4 \right )+1\! \left ( 18-0 \right )\right ]$
$=\frac{1}{2}\left [ 0-0+18\right ]$
$=\frac{1}{2}\times 18$
$=9sq. units$
Determinants exercise 5.3 question 2 (i)
Answer: Yes, points are collinear.
Hints: First by using the values of vertices find determinant. If value of determinant is zero, then points are collinear.
$Given\! : \left ( 5,5 \right ),\left ( -5,1 \right )\: and \: \left ( 10,7 \right )\! .$
$Explanation\! : V\! ertices\; are \left ( 5,5 \right ),\left ( -5,1 \right )\: and \: \left ( 10,7 \right )\! .$
$Determinant\!= \begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}$
$= \begin{vmatrix} 5 &5 &1 \\ -5 &1 &1 \\ 10 &7 &1 \end{vmatrix}R_{1}\rightarrow R_{1}+R_{2}$
$= \begin{vmatrix} 0 &6 &2 \\ -5 &1 &1 \\ 10 &7 &1 \end{vmatrix}R_{2}\rightarrow R_{2}-R_{3}$
$= \begin{vmatrix} 0 &6 &2 \\ -15 &-6 &0 \\ 10 &7 &1 \end{vmatrix}$
$= 0\begin{vmatrix} -6 &0 \\ 7 &1 \end{vmatrix}-6\begin{vmatrix} -15 &0 \\ 10 &1 \end{vmatrix}+2\begin{vmatrix} -15 &-6 \\ 10 &7 \end{vmatrix}$
$= 0-6\left ( -15-0 \right )+2\left ( -105+60 \right )$
$= 90+2\left ( -45 \right )$
$= 90-90$
$= 0$
Hence, points are collinear.
Determinants exercise 5.3 question 2 (ii)
Answer: Yes, points are collinear.
Hints: First by using the values of vertices find determinant. If value of determinant is zero, then points are collinear.
$Given\! : \left ( 1,-1 \right ),\left ( 2,1 \right )\: and \: \left ( 4,5 \right )\! .$
$Explanation\! : V\! ertices\; are \left ( 1,-1 \right ),\left ( 2,1 \right )\: and \: \left ( 4,5 \right )\! .$
$Determinant\!= \begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}$
$= \begin{vmatrix} 1 &-1 &1 \\ 2 &1 &1 \\ 4 &5 &1 \end{vmatrix}$
$= 1\! \begin{vmatrix} 1 &1 \\ 5 &1 \end{vmatrix}-\left (-1 \right )\! \begin{vmatrix} 2 &1 \\ 4 &1 \end{vmatrix}+1\! \begin{vmatrix} 2 &1 \\ 4 &5 \end{vmatrix}$
$= 1\! \left (1-5 \right )+1\! \left ( 2-4 \right )+1\! \left ( 10-4 \right )$
$= 1\! \left ( -4 \right )+1\! \left ( -2 \right )+1\! \left ( 6 \right )$
$= -4-2+6$
$= -6+6$
$= 0$
Hence, points are collinear.
Determinants exercise 5.3 question 2 (iii)
Answer: Yes, points are collinear.
Hints: First by using the values of vertices find determinant. If value of determinant is zero, then points are collinear.
$Given\! : \left ( 3,-2 \right ),\left ( 8,8 \right )\: and \: \left ( 5,2 \right )\! .$
$Explanation\! : V\! ertices\; are \left ( 3,-2 \right ),\left ( 8,8 \right )\: and \: \left ( 5,2 \right )\! .$
$Determinant\!= \begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}$
$= \begin{vmatrix} 3 &-2 &1 \\ 8 &8 &1 \\ 5 &2 &1 \end{vmatrix}$
$= 3\! \begin{vmatrix} 8 &1 \\ 2 &1 \end{vmatrix}-\left (-2 \right )\! \begin{vmatrix} 8 &1 \\ 5 &1 \end{vmatrix}+1\! \begin{vmatrix} 8 &8 \\ 5 &2 \end{vmatrix}$
$= 3\! \left (8-2 \right )+2\! \left ( 8-5 \right )+1\! \left ( 16-40 \right )$
$= 3\! \left ( 6 \right )+2\! \left ( 3 \right )+1\! \left ( -24 \right )$
$= 18+6-24$
$= 24-24$
$= 0$
Hence, points are collinear.
Determinants exercise 5.3 question 2 (iv)
Answer: Yes, points are collinear.
Hints: First by using the values of vertices find determinant. If value of determinant is zero, then points are collinear.
$Given\! : \left ( 2,3 \right ),\left ( -1,-2 \right )\: and \: \left ( 5,8 \right )\! .$
$Explanation\! : V\! ertices\; are \left ( 2,3 \right ),\left ( -1,-2 \right )\: and \: \left ( 5,8 \right )\! .$
$Determinant\!= \begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}$
$= \begin{vmatrix} 2 &3 &1 \\ -1 &-2 &1 \\ 5 &8 &1 \end{vmatrix}$
$= 2\! \begin{vmatrix} -2 &1 \\ 8 &1 \end{vmatrix}-3\! \begin{vmatrix} -1 &1 \\ 5 &1 \end{vmatrix}+1\! \begin{vmatrix} -1 &-2 \\ 5 &8 \end{vmatrix}$
$= 2\! \left (-2-8 \right )-3\! \left ( -1-5 \right )+1\! \left ( -8-\left ( -10 \right ) \right )$
$= 2\! \left ( -10 \right )-3\! \left ( -6 \right )+1\! \left ( -8+10 \right )$
$= -20+18+2$
$= -20+20$
$= 0$
Hence, points are collinear.
Determinants exercise 5.3 question 3
Answer: Proved.
Hints: First find determinant and the value of a and b, to prove the given equation.
$\mathbf{Given\! :}\left ( a,0 \right )\! , \left ( 0,b \right )\: and\: \left ( 1,1 \right ) are\; collinear.$
Explanation: Determinant=0
$\Rightarrow \begin{vmatrix} a &0 &1 \\ 0 &b &1 \\ 1 &1 &1 \end{vmatrix}=0$
$\Rightarrow a\! \begin{vmatrix} b &1 \\ 1 &1 \end{vmatrix}-0\! \begin{vmatrix} 0 &1 \\ 1 &1 \end{vmatrix}+1\! \begin{vmatrix} 0 &b \\ 1 &1 \end{vmatrix}=0$
$\Rightarrow a\! \left ( b-1 \right )-0 +1\! \left ( 0-b \right )=0$
$\Rightarrow ab-a-b=0$
$\Rightarrow ab=a+b$
$\Rightarrow a+b=ab$
Hence, proved the given equation.
Determinants exercise 5.3 question 4
Answer: Yes, points are collinear.
Hints: Use the values of vertices and find the determinant. If determinant is zero, points will be collinear.
$\mathbf{Given\! :} V\! ertices\; are \left ( a,b \right )\! ,\left ( a',b' \right ) and \left ( a-a',b-b' \right ) and\; ab' = a'b$
Explanation:
Let,
$x_{1}=a, x_{2}=a', x_{3}=a-a'$
$y_{1}=a, y_{2}=a', y_{3}=b-b'$
$Determinant=\begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}$
$=\begin{vmatrix} a &b &1 \\ a' &b' &1 \\ a-a' &b-b' &1 \end{vmatrix}$
$=a\! \begin{vmatrix} b' &1 \\ b-b' &1 \end{vmatrix}-b\! \begin{vmatrix} a' &1 \\ a-a' &1 \end{vmatrix}+1\! \begin{vmatrix} a' &b' \\ a-a' &b-b' \end{vmatrix}$
$=a\! \left ( b'-\! \left ( b-b' \right ) \right )-b\! \left ( a'-\! \left ( a-a' \right ) \right )+1\! \left [ a'\! \left ( b-b' \right )-b'\! \left ( a-a' \right ) \right ]$
$=a\left(b^{\prime}-b+b^{\prime}\right)-b\left(a^{\prime}-a+a^{\prime}\right)+\left(a^{\prime} b-\not a^{\prime} \phi^{\prime}-b^{\prime} a^{\prime}+\not b^{\prime} \alpha^{\prime}\right)$
$=a\left(2 b^{\prime}-b\right)-b\left(2 a^{\prime}-a\right)+1\left(a^{\prime} b-b^{\prime} a\right)$
$=2 a b^{\prime}-a b-2 a^{\prime} b+a b+a^{\prime} b-b^{\prime} a$
$P u t\; a b^{\prime}=a^{\prime} b$
$\Rightarrow 2 a^{\prime} b-a b-2 a^{\prime} b+a b+a^{\prime} b-a^{\prime} b$
$\Rightarrow 0$
Hence, points are collinear
Determinants exercise 5.3 question 5
$\boldsymbol{Answer\! :} \lambda =-5$
$\boldsymbol{H\! int\! :} I\! f \left ( 1,-5 \right )\! , \left ( -4,5 \right )\; and\; \left ( \lambda ,7 \right )$
$\boldsymbol{Explanation\! :} V\! ertices\; are \left ( 1,-5 \right )\! , \left ( -4,5 \right )\; and\; \left ( \lambda ,7 \right )$
$\text { Determinant }=\left|\begin{array}{ccc} 1 & -5 & 1 \\ -4 & 5 & 1 \\ \lambda & 7 & 1 \end{array}\right|=0$
$\Rightarrow 1\left|\begin{array}{ll} 5 & 1 \\ 7 & 1 \end{array}\right|-(-5)\left|\begin{array}{cc} -4 & 1 \\ \lambda & 1 \end{array}\right|+1\left|\begin{array}{cc} -4 & 5 \\ \lambda & 7 \end{array}\right|=0$
$\Rightarrow 1(5-7)+5(-4-\lambda)+1(-28-5 \lambda)=0$
$\Rightarrow -2-20-5\lambda -28-5\lambda =0$
$\Rightarrow -10\lambda -50=0$
$\Rightarrow -10\lambda =50$
$\Rightarrow \lambda =\frac{50}{-10}$
$\Rightarrow \lambda =-5$
Determinants exercise 5.3 question 6
Answer:$x$ = -2
Hints: Using determinant, find area of triangle and find value of $x$.
$\boldsymbol{Given\: \! :} \left ( x,4 \right )\! , \left ( 2,-6 \right )\; and\; \left ( 5,4 \right ).$
area of triangle = 35 sq. Units.
$\boldsymbol{Explanation:} V\! ertices\; are \left ( x,4 \right )\! , \left ( 2,-6 \right )\; and\; \left ( 5,4 \right ).$
$\text { Area of triangle is }=\Delta=\frac{1}{2}\left|\begin{array}{lll} X_{1} & Y_{1} & 1 \\ X_{2} & Y_{2} & 1 \\ X_{3} & Y_{3} & 1 \end{array}\right|$
$\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{lll} x & 4 & 1 \\ 2 & -6 & 1 \\ 5 & 4 & 1 \end{array}\right|=35$
$\Delta =\frac{1}{2}\left ( x\! \begin{vmatrix} -6 & 1\\ 4 & 1 \end{vmatrix}-4\! \begin{vmatrix} 2 & 1\\ 5 & 1 \end{vmatrix}+1\! \begin{vmatrix} 2 & -6\\ 5 & 4 \end{vmatrix} \right )=35$
$\Rightarrow \frac{1}{2}[x(-6-4)-4(2-5)+1(8-(-30))]=35$
$\Rightarrow \frac{1}{2}[x(-10)-4(-3)+1(38)]=35$
$\Rightarrow \frac{1}{2}[-10x+12+38]=35$
$\Rightarrow -10x+50=70$
$\Rightarrow -10x=70-50$
$\Rightarrow x=-2$
Determinants exercise 5.3 question 7
$\boldsymbol{Answer\! : }\frac{+13}{2} sq. units.\;\; N\! o, \; points\; are\; not\; collinear.$
Hints: First find the determinant and then area of the triangle. If result found be zero, then given points are collinear.
Given: Vertices are (1,4), (2,3) and (-5, -3).
Explanation: Vertices are (1,4), (2,3) and (-5, -3).
$\text { Area of triangle is }=\Delta=\frac{1}{2}\left|\begin{array}{lll} 1 & 4 & 1 \\ 2 & 3 & 1 \\ -5 & -3 & 1 \end{array}\right|$
$\Rightarrow|\Delta|=\frac{1}{2}\left(1\left|\begin{array}{cc} 3 & 1 \\ -3 & 1 \end{array}\right|-4\left|\begin{array}{cc} 2 & 1 \\ -5 & 1 \end{array}\right|+1\left|\begin{array}{cc} 2 & 3 \\ -5 & -3 \end{array}\right|\right)$
$\Rightarrow \frac{1}{2}[1(3-(-3))-4(2-(-5))+1(-6-(-15))]$
$\Rightarrow \frac{1}{2}[1(6)-4(7)+1(9)]$
$\Rightarrow \frac{1}{2}[6-28+9]$
$\Rightarrow \frac{1}{2}\times (-13)$
$\Rightarrow \left | \frac{-13}{2} \right | sq. units \Rightarrow \frac{13}{2} sq. units$
and determinant is not zero, that is why points are not collinear.
Determinants exercise 5.3 question 8
Answer: 46 sq. units
Hints: To find area of triangle use modulus in the formula of determinant.
Given: (-3,5), (3, -6) and (7,2).
Explanation: Vertices are (-3,5), (3, -6) and (7,2).
$\text { Area of triangle is } \Rightarrow|\Delta|=\left | \frac{1}{2}\begin{vmatrix} -3 &5 &1 \\ 3 &-6 &1 \\ 7 &2 &1 \end{vmatrix} \right |$
$=\left | \frac{1}{2}\left(-3\left|\begin{array}{cc} -6 & 1 \\ 2 & 1 \end{array}\right|-5\left|\begin{array}{cc} 3 & 1 \\ 7 & 1 \end{array}\right|+1\left|\begin{array}{cc} 3 & -6 \\ 7 & 2 \end{array}\right|\right) \right |$
$=\left | \frac{1}{2}[-3(-6-2)-5(3-7)+1(6-(-42))] \right |$
$=\left | \frac{1}{2}[-3(-8)-5(-4)+1(48)] \right |$
$\Rightarrow \frac{1}{2}\left | 92 \right |$
$\Rightarrow 46sq. units$
Determinants exercise 5.3 question 9
$\boldsymbol{Answer\! :} k=-1,\frac{1}{2}$
Hints: If points are collinear then determinant will be zero.
$\boldsymbol{Given\! :} (k,2-2k), (-k+1, 2k), (-4-k, 6-2k)$
$\boldsymbol{Explanation\! :} V\! ertices\; are\; (k,2-2k), (-k+1, 2k), (-4-k, 6-2k)$
$\text { Determinant}=\left|\begin{array}{lll} \; \; \; \; \; \; k & 2-2k & 1 \\ -k+1 & \; \; \; 2k & 1 \\ -4-k & 6-2k & 1 \end{array}\right|=0$
Expanding along row1.
$\Rightarrow k(2k-(6-2k))-(2-2k)(-k+1-(-4-k))+1[(-k+1)(6-2k)-2k(-4-k)]$
$\Rightarrow [2k^{2}-6k+2k^{2}]-(2-2k)(-k+1+4+k)+[-6k+6+2k^{2}-2k]+8k+2k^{2}$
$\Rightarrow [2k^{2}-6k+2k^{2}]-[(2-2k)(5)+(6+4k^{2})]=0$
$\Rightarrow [4k^{2}-6k-10+10k+6+4k^{2}]=0$
$\Rightarrow [8k^{2}-4+4k]=0$
$\Rightarrow 2k^{2}+k-1=0$
$\Rightarrow 2k^{2}+2k-k-1=0$
$\Rightarrow 2k(k+1)-1(k+1)=0$
$\Rightarrow (2k-1)(k+1)=0$
$\begin{bmatrix} k+1 &=0 \\ k &=-1 \end{bmatrix}$ $\begin{bmatrix} 2k-1&=0 \\ k&=\frac{1}{2} \end{bmatrix}$
$k=-1,\frac{1}{2}$
Determinants exercise 5.3 question 10
Answer:$x$=3
Hints: Use vertices in the determinant formula and equate it with zero because if points are collinear then determinant will be zero and then find the value of x.
Given: ($x$, -2), (5,2) and (8,8) are collinear.
Explanation: Vertices are ($x$, -2), (5,2) and (8,8)
$\text { Determinant }=\left|\begin{array}{lll} X_{1} & Y_{1} & 1 \\ X_{2} & Y_{2} & 1 \\ X_{3} & Y_{3} & 1 \end{array}\right|=0$
$\Rightarrow \left|\begin{array}{lll} x & -2 & 1 \\ 5 & 2 & 1 \\ 8 & 8 & 1 \end{array}\right|=0$
$\Rightarrow x\left|\begin{array}{ll} 2 & 1 \\ 8 & 1 \end{array}\right|-(-2)\left|\begin{array}{cc} 5 & 1 \\ 8 & 1 \end{array}\right|+1\left|\begin{array}{cc} 5 & 2 \\ 8 & 8 \end{array}\right|=0$
$\Rightarrow x(2-8)+2(5-8)+1(40-16)=0$
$\Rightarrow x(-6)+2(-3)+1(24)=0$
$\Rightarrow -6x-6+24=0$
$\Rightarrow -6x+18=0$
$\Rightarrow 6x=18$
$\Rightarrow x=3$
Determinants exercise 5.3 question 11
Answer:$x$=5
Hints: Use vertices in the determinant formula and equate it with zero because if points are collinear then determinant will be zero and then find the value of $x$.
Given: (3,-2), ($x$,2) and (8,8).
Explanation: Vertices are (3,-2), ($x$,2) and (8,8).
$\left|\begin{array}{lll} X_{1} & Y_{1} & 1 \\ X_{2} & Y_{2} & 1 \\ X_{3} & Y_{3} & 1 \end{array}\right|=0$
$\Rightarrow \left|\begin{array}{lll} 3 & -2 & 1 \\ x & 2 & 1 \\ 8 & 8 & 1 \end{array}\right|=0$
$\Rightarrow 3\left|\begin{array}{ll} 2 & 1 \\ 8 & 1 \end{array}\right|-(-2)\left|\begin{array}{cc} x & 1 \\ 8 & 1 \end{array}\right|+1\left|\begin{array}{cc} x & 2 \\ 8 & 8 \end{array}\right|=0$
$\Rightarrow 3(2-8)+2(x-8)+1(8x-16)=0$
$\Rightarrow 3(-6)+2(x-8)+8x-16=0$
$\Rightarrow -18+2x-16+8x-16=0$
$\Rightarrow 10x-50=0$
$\Rightarrow x=\frac{50}{10}$
$\Rightarrow x=5$
Determinants exercise 5.3 question 12 (i)
$\boldsymbol{Answer\! :} 2x=y$
$\boldsymbol{Hints\! :} Take\; the\; third\; point\; as\; (x,y)\; and\;\; use\; the\; f\! ormula\; o\! f\; area\; o\! f\; triangle\; and\; equate\; it\; with\; zero.$
Given: (1,2) and (3,6)
Explanation: Vertices are (1,2) and (3,6)
$Let\; the\; third\; point\; be\; (x,y)$
$Determinant= \Delta =0$
$\Delta =\frac{1}{2}\begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}=0$
$\Rightarrow \frac{1}{2}\begin{vmatrix} x &y &1 \\ 1 &2 &1 \\ 3 &6 &1 \end{vmatrix}=0$
$\Rightarrow x\left|\begin{array}{ll} 2 & 1 \\ 6 & 1 \end{array}\right|-y\left|\begin{array}{cc} 1 & 1 \\ 3 & 1 \end{array}\right|+1\left|\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array}\right|=0$
$\Rightarrow x(2-6)-y(1-3)+1(6-6)=0$
$\Rightarrow -4x+2y+0=0$
$\Rightarrow -4x+2y=0$
$\Rightarrow -2x+y=0$
$\Rightarrow 2x=y$
Determinants exercise 5.3 question 12 (ii)
$\dpi{100} \boldsymbol{Answer\! :} x=3y$
$\boldsymbol{Hints\! :} Take\; the\; third\; point\; as\; (x,y)\; and\;\; use\; the\; f\! ormula\; o\! f\; area\; o\! f\; triangle\; and\; equate\; it\; with\; zero.$
Given: (3,1) and (9,3)
Explanation: Vertices are (3,1) and (9,3)
$Let\; the\; third\; point\; be\; (x,y)$
$Determinant= \Delta =0$
$\Delta =\frac{1}{2}\begin{vmatrix} X_{1} &Y_{1} &1 \\ X_{2} &Y_{2} &1 \\ X_{3} &Y_{3} &1 \end{vmatrix}=0$
$\Rightarrow \frac{1}{2}\begin{vmatrix} x &y &1 \\ 3 &1 &1 \\ 9 &3 &1 \end{vmatrix}=0$
$\Rightarrow x\left|\begin{array}{ll} 1 & 1 \\ 3 & 1 \end{array}\right|-y\left|\begin{array}{cc} 3 & 1 \\ 9 & 1 \end{array}\right|+1\left|\begin{array}{cc} 3 & 1 \\ 9 & 3 \end{array}\right|=0$
$\Rightarrow x(1-3)-y(3-9)+1(9-9)=0$
$\Rightarrow -2x+6y=0$
$\Rightarrow -x+3y=0$
$\Rightarrow x=3y$
Determinants exercise 5.3 question 13 (i)
Answer:$k$=0
Hints: Putting the values of vertices, in the formula of area of triangle.
Given: ($k$,0), (4,0) and (0,2)
area of triangle= 4 sq. units
Explanation: Vertices are ($k$,0), (4,0) and (0,2)
$\text { Area of triangle is }=\Delta=\frac{1}{2}\left|\begin{array}{lll} X_{1} & Y_{1} & 1 \\ X_{2} & Y_{2} & 1 \\ X_{3} & Y_{3} & 1 \end{array}\right|=4$
$\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{lll} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{array}\right|=4$
$\Delta=\frac{1}{2}\left(k\left|\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array}\right|-0\left|\begin{array}{cc} 4 & 1 \\ 0 & 1 \end{array}\right|+1\left|\begin{array}{cc} 4 & 0 \\ 0 & 2 \end{array}\right|\right)=4$
$= \frac{1}{2}[k(0-2)-0+1(8-0)]=4$
$\Rightarrow -2k+8=8$
$\Rightarrow -2k=0$
$\Rightarrow k=0$
Determinants exercise 5.3 question 13 (ii)
Answer:$k$=8
Hints: Putting the values of vertices, in the formula of area of triangle.
Given: (-2,0), (0,4) and (0,$k$)
area of triangle= 4 sq. units
Explanation: Vertices are (-2,0), (0,4) and (0,$k$)
$\text { Area of triangle is }=\Delta=\frac{1}{2}\left|\begin{array}{lll} X_{1} & Y_{1} & 1 \\ X_{2} & Y_{2} & 1 \\ X_{3} & Y_{3} & 1 \end{array}\right|=4$
$\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{lll} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{array}\right|=4$
$\Delta=\frac{1}{2}\left(-2\left|\begin{array}{cc} 4 & 1 \\ k & 1 \end{array}\right|-0\left|\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right|+1\left|\begin{array}{cc} 0 & 4 \\ 0 & k \end{array}\right|\right)=4$
$= \frac{1}{2}[-2(4-k)-0+1(0)]=4$
$\Rightarrow -8+2k=8$
$\Rightarrow 2k=16$
$\Rightarrow k=8$
The 5th chapter for Class 12 mathematics, Determinants, is a simple chapter where many students aim to score their best. RD Sharma class 12th exercise 5.3, has around 21 questions to be solved, including its subparts. The concepts in this exercise are Area of the Triangle with vertices at given points, Collinear points, and the Equation of lines using Determinants. All these can be referred to at the RD Sharma Class 12 Chapter 5 Exercise 5.3.
All the solutions in this book are created and verified by the experts according to the latest syllabus. It follows the NCERT pattern too. Hence, the CBSE board students can use it to complete their homework and assignments and prepare for their tests. Scoring better marks in the Determinants chapter will boost up your total score. Therefore, the RD Sharma Chapter 5 Exercise 5.3 Solution will make you understand the concepts effortlessly. Numerous practice questions will make you furthermore clear about exercise 5.3.
You might think that RD Sharma solutions book would cost a lot by looking at its benefits. But that is not the case here. The RD Sharma Class 12 Solutions Determinants Ex 5.3 can be downloaded free from top educational websites like Career 360. RD Sharma Class 12th exercise 5.3 materials are available for free of cost on this website. So, all you need to do is, visit the Career 360 website, look out for the solution book you need and download it to your device. Then, start practicing the sums from day 1 to achieve more marks in your public exam.
Once you commence preparing for your tests using the RD Sharma solutions books, you can witness yourself crossing all your benchmarks. Many students have benefited from the RD Sharma Class 12 Solutions Chapter 5 ex 5.3 to know the concepts of Determinants better. There are high chances that questions in the public exam can be asked from the RD Sharma solution books. Hence, preparing with this material in advance leads you to score better marks in the examinations easily.
Chapter-wise RD Sharma Class 12 Solutions
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE