RD Sharma Class 12 Exercise 5.1 Determinant Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 5.1 Determinant Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 25, 2022 07:12 PM IST

The CBSE board students are gifted to access the best solutions book, the RD Sharma solutions, to clear their doubts. It is indeed a fact that a teacher cannot be present 24 x 7 to clear the doubts of the students. Hence, a better alternative is required. As most of the 12th standard students find mathematics a complex subject, even a simple chapter like the Determinants becomes difficult for them to solve. This is where the RD Sharma Class 12th exercise 5.1 comes to the rescue.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 5 Determinants - Other Exercise

Determinants Excercise: 5.1

Determinants exercise 5.1 question 1 (i)

Answer:
\mathrm{M}_{11}=-1, \mathrm{M}_{21}=20, \mathrm{C}_{11}=-1, \mathrm{C}_{21}=-20
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
A=\begin{bmatrix} 5 &20 \\ 0 &-1 \end{bmatrix}
Solution:
\begin{aligned} &\mathrm{M}_{11}=-1 \\ &\mathrm{M}_{21}=20 \\ &\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}} \\ &\mathrm{C}_{11}=(-1)^{2}(-1)=-1 \\ &\mathrm{C}_{21}=(-1)^{3}(20)=-20 \\ &\mathrm{D}=(-1 \times 5)-(20 \times 0)=-5 \end{aligned}

Determinants exercise 5.1 question 1 (ii)

Answer:
\mathrm{M}_{11}=3, \mathrm{M}_{21}=4, \mathrm{C}_{11}=3, \mathrm{C}_{21}=-4
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
A=\begin{bmatrix} -1 &4 \\ 2 &3 \end{bmatrix}
Solution:
\begin{aligned} &\mathrm{M}_{11}=3 \\ &\mathrm{M}_{21}=4 \\ &\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+j} \mathrm{M}_{\mathrm{ij}} \\ &\mathrm{C}_{11}=(-1)^{2} 3=3 \\ &\mathrm{C}_{21}=(-1)^{3} 4=-4 \\ &\mathrm{D}=(-1 \times 3)-(2 \times 4)=-3-8=-11 \end{aligned}

Determinants exercise 5.1 question 1 (iii)

Answer:
\mathrm{M}_{11}=-12, \mathrm{M}_{21}=-16, \mathrm{M}_{31}=-4, \\ \mathrm{C}_{11}=-12, \mathrm{C}_{21}=16, \mathrm{C}_{31}=-4,
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
\begin{gathered} \mathrm{A}=\left[\begin{array}{ccc} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{array}\right] \\ \end{gathered}
Solution:
\begin{gathered} \mathrm{A}=\left[\begin{array}{ccc} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{array}\right] \\ \mathrm{M}_{11}=\left|\begin{array}{cc} -1 & 2 \\ 5 & 2 \end{array}\right|=-2-10=-12 \\ \mathrm{M}_{21}=\left|\begin{array}{cc} -3 & 2 \\ 5 & 2 \end{array}\right|=-6-10=-16 \\ \mathrm{M}_{31}=\left|\begin{array}{ll} -3 & 2 \\ -1 & 2 \end{array}\right|=-6-(-2)=-4 \end{gathered}
\begin{aligned} &\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}} \\ &\mathrm{C}_{11}=(-1)^{2}(-12)=-12 \\ &\mathrm{C}_{21}=(-1)^{3}(-16)=16 \\ &\mathrm{C}_{31}=(-1)^{4}(-4)=-4 \\ &\mathrm{D}=1(-12)+3(8-6)+2(20+3) \\ &=-12+3(2)+2(23) \\ &\qquad \begin{array}{l} = -12+6+46 \\ =40 \end{array} \\ & \end{aligned}

Determinants exercise 5.1 question 1 (iv)

Answer:
\begin{aligned} &\mathrm{M}_{11}=\mathrm{a}\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right), \mathrm{M}_{21}=\mathrm{b}\left(\mathrm{a}^{2}-\mathrm{c}^{2}\right), \mathrm{M}_{31}=\mathrm{c}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\ &\mathrm{C}_{11}=\mathrm{a}\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right), \mathrm{C}_{21}=\mathrm{b}\left(\mathrm{a}^{2}-\mathrm{c}^{2}\right), \mathrm{C}_{31}=\mathrm{c}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \end{aligned}
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{lll} 1 & a & b c \\ 1 & b & c a \\ 1 & c & a b \end{array}\right] \\ \end{aligned}
Solution:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{lll} 1 & a & b c \\ 1 & b & c a \\ 1 & c & a b \end{array}\right] \\ &\mathrm{M}_{11}=\left|\begin{array}{ll} b & c a \\ c & a b \end{array}\right|=\mathrm{ab}^{2}-\mathrm{ac}^{2}=\mathrm{a}\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right) \\ &\mathrm{M}_{21}=\left|\begin{array}{ll} a & b c \\ c & a b \end{array}\right|=\mathrm{a}^{2} \mathrm{~b}-\mathrm{bc}^{2}=\mathrm{b}\left(\mathrm{a}^{2}-\mathrm{c}^{2}\right) \\ &\mathrm{M}_{31}=\left|\begin{array}{ll} a & b c \\ b & c a \end{array}\right|=\mathrm{a}^{2} \mathrm{c}-\mathrm{b}^{2} \mathrm{c}=\mathrm{c}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\ &\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}} \end{aligned}


Determinants exercise 5.1 question 1 (v)

Answer:
\mathrm{M}_{11}=5, \mathrm{M}_{21}=-40, \mathrm{M}_{31}=-30 \\ \mathrm{C}_{11}=5, \mathrm{C}_{21}=40, \mathrm{C}_{31}=-30
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
\begin{aligned} &\mathbf{A}=\left[\begin{array}{lll} 0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1 \end{array}\right] \\ \end{aligned}
Solution:
\begin{aligned} &\mathbf{A}=\left[\begin{array}{lll} 0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1 \end{array}\right] \\ &\mathrm{M}_{11}=\left|\begin{array}{ll} 5 & 0 \\ 7 & 1 \end{array}\right|=5-0=5 \\ &\mathrm{M}_{21}=\left|\begin{array}{ll} 2 & 6 \\ 7 & 1 \end{array}\right|=2-42=-40 \\ &\mathrm{M}_{31}=\left|\begin{array}{ll} 2 & 6 \\ 5 & 0 \end{array}\right|=0-(30)=-30 \end{aligned}
\begin{aligned} &C_{i j}=(-1)^{\mathrm{i}+j} \mathrm{M}_{\mathrm{ij}} \\ &\mathrm{C}_{11}=(-1)^{2} 5=5 \\ &\mathrm{C}_{21}=(-1)^{3}(-40)=40 \\ &\mathrm{C}_{31}=(-1)^{4}(-30)=-30 \\ &\mathrm{D}=0(5)-2(1)+6(7-5) \\ &=0-2-48 \\ &=-50 \end{aligned}

Determinants exercise 5.1 question 1 (vi)

Answer:
\begin{aligned} &\mathrm{M}_{11}=\mathrm{bc}-\mathrm{f}^{2}, \mathrm{M}_{21}=\mathrm{hc}-\mathrm{fg}, \mathrm{M}_{31}=\mathrm{hf}-\mathrm{gb} \\ &\mathrm{C}_{11}=\mathrm{bc}-\mathrm{f}^{2}, \mathrm{C}_{21}=-(\mathrm{hc}-\mathrm{fg}), \mathrm{C}_{31}=\mathrm{hf}-\mathrm{gb} \end{aligned}
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{lll} a & h & g \\ h & b & f \\ g & f & c \end{array}\right] \\ \end{aligned}
Solution:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{lll} a & h & g \\ h & b & f \\ g & f & c \end{array}\right] \\ &\mathrm{M}_{11}=\left|\begin{array}{ll} b & f \\ f & c \end{array}\right|=\mathrm{bc}-\mathrm{f}^{2} \\ &\mathrm{M}_{21}=\left|\begin{array}{ll} h & g \\ f & c \end{array}\right|=\mathrm{hc}-\mathrm{fg} \\ &\mathrm{M}_{31}=\left|\begin{array}{ll} h & g \\ b & f \end{array}\right|=\mathrm{hf}-\mathrm{gb} \end{aligned}
\begin{aligned} &C_{i j}=(-1)^{i+j} M_{i j} \\ &C_{11}=(-1)^{2} b c-f^{2}=b c-f^{2} \\ &C_{21}=(-1)^{3} \mathrm{hc}-f g=-(h c-f g) \\ &C_{31}=(-1)^{4} \mathrm{hf}-g b=h f-g b \end{aligned}
\begin{aligned} \mathrm{D} &=\mathrm{a}\left(\mathrm{b} \mathrm{c}-\mathrm{f}^{2}\right)-\mathrm{h}(\mathrm{hc}-\mathrm{fg})+\mathrm{g}(\mathrm{hf}-\mathrm{g} \mathrm{b}) \\ &=\mathrm{abc}-\mathrm{af}^{2}-\mathrm{h}^{2} \mathrm{c}+\mathrm{hfg}+\mathrm{ghf}-\mathrm{g}^{2} \mathrm{~b} \\ &=\mathrm{abc}-\mathrm{af}^{2}-\mathrm{h}^{2} \mathrm{c}+2 \mathrm{hfg}-\mathrm{g}^{2} \mathrm{~b} \end{aligned}

Determinants exercise 5.1 question 1 (vii)

Answer:
\begin{aligned} &\mathrm{M}_{11}=-9, \mathrm{M}_{21}=9, \mathrm{M}_{31}=-9, \mathrm{M}_{41}=0 \\ &\mathrm{C}_{11}=-9, \mathrm{C}_{21}=-9, \mathrm{C}_{31}=-9, \mathrm{C}_{41}=0 \end{aligned}
Hint:
Let Mij, Cij represents minor and cofactor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present.
Given:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{cccc} 2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0 \end{array}\right] \\ \end{aligned}
Solution:
\begin{aligned} &\mathrm{A}=\left[\begin{array}{cccc} 2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0 \end{array}\right] \\ &\begin{aligned} M_{11}=\left|\begin{array}{ccc} 0 & 1 & -2 \\ 1 & -1 & 1 \\ -1 & 5 & 0 \end{array}\right| &=0(0-5)-1(0+1)-2(5-1) \\ &=-1-8 \\ &=-9 \end{aligned} \end{aligned}
\begin{aligned} \mathrm{M}_{21}=\left|\begin{array}{ccc} -1 & 0 & 1 \\ 1 & -1 & 1 \\ -1 & 5 & 0 \end{array}\right| &=-1(0-5)+1(5-1) \\ &=5+4 \\ &=9 \end{aligned}
\begin{aligned} &\mathrm{M}_{31}=\left|\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 5 & 0 \end{array}\right| \\ & =-1(0+10)+1(0+1) \\ & =-10+1 \\ & =-9 \\ & \begin{array}{rll} M_{41}=\left|\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 & 1 \end{array}\right| & =-1(1-2)+1(0-1) \\ & =1-1 \\ & =0 \end{array} \end{aligned}
\begin{aligned} &C_{i j}=(-1)^{\mathrm{i}+j} M_{i j} \\ &C_{11}=(-1)^{2}(-9)=-9 \\ &C_{21}=(-1)^{3}(9)=-9 \\ &C_{31}=(-1)^{4}(-9)=-9 \\ &C_{41}=(-1)^{5}(0)=0 \end{aligned}
\begin{aligned} \mathrm{D} &=2\left|\begin{array}{ccc} 0 & 1 & -2 \\ 1 & -1 & 1 \\ -1 & 5 & 0 \end{array}\right|+1\left|\begin{array}{ccc} -3 & 1 & -2 \\ 1 & -1 & 1 \\ 2 & 5 & 0 \end{array}\right|-1\left|\begin{array}{ccc} -3 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & -1 & 5 \end{array}\right| \\ &=-18-27+15 \\ &=-30 \end{aligned}

Determinants exercise 5.1 question 2 (i)

Answer:
D=5x^{2}+8x
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{vmatrix} x &-7 \\ x &5x+1 \end{vmatrix}
Solution:\begin{aligned} &\mathrm{D}=\mathrm{a}_{11} \times \mathrm{C}_{11}+\mathrm{a}_{21} \times \mathrm{C}_{21} \\ &=\mathrm{x}(5 \mathrm{x}+1)+(-7 \mathrm{x}) \\ &=5 \mathrm{x}^{2}+\mathrm{x}+7 \mathrm{x} \\ &=5 \mathrm{x}^{2}+8 \mathrm{x} \end{aligned}


Determinants exercise 5.1 question 2 (ii)

Answer:
cos^{2}\theta +sin^{2} \theta =1
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{aligned} \left|\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\begin{aligned} &\mathrm{D}=\mathrm{a}_{11} \times \mathrm{C}_{11}+\mathrm{a}_{21} \times \mathrm{C}_{21} \\ &=\cos \theta(\cos \theta)+(-\sin \theta \times(-\sin \theta)) \\ &=\cos ^{2} \theta+\sin ^{2} \theta \\ &=1 \end{aligned} \end{aligned}

Determinants exercise 5.1 question 2 (iii)

Answer:
0
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{aligned} \left|\begin{array}{cc} \cos 15^{\circ} & \sin 15^{\circ} \\ -\sin 75^{\circ} & \cos 75^{\circ} \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\begin{aligned} \mathrm{D} &=\mathrm{a}_{11} \times \mathrm{C}_{11}+\mathrm{a}_{21} \times \mathrm{C}_{21} \\ &=\cos 15^{\circ}\left(\cos 75^{\circ}\right)+\left(\sin 15^{\circ}\left(-\sin 75^{\circ}\right)\right) \\ &=\cos 15^{\circ} \cos 75^{\circ}-\sin \left(90^{\circ}-15^{\circ}\right) \sin \left(90^{\circ}-75^{\circ}\right) \quad\left[\sin \left(90^{\circ}-\theta\right)=\cos \theta\right] \\ &=\cos 15^{\circ} \cos 75^{\circ}-\cos 75^{\circ} \cos 15^{\circ} \\ &=0 \end{aligned} \end{aligned}

Determinants exercise 5.1 question 2 (iv)

Answer:
a^{2}+b^{2}+c^{2}+d^{2}
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{aligned} \left|\begin{array}{cc} \mathrm{a}+\mathrm{ib} & \mathrm{c}+\mathrm{id} \\ -\mathrm{c}+\mathrm{id} & \mathrm{a}-\mathrm{ib} \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\begin{aligned} &\mathrm{D}=\mathrm{a}_{11} \times \mathrm{C}_{11}+\mathrm{a}_{21} \times \mathrm{C}_{21} \\ &\quad=\mathrm{a}+\mathrm{ib}(\mathrm{a}-\mathrm{ib})+\mathrm{c}+\mathrm{id}(-\mathrm{c}+\mathrm{id}) \\ &\quad=\mathrm{a}^{2}-\mathrm{i}^{2} \mathrm{~b}^{2}-\mathrm{i}^{2} \mathrm{~d}^{2}+\mathrm{c}^{2} \\ &\quad=\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{b}^{2}+\mathrm{d}^{2} \end{aligned} \end{aligned}

Determinants exercise 5.1 question 4

Answer:
D=1
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{aligned} \left|\begin{array}{cc} \sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ} \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\Delta=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{21} \mathrm{C}_{21}\\ &=\sin 10^{\circ} \cos 80^{\circ}+\cos 10^{\circ} \sin 80^{\circ}\\ &=\sin 10^{\circ} \cos \left(90^{\circ}-10^{\circ}\right)+\cos 10^{\circ} \sin \left(90^{\circ}-10^{\circ}\right) \quad\quad\quad \quad\left[\sin \left(90^{\circ}-\theta\right)=\cos \theta\right]\\ &=\sin 10^{\circ} \sin 10^{\circ}+\cos 10^{\circ} \cos 10^{\circ}\\ &=\sin ^{2} 10^{\circ}+\cos ^{2} 10^{\circ} \quad \quad \quad \quad \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]\\ &=1 \end{aligned}

Determinants exercise 5.1 question 5

Answer:
-140
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\begin{aligned} \left|\begin{array}{ccc} 2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1 \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\Delta=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{21} \mathrm{C}_{21+} \mathrm{a}_{31} \mathrm{C}_{31} \end{aligned}
\begin{aligned} &=(-1)^{1+1} 2(1+8)+(-1)^{1+2} 3(7-6)+(-1)^{1+3}(-5)(28+3) \\ &=2(1+8)-3(7-6)-5(28+3) \\ &=18-3-155 \\ &\Delta=-140 \end{aligned}
Second method is the Sarus method where we adjoin the first two columns to the right to get:
\left|\begin{array}{ccccc} 2 & 3 & -5 & 2 & 3 \\ 7 & 1 & -2 & 7 & 1 \\ -3 & 4 & 1 & -3 & 4 \end{array}\right|
\begin{aligned} \Delta &=\{((2 \times 1 \times 1)+(3 \times-2 \times-3)-(5 \times 7 \times 4))-((-5 \times 1 \times-3)+(2 \times-2 \times 4)+(3 \times 7 \times 1))\} \\ &=(2+18-140)-(15-16+21) \\ &=-120-20 \\ \Delta &=-140 \end{aligned}

Determinants exercise 5.1 question 6

Answer:
0
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\left|\begin{array}{ccc} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{array}\right|
Solution:
\begin{aligned} &\Delta=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{21} \mathrm{C}_{21+} \mathrm{a}_{31} \mathrm{C}_{31}\\ &=(-1)^{1+1} 0\left(0+\sin ^{2} \beta\right)+(-1)^{1+2} \sin \alpha(0-\sin \beta \cos \alpha)+(-1)^{1+3}(-\cos \alpha)(\sin \alpha \sin \beta-0)\\ &=0\left(0+\sin ^{2} \beta\right)-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0)\\ &=\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta\\ &\Delta=0 \end{aligned}

Determinants exercise 5.1 question 7

Answer:
1
Hint:
Determinant matrix must be square (i.e. same number of rows and columns)
Given:
\left|\begin{array}{ccc} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{array}\right|
Solution:
\begin{aligned} &\Delta=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{21} \mathrm{C}_{21}+\mathrm{a}_{31} \mathrm{C}_{31} \\ &=(-1)^{1+1} \cos \alpha \cos \beta(\cos \alpha \cos \beta-0)+(-1)^{1+2} \cos \alpha \sin \beta(-\sin \beta \cos \alpha-0)+(-\text { 1) }^{1+3}(-\sin \alpha)\left(-\sin \alpha \sin ^{2} \beta-\sin \alpha \cos ^{2} \beta\right) \\ &=\cos \alpha \cos \beta(\cos \alpha \cos \beta-0)-\cos \alpha \sin \beta(-\sin \beta \cos \alpha-0)+(-\sin \alpha)\left(-\sin \alpha \sin ^{2} \beta-\right. \left.\sin \alpha \cos ^{2} \beta\right) \\ &=\cos ^{2} \alpha \cos ^{2} \beta+\cos ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha \cos ^{2} \beta \\ &=\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right) \quad \quad \quad \quad \quad \quad \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right] \\ &=\cos ^{2} \alpha+\sin ^{2} \alpha \\ &\Delta=1 \end{aligned}

Determinants exercise 5.1 question 8

Answer:
\begin{aligned} |A B|=|A||B| \\ \end{aligned}
Given:

\begin{aligned} & A=\left[\begin{array}{ll} 2 & 5 \\ 2 & 1 \end{array}\right], B=\left[\begin{array}{cc} 4 & -3 \\ 2 & 5 \end{array}\right] \\ & \text { To prove: }|A B|=|A||B| \end{aligned}

Solution:
Consider AB in LHS:
\begin{aligned} \mathrm{AB} &=\left[\begin{array}{ll} 2 & 5 \\ 2 & 1 \end{array}\right]\left[\begin{array}{cc} 4 & -3 \\ 2 & 5 \end{array}\right] \\ &=\left[\begin{array}{cc} 8+10 & -6+25 \\ 8+2 & -6+5 \end{array}\right] \\ &=\left[\begin{array}{cc} 18 & 19 \\ 10 & -1 \end{array}\right] \\ |A B| &=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{21} \mathrm{C}_{21} \\ &=-18-190 \\ |A B| &=-208 \end{aligned}
Consider RHS:
\begin{aligned} &|A|=2-10=-8 \\ &|B|=20+6=26 \\ &\begin{array}{l} |A||B|=|-8||26| \\ =-208 \\ \therefore \text { LHS }=\text { RHS } \\ |A B|=|A||B| \text { is proved. } \end{array} \end{aligned}

Determinants exercise 5.1 question 10 (i)

Answer:
x=\pm \sqrt{3}
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{ll} 2 x & 4 \\ 6 x & x \end{array}\right| \end{aligned}
Solution:
\begin{aligned} &\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{ll} 2 x & 4 \\ 6 x & x \end{array}\right| \\ &2-20=2 \mathrm{x}^{2}-24 \\ &-18=2 \mathrm{x}^{2}-24 \\ &2 \mathrm{x}^{2}=6 \\ &\mathrm{x}^{2}=3 \\ &\mathrm{x}=\pm \sqrt{3} \end{aligned}

Determinants exercise 5.1 question 10 (ii)

Answer:
x=2
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right| \end{aligned}
Solution:
\begin{aligned} &\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right| \\ &10-12=5 x-6 x \\ &-2=-x \\ &x=2 \end{aligned}

Determinants exercise 5.1 question 10 (iii)

Answer:
x=\pm 2\sqrt{2}
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{ll} 3 & x \\ x & 1 \end{array}\right|=\left|\begin{array}{ll} 3 & 2 \\ 4 & 1 \end{array}\right| \\ \end{aligned}
Solution:
\begin{aligned} &\left|\begin{array}{ll} 3 & x \\ x & 1 \end{array}\right|=\left|\begin{array}{ll} 3 & 2 \\ 4 & 1 \end{array}\right| \\ &3-x^{2}=3-8 \\ &-x^{2}=-5-3 \\ &x^{2}=8 \\ &x=\pm 2 \sqrt{2} \end{aligned}

Determinants exercise 5.1 question 10 (iv)

Answer:
x=2
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{cc} 3 x & 7 \\ 2 & 4 \end{array}\right|=10 \\ \end{aligned}
Solution:
\begin{aligned} &\left|\begin{array}{cc} 3 x & 7 \\ 2 & 4 \end{array}\right|=10 \\ &12 \mathrm{x}-14=10 \\ &12 \mathrm{x}=24 \\ &\mathrm{x}=2 \end{aligned}

Determinants exercise 5.1 question 10 (v)

Answer:
x=2
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{ll} x+1 & x-1 \\ x-3 & x+2 \end{array}\right|=\left|\begin{array}{cc} 4 & -1 \\ 1 & 3 \end{array}\right| \end{aligned}
Solution:
\begin{aligned} &\left|\begin{array}{ll} x+1 & x-1 \\ x-3 & x+2 \end{array}\right|=\left|\begin{array}{cc} 4 & -1 \\ 1 & 3 \end{array}\right| \\ &(x+1)(x+2)-(x-3)(x-1)=12+1 \\ &x^{2}+3 x+2-x^{2}+4 x-3=13 \\ &7 x-1=13 \\ &7 x=14 \\ &x=2 \end{aligned}

Determinants exercise 5.1 question 10 (vi)

Answer:
x=\pm 3
Hint:
Take determinant of matrix on both side and equate it.
Given:
\begin{aligned} &\left|\begin{array}{ll} 2 x & 5 \\ 8 & x \end{array}\right|=\left|\begin{array}{ll} 6 & 5 \\ 8 & 3 \end{array}\right| \\ \end{aligned}
Solution:
\begin{aligned} &2 \mathrm{x}^{2}-40=18-40 \\ &2 \mathrm{x}^{2}=18 \\ &\mathrm{x}^{2}=9 \\ &\mathrm{x}=\pm 3 \end{aligned}

Determinants exercise 5.1 question 11

Answer:
x=2
Hint:
Take determinant of matrix on both side and equate it.
Given:
\left|\begin{array}{lll} x^{2} & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{array}\right|=28
Solution:
\begin{aligned} &x^{2}(8-1)-x(0-3)+1(0-6)=28\\ &8 x^{2}-x^{2}+3 x-6=28\\ &7 x^{2}+3 x-34=0\\ &(7 x+17)(x-2)=0\\ &(\mathrm{x}=2) \text { or }\left(\mathrm{x}=\frac{-17}{7}\right)\\ &\mathrm{x}=\frac{-17}{7} \text { is not integer. So, } \mathrm{x}=2 \end{aligned}

Determinants exercise 5.1 question 12 (i)

Answer:
x=\frac{13}{15}
Hint:
If matrix is singular, then |A| = 0
Given:
\begin{bmatrix} 1+x &7 \\ 3-x &8 \end{bmatrix}
Solution:
\begin{aligned} &|\mathrm{A}|=0 \\ &8+8 \mathrm{x}-21+7 \mathrm{x}=0 \\ &15 \mathrm{x}-13=0 \\ &15 \mathrm{x}=13 \\ &\mathrm{x}=\frac{13}{15} \end{aligned}

Determinants exercise 5.1 question 12 (ii)

Answer:
x=2\; or\; x=-1
Hint:
If matrix is singular, then |A| = 0
Given:
\mathrm{A}=\left[\begin{array}{ccc} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{array}\right]
Solution:
\begin{aligned} &|\mathbf{A}|=\mathbf{0} \\ &(\mathrm{x}-1)\left(\mathrm{x}^{2}-2 \mathrm{x}\right)-1(\mathrm{x}-2)+1(2-\mathrm{x})=0 \\ &\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}^{2}+2 \mathrm{x}-\mathrm{x}+2-\mathrm{x}+2=0 \\ &\mathrm{x}^{3}-3 \mathrm{x}^{2}+4=0 \\ &(\mathrm{x}-2)^{2}(\mathrm{x}+1)=0 \\ &\Rightarrow[\mathrm{x}=2] \text { or }[\mathrm{x}=-1] \\ &x=-1,2 \end{aligned}

The 5th chapter, Determinants of Class 12 mathematics, is one of the most uncomplicated chapters to score good marks. Hence, a student needs to concentrate more on this chapter to use the opportunity to the fullest. The concepts in the first exercise, ex 5.1, are Minors and Cofactors of determinants, the Integral value of determinants; if the matrix is singular, how do we find the value of x and many more. There are about twenty-seven questions, including the subparts in this exercise. The RD Sharma Class 12 Chapter 5 Exercise 5.1 solutions book will make solving the problems more manageable.

Many class students use this book as experts in the educational field to provide solutions. RD Sharma class 12th exercise 5.1 solutions follow the NCERT pattern, making it easier for the CBSE board student to use them. If you are determined to score high marks in this chapter, you must be evident in the concepts in the first exercise. The Class 12 RD Sharma Chapter 5 Exercise 5.1 Solution will be of great help regarding this. Once you start using this book, you can witness yourself scoring higher than your benchmark.

Many students have benefitted from the solutions provided in this book. Moreover, as higher officials recognize it, there are many chances that the questions for the public exam will be asked from this book. Hence, the RD Sharma Class 12 Solutions Determinant Ex 5.1 will be of great help for you to do homework, assignments and prepare for the exams.

Everyone can download RD Sharma Class 12th exercise 5.1 solutions books from the Career360 website for free of cost. Therefore, the students need not pay any fees or charges to download it. To own a copy, visit the Career 360 website, and search for the book you require. For instance, the RD Sharma Class 12 Solutions Chapter 5 ex 5.1 will provide you with the answers to the questions in this exercise. Then, visit the career 360 website and download a set of these books to sharpen your mathematical skills.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Questions (FAQs)

1. Who can access the RD Sharma solutions book?

Everyone can access the RD Sharma solutions book by downloading it from the career360 websites. There are no restrictions or limitations to view the material and download it.

2. Which book can I refer to score high marks in the class 12 mathematics Determinants chapter?

The RD Sharma Class 12th exercise 5.1 is the first guide for you to reference when you commence with this chapter. Later, you can refer to the solutions for the other exercises in the same book to score high marks.

3. Can a slow-learner student gain good marks by using the RD Sharma books to prepare for the examinations?

The solutions in the RD Sharma books are given in various methods so that each student can adapt to how they feel easily. This gives them a better confidence level to face the examinations. 


4. How much do the RD Sharma solutions books cost?

The RD Sharma Class 12th exercise 5.1 Solutions can be downloaded for free of cost from the Career360 website. In addition, no amount is charged to access the complete set of books.

5. Is it enough if I work out the sums for chapter 5 given in the RD Sharma book?

Yes, it is enough to work out the sums in the RD Sharma Class 12 Chapter 5 Exercise 5.1 solutions for a deeper understanding of the determinant concepts.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top