Probability Excercise:FBQ
Probability Exercise Fill in the Blanks Question, Question 1.
Answer:
Answer: $P(A)P(\overline{B})$Given:If A

and B

are independent events then P(A∪B)=1-x

where x=…

. -
Hint:Using P(A)=1-P(A) ; P(A)=1-P(A)
Explanation:We are given
A and
$\overline{B}$ an indepindent events
$\Rightarrow \overline{A}$ and B oure also independent
Since
$\overline{A}$ and B are independent events.
$\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B})=\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\mathrm{B})$Now
$\begin{aligned} &\mathrm{P}(\overline{\mathrm{A}} \cup \mathrm{B})=\mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B}) \\ &=(1-\mathrm{P}(\mathrm{A}))+(1-\mathrm{P}(\overline{\mathrm{B}}))-\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\mathrm{B}) \\ &=(1-\mathrm{P}(\mathrm{A}))+(1-\mathrm{P}(\overline{\mathrm{B}}))-\cdot(1-\mathrm{P}(\mathrm{A}))(1-\mathrm{P}(\overline{\mathrm{B}})) \end{aligned}$$\begin{aligned} &=1-\mathrm{P}(\mathrm{A})+1-\mathrm{P}(\overline{\mathrm{B}})-[1-\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{A}) \mathrm{P}(\overline{\mathrm{B}})] \\ &=1-\mathrm{P}(\mathrm{A})+1-\mathrm{P}(\overline{\mathrm{B}})-1+\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A})(\overline{\mathrm{B}}) \\ &=1-\mathrm{P}(\mathrm{A}) \mathrm{P}(\overline{\mathrm{B}}) \\ &\Rightarrow \mathrm{P}(\overline{\mathrm{A}} \cup \mathrm{B})=1-\mathrm{P}(\mathrm{A}) \mathrm{P}(\overline{\mathrm{B}})-(1) \end{aligned}$Also given that
$P(\overline{A}\cup B)=1-x-(2)$Comparing (1) and 2 we get
$x=1-P(A)P(\overline{B})$Probability Exercise Fill in the Blanks Question, Question 2.
Answer: $\frac{5}{12},\frac{1}{3}$Given:If A and B are independent events such-that
PA=p,
P(B)=2pand
P( Exactly one of
$A_1B=\frac{5}{9}$) then
p=?
Hint:$P(A \cap A B)=P(A) P(B)$ if A and B are independent.
Explanation:As A and B ane independent events.
So
$P(A \cap A B)=P(A) P(B)$ - (1)
Now
P( Exadly one of A and B occurs )=
$\frac{5}{9}$⇒P( only A)+P( onlyB)=
$\frac{5}{9}$$\begin{aligned} &\Rightarrow[\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})]+[\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})]=\frac{5}{9} \\ &\Rightarrow[\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})]+[\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}))]=\frac{5}{9} \\ &\Rightarrow\left[\mathrm{P}(\mathrm{A}) \times(1-\mathrm{P}(\mathrm{B}))+\mathrm{P}(\mathrm{B}) \times[1-\mathrm{P}(\mathrm{A})]=\frac{5}{9}\right. \\ &\Rightarrow \mathrm{p}(1-2 \mathrm{p})+2 \mathrm{p}(1-\mathrm{p})=\frac{5}{9} \\ &\Rightarrow \mathrm{p}-2 \mathrm{p}^{2}+2 \mathrm{p}-2 \mathrm{p}^{2}=\frac{5}{9} \\ &\Rightarrow 3 \mathrm{p}-4 \mathrm{p}^{2}=\frac{5}{9} \\ &\Rightarrow 27 \mathrm{p}-36 \mathrm{p}^{2}=5 \\ &\Rightarrow 36 \mathrm{p}^{2}-27 \mathrm{p}+5=0 \end{aligned}$So using quadratic formula,
$\mu$.
$\begin{aligned} &p=\frac{-(-27) \pm \sqrt{(-27)^{2}-4 \times 36 \times 5}}{2 \times 36} \\ &=\frac{27 \pm \sqrt{729-720}}{72} \\ &=\frac{27 \pm \sqrt{9}}{72} \\ &=\frac{27 \pm 3}{72} \end{aligned}$$\begin{aligned} p &=\frac{27+3}{72}, \frac{27-3}{72} \\ &=\frac{30}{72}, \frac{24}{72} \\ &=\frac{5}{12}, \text { or } \frac{1}{3} \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 3.
Answer: $\frac{10}{9}$Given:If A and B are two events such that
$P(\overline{A}\cup \overline{B})=\frac{2}{3}$ and
$P(A\cup B)=\frac{5}{9}$Then
$P(\overline{A})+P(\overline{B})= ....$Hint:Using
$P(\overline{A})=1-P(A)$Explanation:Let A and B be the two events.
$\begin{gathered} P(\bar{A} \cup \bar{B})=\frac{2}{3} \\ P(\overline{A \cap B})=\frac{2}{3} \\ \Rightarrow 1-P(A \cap B)=\frac{2}{3} \\ \Rightarrow P(A \cap B)=1-\frac{2}{3} \\ \Rightarrow P(A \cap B)=\frac{1}{3} \\ P(A \cup B)=\frac{5}{9} \text { (given) } \end{gathered}$Also ,
$\begin{aligned} &\begin{aligned} \mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}}) &=(1-\mathrm{P}(\mathrm{A}))+(1-\mathrm{P}(\mathrm{B})) \\ &=1-\mathrm{P}(\mathrm{A})+1-\mathrm{P}(\mathrm{B}) \end{aligned} \\ &=2-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})] \\ &\Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=2-(\mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}})) \end{aligned}$Now we know,
$\begin{aligned} &\frac{5}{9}=2-(\mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}}))-\frac{1}{3} \\ &\Rightarrow \mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}})=2-\frac{5}{9}-\frac{1}{3} \\ &\Rightarrow \mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}})=\frac{18-5-3}{9}=\frac{10}{9} \\ &\Rightarrow \mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}})=\frac{10}{9} \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 4.
Answer: $\frac{1}{3}$Given:If A and B are thoo events such that
$P(A)=P,$$P(B)=\frac{1}{3}$ and
$P(A\cup B)=\frac{5}{9}$Then p=………..
Hint:Use
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Explanation:$\begin{aligned} &P(A)=p \\ &P(B)=\frac{1}{3} \\ &P\left(\frac{A}{B}\right)=P \text { and } \\ &P(A \cup B)=\frac{5}{9} \\ &\therefore P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}=p \end{aligned}$$\begin{aligned} &\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{\mathrm{p}}{3} \\ &\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ &\frac{5}{9}=\mathrm{p}+\frac{1}{3}-\frac{\mathrm{P}}{3} \end{aligned}$And
$\begin{aligned} &\frac{5}{9}-\frac{1}{3}=\frac{2 p}{3} \\ &p=\frac{2}{9} \times \frac{3}{2}=\frac{1}{3} \end{aligned}$$p =\frac{1}{3}$Probability Exercise Fill in the Blanks Question, Question 5.
Answer: Independent
Given:Let A and B lee ther everts.
If
$P\left (\frac{A}{B} \right )=P(A)$,
Then A is … of B
Hint:Using
$P\left(\frac{A}{B}\right)=P(A)$Explanation:Let A and B le two events.
$\begin{aligned} &\therefore \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ &\Rightarrow \mathrm{P}(\mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ &\Rightarrow \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \end{aligned}$So, A is independent of B.
Probability Exercise Fill in the Blanks Question, Question 6.
Answer: $P(A\cup B)$Given:Let A and B lu two events. Fof such that
$PA\neq 0,$$P(B)\neq 1$ and
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{1-\mathrm{K}}{\mathrm{P}(\overline{\mathrm{B}})^{\prime}}$Then k=….
Hint:$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Explanation:Let A and B are two events
$P\left(\frac{\bar{A}}{\bar{B}}\right)=\frac{P(\bar{A} \cap \bar{B})}{P(\bar{B})}$$=\frac{\mathrm{P}(\mathrm{AUB})}{\mathrm{P}(\mathrm{B})}=\frac{1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})}{\mathrm{P}(\mathrm{B})}-$But
$P\left(\frac{\overline{\mathrm{A}}}{\overline{\mathrm{B}}}\right)=\frac{1-\mathrm{K}}{\mathrm{P}(\overline{\mathrm{B}})}-(2)$Comparing (1) and (2)
$K=P(A\cup B)$Probability Exercise Fill in the Blanks Question, Question 7.
Answer: 0
Given:If two events A and B are mutually exclusive, then
PAB=………… -
Hint:You must know about mutually exclusive events
Explanation:We know
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}-(1)$For mutually exclusive events,
$P(A\cap B)=0$Put in
$(1) P\left (\frac{A}{B} \right )=\frac{O}{P(B)}=0$$\Rightarrow P\left (\frac{A}{B} \right )=0$Probability Exercise Fill in the Blanks Question, Question 8.
Answer: 1
Given:If A and B are tho enends such that
$A\subseteqq B$, then
$P\left ( \frac{A}{B} \right )=....$Hint:Using
$P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}$Explanation:Wit A and B ane two evends.
We are given
$A\subseteqq B$$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})$We know ,
$\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}$But ,
$\begin{aligned} &\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \\ &\therefore \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{\mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{A})}=1 \\ &\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=1 \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 9.
Answer: $\frac{2}{5}$Given:If
$\begin{aligned} 4 \mathrm{P}(\mathrm{A}) &=6 \mathrm{P}(\mathrm{B}) \\ &=10 \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ &=1 \end{aligned}$Then
$P\left (\frac{A}{B} \right )=...$Hint:$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Explanation:$\begin{aligned} &4 \mathrm{P}(\mathrm{A})=10 \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ &\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=\frac{4}{10} \\ &\Rightarrow \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{4}{10} \\ &=\frac{2}{5} \\ &\Rightarrow \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{2}{5} \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 11.
Answer: $P(A\cap B)=P(A)-P(A\cap B)$Given:If A and B are turo events, then the probability of occurrence of A only is equal to ...
Hint:Using
$P(A\cap B)=P(A)-P(A\cap B)$Explanation:Let A and B are two events.
Then P (Only A occurs)
$=P(A\cap B)$$=P(A)-P(A\cap B)$Probability Exercise Fill in the Blanks Question, Question 12.
Answer: $P(A)+P(B)-2P(A\cap B)$Given:If A and B are two everts, then the provability of occurrence of exactly one of A and B is equal to ...
Hint:$P(A\cap B)=P(A)-P(A\cap B)$Explanation:Exactly one of the events of ε;A and B is represented by
$A\cap B+A\cap B$Hence ,
$\begin{aligned} \mathrm{P}(A \cap \bar{B})+P(\bar{A} \cap B) &=[P(A)-P(A \cap B)]+[P(B)-P(A \cap B)] \\ &=P(A)+P(B)-2 P(A \cap B) \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 13.
Answer: Independent
Given:For two event A and B, If
$P\left (A \right )=P\left (\frac{A}{B} \right ) =\frac{1}{4}$and
$P\left (\frac{B}{A} \right )=\frac{1}{2}$then A and B are …... events.
Hint:$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Explanation:Let A and B are two wents.
Also
$\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=(*)$We know.
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Put in (*)
$\begin{aligned} &P(A)=\frac{P(A \cap B)}{P(B)} \\ &\Rightarrow P(A \cap B)=P(A) P(B) \end{aligned}$$\therefore$ A and B, are independent events.
Probability Exercise Fill in the Blanks Question, Question 14.
Answer: b - c
Given:Let A and B be the two events for which
$P\left (A \right )=a,$$P(B)=b,$$P(A\cap B)=C$, Then
$P(A\cap B)=......$Hint:Using
$P(\bar{A} \cap B)=P(B)-P(A \cap B)$Explanation:Here
$P\left (A \right )=a,$$P(B)=b,$$P(A\cap B)=C$,
We know,
$\begin{aligned} \mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B}) &=\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ &=\mathrm{b}-\mathrm{C} \end{aligned}$Probability Exercise Fill in the Blanks Question, Question 15.
Answer: $P(A)+P(B)$Given:Ret A
1B,C be pair wise independent events with P(C)>0
and
$P(A\cap B\cap C)=0$. If
$P\left(\frac{A \cap B}{C}\right)=1-x$, then x=…
Hint:
Using
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$Explanation:
Let A,B,C be pair wise independent events.
$\begin{aligned} &\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{C}) \\ &\mathrm{P}(\mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C})-(*) \end{aligned}$GivenSo
$P(A\cap B\cap C)=0$$\begin{aligned} &\mathrm{P}(\bar{A} \cap \overline{\mathrm{B}} \cap \mathrm{C})=0 \\ &P\left(\frac{\overline{\mathrm{A}} \overline{\mathrm{B}}}{\mathrm{C}}\right)=\frac{\mathrm{P}[(\overline{\mathrm{A}} \cap \overline{\mathrm{B}}) \cap \mathrm{C}]}{\mathrm{P}(\mathrm{C})} \\ &=\frac{\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{C})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})} \\ &=\frac{\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})+0}{\mathrm{P}(\mathrm{C})} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad[\because \text { Of }(*)] \end{aligned}$$\begin{aligned} &=\frac{P(C) \times[1-P(A)-P(B)]}{P(C)} \\ &=1-P(A)-P(B) \\ &=1-[P(A)+P(B)]-(1) \end{aligned}$Also,
$\mathrm{P}\left(\frac{\mathrm{A} \cap \mathrm{B}}{\mathrm{c}}\right)=1-\mathrm{x}-(2)$From (1) and (2),
We get
$x=P(A)+P(B)$Probability Exercise Fill in the Blanks Question, Question 16.
Answer : $\frac{ x+y+z}{2}$Given:Let A,B,C bo there events such that
$P(A\cap B\cap C)=0$P(Exactly one of A and B occurs) =x,
P (Exactly one of B and C occurs) =y
P (Exactly one of A and C occurs )=z.
Then
$P(A\cup B\cup C)= ................$Hint:Using the formula of
$P(A\cup B\cup C)$Explanation:$\begin{aligned} &\mathrm{P}(\mathrm{A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{x} \\ &\mathrm{P}(\mathrm{B} \text { or } \mathrm{C})=\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{y} \\ &\mathrm{P}(\mathrm{A} \text { or } \mathrm{C})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{C})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{C})=2 \end{aligned}$Adding these three we get,
$\begin{aligned} &2 \mathrm{P}(\mathrm{A})+2 \mathrm{P}(\mathrm{B})+2 \mathrm{P}(\mathrm{C})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{B})-2 \mathrm{P}(\mathrm{B} \cap \mathrm{C})-2 \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\mathrm{x}+\mathrm{y}+\mathrm{z} \\ &\Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{2}-(1) \end{aligned}$We know,
$\begin{aligned} &P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A) \\ &+P(A \cap B \cap C) \\ &\Rightarrow P(A \cup B \cup C)=\frac{x+y+2}{2}+P(A \cap B \cap C) \: \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad[\because \text { of }(1)] \end{aligned}$But
$P(A\cap B\cap C)=0$$\therefore P(A \cup B \cup C)=\frac{x+y+2}{2}+0=\frac{x+y+z}{2}$Probability Exercise Fill in the Blanks Question, Question 17
Answer: 0
Given:If A and B are two events
then, P (exactly one of A and B occurs )=…
Hint:$P(A or B)=P(A)+P(B)-2P(A\cap B)$Explanation:$\begin{aligned} &P(A \cup B)=P(A \cap B) \\ &\Rightarrow P(A)+P(B)-P(A \cap B)=P(A \cap B) \\ &\Rightarrow P(A)+P(B)-2 P(A \cap B)=0 \end{aligned}$Also P( exactly one of A and B occurs) = P( A or B)
$\begin{aligned} \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) &=2(\mathrm{P}(\mathrm{A} \cap \mathrm{B})) \\ &=0 \end{aligned}$ $[\because of (1)]$Students can view the Rd Sharma Class 12th Exercise FBQ online for free by visiting the website. This particular exercise has 17 questions. The concept discussed here is Independent Events, Mutually exclusive, conditional probability, Union and intersection, Bayes theorem, Random variable, Bernoulli Trials, Binomial Distribution, equivalence between the axiomatic theory and the classical theory of Probability in the case of common likely results. Based on this relationship, we get chances of events associated with discrete sample spaces.
The solved examples and exercise problems in Rd Sharma Class 12 Chapter 30 Exercise FBQ will aid in our understanding of the total probability theorem and Bayes theorem covered in the final exercises. RD Sharma solution Therefore, a student must use Class 12th RD Sharma Chapter 30 Exercise FBQ Solutions for the chapter "Probability" to practice and understand these concepts in a structured manner.
The benefits of studying from these solutions are:
The solved examples and exercise problems in Rd Sharma Class 12 Chapter 30 Exercise FBQ will aid in our understanding of the total probability theorem and Bayes theorem covered in the final exercises. Therefore, a student must use Class 12th RD Sharma Chapter 30 Exercise FBQ Solutions for the chapter "Probability" to practice and understand these concepts in a structured manner.
The benefits of studying from these solutions are:
Crafted by experts:
RD Sharma Class 12 Solutions Probability Ex. FBQ solutions are crafted by experts who take care of NCERT and CBSE guidelines and format the solutions accordingly. The subject experts give the answers in the most accurate way possible.
The best material for revision:
These solutions assist students in quickly grasping concepts and improving their problem-solving abilities. In addition, the RD Sharma Class 12th Solutions Chapter 30 ex FBQ helps students achieve high marks in their board exams due to less time consumed in textbooks.
NCERT based questions:
Rd Sharma Class 12th Exercise FBQ solutions are based on the teacher's thoughts. Our experts are aware of a teacher's mind. They know that teachers set questions from NCERT books, and thus they create solutions from NCERT.
No wastage of time
When a student refers to these solutions, it is evident that it will take less time than a textbook. Rd Sharma Class 12th Exercise FBQ solutions save a lot of time and thus are an ideal choice for everyone.
Easy language
These solutions have straightforward language and are illustrated with examples to teach each point in a very effective manner. As a result, students who are unfamiliar with the chapter can use this material from the start to gain a thorough understanding.
It is completely free.
Career360 offers the entire solution free of charge to students. RD Sharma Class 12th Exercise FBQ can assist you in studying for your exams. Thousands of students have already signed up to join the team, and you should do the same.