RD Sharma Class 12 Exercise 4.5 Algebra of Matrices Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 4.5 Algebra of Matrices Solutions Maths - Download PDF Free Online

Kuldeep MauryaUpdated on 20 Jan 2022, 01:58 PM IST

Students in class 12 have a vast syllabus when it comes to mathematics. This is why students are recommended to use RD Sharma class 12th exercise 4.5 solutions to practice at home and improve their performance on the subject. The 4th chapter of the Mathematics Textbook has Algebra of Matrices, which talks about types of Matrices like skew-symmetric matrix and symmetric matrix, which are used in various Algebra calculations. RD Sharma Solutions The exercise in the book and in the RD Sharma class 12 chapter 4 exercise 4.5 solutions contain ten questions based on the chapter.

RD Sharma Class 12 Solutions Chapter 4 Algebra of Matrices - Other Exercise

Answer:$A - A^{T}$ is a skew-symmetric matrix.
Hint: Matrix$B$ is said to be skew-symmetric if transpose of matrix $A$ is equal to negative of matrix $A$ i.e $(B^{T} = -B)$
Find AT and prove that $(A -A^{T}) = - (A - A^{T})$
Given:$A =\begin{bmatrix} 2 &3 \\ 4& 5 \end{bmatrix}$
Solution:
$A^T= \begin{bmatrix} 2 & 4\\ 3 &5 \end{bmatrix}$
$A - A^{T} = \begin{bmatrix} 2 &3 \\ 4& 5 \end{bmatrix}-\begin{bmatrix} 2 &4 \\ 3& 5 \end{bmatrix}$
$= \begin{bmatrix} 0 &-1 \\ 1& 0 \end{bmatrix}$
$= B$
$B^{T} = \begin{bmatrix} 0 &1 \\ -1 &0 \end{bmatrix}$
$-B^{T} = \begin{bmatrix} 0 &-1 \\ 1 &0 \end{bmatrix}$
$- B^{T}= B$
Hence,
$B$ is a skew-symmetric matrix.

Algebra of Matrices Exercise 4.5- Question:2

Answer:$A - A^{T}$ is a skew-symmetric matrix.
Hint: Matrix$B$ is said to be skew-symmetric if transpose of matrix $A$ is equal to negative of matrix $A$ i.e $(B^{T} = -B)$
Prove that : $(A - A^{T}) = - (A - A^{T})$
Given:
$A=\begin{bmatrix} 3 &-4 \\ 1 & 1 \end{bmatrix}$
Solution:
$A^{T}=\begin{bmatrix} 3 &1 \\ -4 & 1 \end{bmatrix}$
$A - A^{T} =\begin{bmatrix} 3 &-4 \\ 1& 1 \end{bmatrix} - \begin{bmatrix} 3& 1\\ -4 &1 \end{bmatrix}$
$=\begin{bmatrix} 0 & -5\\ 5& 0 \end{bmatrix}$
$= B$
$B^{T} =\begin{bmatrix} 0 &5 \\ -5& 0 \end{bmatrix}$
$-B^{T} =\begin{bmatrix} 0 &-5 \\ 5& 0 \end{bmatrix}$
$- B^{T} = B$
Hence,
$B$ is a skew-symmetric matrix.

Question:3

Algebra of Matrices Exercise 4.5

Answer: $x = 4, y = 2, z\: \epsilon \: c, t = -3$
Hint: If $A$ is symmetric matrix, then $A = A^{T}$
Given:$A = \begin{bmatrix} 5 &2 &x \\ y& z &-3 \\ 4& t &-7 \end{bmatrix}$
Solution:
$A^{T} = \begin{bmatrix} 5 &y &4 \\ 2& z &t \\ x& -3 &-7 \end{bmatrix}$
We know that, $A = A^{T}$
$\Rightarrow \begin{bmatrix} 5 &2 & x\\ y &z &-3 \\ 4& t &-7 \end{bmatrix}= \begin{bmatrix} 5 & y &4 \\ 2 &z & t\\ x& -3 &-7 \end{bmatrix}$
Hence, we get
$x = 4, y = 2, z = z, t = - 3$
$x = 4, y = 2, z\: \epsilon \: c, t = - 3$

Question:4

Algebra of Matrices Exercise 4.5

Answer:
$X =\begin{bmatrix} 3 &\frac{3}{2} &\frac{5}{2} \\\\ \frac{3}{2} &4 & 4\\ \\\frac{5}{2} & 4 & 8 \end{bmatrix} and$$Y = \left [ 0 \frac{1}{2} \frac{9}{2} \frac{-1}{2} 0 -1 \frac{-9}{2} 1 0 \right ]$
Hint: Find $X =\frac{1}{2} (A + A^{T}) and \: Y=\frac{1}{2} (A - A^{T})$
Given:$A = \begin{bmatrix} 3 &2 &7 \\ 1 &4 &3 \\ -2 &5 &8 \end{bmatrix}$
Solution:
$Step - 1\rightarrow A =\begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 & 5 &8 \end{bmatrix} and AT =\begin{bmatrix} 3& 1 &-2 \\ 2 &4 &5 \\ 7& 3 &8 \end{bmatrix}$$\rightarrow A =\begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 & 5 &8 \end{bmatrix} and AT =\begin{bmatrix} 3& 1 &-2 \\ 2 &4 &5 \\ 7& 3 &8 \end{bmatrix}$
$Step - 2\rightarrow (A + A^{T}) = \left [ 6\, 3\, 5\, 3\, 8\, 8 \,5\,8 \,16 \right ]$
$Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 &1 &9 \\ -1& 0 & -2\\ -9& 2 &0 \end{bmatrix}$
$Step - 4 \rightarrow X= (A + A^{T}) = \left [ 3\,\frac{3}{2}\,\frac{5}{2}\,\frac{3}{2}\,4\,4\,\frac{5}{2}\,4\,8 \right ]$
$Y =\frac{1}{2} (A - A^{T})= \begin{bmatrix} 0 &\frac{1}{2} &\frac{9}{2} \\ \\ \frac{-1}{2} & 0 & -1\\ \\ \frac{-9}{2} &1 & 0 \end{bmatrix}$
$Step - 5\rightarrow X^{T} =\begin{bmatrix} 3 &\frac{3}{2} &\frac{5}{2} \\ \frac{3}{2} & 4 & 4\\ \frac{5}{2} &4 & 8 \end{bmatrix}= X and \, Y^{T} =\left [ 0 \frac{1}{2} \frac{9}{2} \frac{-1}{2} 0 -1 \frac{-9}{2} 1 0 \right ]= -Y$

$X$ is symmetric and $Y$ is skew-symmetric. Also, $X + Y = A.$
$\left [ 3\, \frac{3}{2}\, \frac{5}{2}\, \frac{3}{2}\, 4\, 4\, \frac{5}{2} \,4\, 8 \right ] + \left [ 0\, \frac{1}{2} \,\frac{9}{2}\, \frac{-1}{2} -1\, \frac{-9}{2}\, 1\, 0 \right ] = \begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 &5 &8 \end{bmatrix}$
Thus, $A$ is expressed as a sum of symmetric and skew symmetric matrix.

Question:5

Algebra of Matrices Exercise 4.5

Answer:

Answer: Symmetric matrix $= \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}$ and Skew-symmetric matrix $= \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}$
Hint: Find$P= \frac{1}{2} (A + A^{T}) and\: Q= \frac{1}{2}(A - A^{T})$
Given:$A = \begin{bmatrix} 4 & 2 &-1 \\ 3 &5 &7 \\ 1 &-2 &1 \end{bmatrix}$
Solution:
$Step - 1\rightarrow A\begin{bmatrix} 4 & 2&-1 \\ 3& 5& 7\\ 1&-2 & 1 \end{bmatrix} = and\: AT^{T}=\begin{bmatrix} 4 & 3 & 1\\ 2 &5 & -2\\ -1& 7 &1 \end{bmatrix}$
$Step - 2\rightarrow (A + A^{T}) = \left [ 8\, 5\, 0\, 5\, 10\, 5\, 0\, 5\, 2 \right ]$
$Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 &-1 &-2 \\ 1 &0 &9 \\ 2& -9 &0 \end{bmatrix}$
$Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) = \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}$
$Q =\frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}$
$Step - 5\rightarrow P^{T} = \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}= P \: and \: Q^{T} = \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}= -Q$

Now,$P+ Q = A$ where $P$ is symmetric and $Q$is skew-symmetric.
$\begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}$$+ \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}$$= \begin{bmatrix} 4 & 2 &-1 \\ 3 &5 &7 \\ 1 &-2 &1 \end{bmatrix}$
Thus,$A$ is expressed as a sum of symmetric and skew symmetric matrix.

Question:6

Algebra of Matrices Exercise 4.5

Answer:$A + A^{T}$is a symmetric matrix.
Hint: Find$A + A^{T}$and prove that$(A + A^{T}) = (A + A^{T})^{T}$
Given:$A = \begin{bmatrix} 2 &4 \\ 5 &6 \end{bmatrix}$
Solution:$A.$ is a symmetric matrix if and only if$A + A^{T}$ where AT is the transpose of matrix $A.$
$AT = ^{T}= \begin{bmatrix} 2 &5 \\ 4 &6 \end{bmatrix}$
$A + A^{T} =\begin{bmatrix} 2 &4 \\ 5& 6 \end{bmatrix} + \begin{bmatrix} 2 & 5\\ 4& 6 \end{bmatrix}$
$= \begin{bmatrix} 4 &9 \\ 9& 12 \end{bmatrix}$
$(A + A^{T})^{T} =\begin{bmatrix} 4 &9 \\ 9 &12 \end{bmatrix}= A + A^{T}$
Hence,
$A + A^{T}$ is a symmetric matrix.

Question:6

Algebra of Matrices Exercise 4.5

Answer:$A + A^{T}$is a symmetric matrix.
Hint: Find$A + A^{T}$and prove that$(A + A^{T}) = (A + A^{T})^{T}$
Given:$A = \begin{bmatrix} 2 &4 \\ 5 &6 \end{bmatrix}$
Solution:$A.$ is a symmetric matrix if and only if$A + A^{T}$ where AT is the transpose of matrix $A.$
$AT = ^{T}= \begin{bmatrix} 2 &5 \\ 4 &6 \end{bmatrix}$
$A + A^{T} =\begin{bmatrix} 2 &4 \\ 5& 6 \end{bmatrix} + \begin{bmatrix} 2 & 5\\ 4& 6 \end{bmatrix}$
$= \begin{bmatrix} 4 &9 \\ 9& 12 \end{bmatrix}$
$(A + A^{T})^{T} =\begin{bmatrix} 4 &9 \\ 9 &12 \end{bmatrix}= A + A^{T}$
Hence,
$A + A^{T}$ is a symmetric matrix.

Question:7

Algebra of Matrices Exercise 4.5

Answer: Symmetric matrix $\begin{bmatrix} 3 &\frac{-3}{2} \\ \frac{-3}{2} & -1 \end{bmatrix}$ and Skew-symmetric matrix $=\begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2} & 0 \end{bmatrix}$
Hint: Find$P= \frac{1}{2} (A + A^{T}) and\: Q=\frac{1}{2} (A - A^{T})$
Given:$A = \begin{bmatrix} 3 &-4 \\ 1 & -1 \end{bmatrix}$
Solution:
$Step - 1\rightarrow A^{T} =\begin{bmatrix} 3 &1 \\ -4 &-1 \end{bmatrix}$
$Step - 2\rightarrow (A + A^{T}) = \begin{bmatrix} 6 &-3 \\ -3& -2 \end{bmatrix}$
$Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 & -5\\ 5& 0 \end{bmatrix}$
$Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) = \begin{bmatrix} 3 & \frac{-3}{2}\\ \frac{-3}{2} & -1 \end{bmatrix}$
$Q = \frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2}& 0 \end{bmatrix}$
$Step - 5\rightarrow P^{T} =\begin{bmatrix} 3 & \frac{-3}{2}\\ \frac{-3}{2}& -1 \end{bmatrix} = P \: and\: Q^{T} = \begin{bmatrix} 0 &\frac{5}{2} \\ \frac{-5}{2}& 0 \end{bmatrix}= -Q$
Now, $P+ Q = A$ where$P$ is symmetric and $Q$ is skew-symmetric.
$\begin{bmatrix} 3 &\frac{-3}{2} \\ \frac{-3}{2} & -1 \end{bmatrix}$$+\begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2} & 0 \end{bmatrix}$$=\begin{bmatrix} 3 &-4\\ \1 & -1\end{bmatrix}$
Thus, $A$is expressed as a sum of symmetric and skew symmetric matrix

Question:8

Algebra of Matrices Exercise 4.5

Answer: Symmetric matrix $= \begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} & -2 &-2 \end{bmatrix}$ and Skew-symmetric matrix $= \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}$
Hint: Find $P= \frac{1}{2} (A + A^{T}) and \: Q=\frac{1}{2} (A - A^{T})$
Given:$A = \begin{bmatrix} 3 &-2 &-4 \\ 3& -2 &-5 \\ -1 &1 & 2 \end{bmatrix}$
Solution:
$Step - 1\rightarrow A^{T} = \begin{bmatrix} 3 &3 &-1 \\ -2& -2 &1 \\ -4 &-5 & 2 \end{bmatrix}$
$Step - 2\rightarrow (A + A^{T}) = \begin{bmatrix} 6 &-1 &-5 \\ 1& -4 & -4\\ -5& -4 &4 \end{bmatrix}$
$Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 & -5 & -3\\ 5 &0 &-6 \\ 3& 6 & 0 \end{bmatrix}$
$Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) =\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} & -2 &-2 \\ \frac{-5}{2} & -2 &2 \end{bmatrix}$
$Q =\frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-5}{2} & \frac{-3}{2}\\ \frac{5}{2} & 0 & -3\\ \frac{3}{2} &3 &0 \end{bmatrix}$
$Step-5\rightarrow P^{T}=\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} &-2 &2 \end{bmatrix}= P\: and\: Q^{T} = \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}= -Q$
Verify:$P+ Q = A$ where$P$ is symmetric and $Q$ is skew-symmetric.
$\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} & -2 &-2 \end{bmatrix}$$+ \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}$$=\begin{bmatrix} 3 & -2 & -4\\ 3 &-2 &-5 \\ -1& 1 &2 \end{bmatrix}$
Thus, $A$ is expressed as a sum of the symmetric and skew-symmetric matrix

Question:9

Algebra of Matrices Exercise 4.5

Answer:$A + A^{T}$ is a symmetric matrix.
Hint: Find$A + A^{T}$and prove that $(A + A^{T}) = (A + A^{T})^{T}$
Given:$A = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}$
Solution: $A$ is a symmetric matrix if and only if $A + A^{T}$ where $A^{T}$ is the transpose of the matrix $A$
$A^{T} = \begin{bmatrix} 2 & 5\\ 3 &7 \end{bmatrix}$
$A + A^{T} = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}+\begin{bmatrix} 2 & 5\\ 3& 7 \end{bmatrix}$
$= \begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix}$
$(A + A^{T})^{T} =\begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix} = A + A^{T}$
Hence,
$A + A^{T}$is a symmetric matrix.

Question:10

Algebra of Matrices Exercise 4.5.

Answer:$5$
Hint:$A$ is symmetric matrix $A = A^{T}$
Given:$A=\begin{bmatrix} 4 & x+2\\ 2x-3& x+1 \end{bmatrix}$
Solution:
$A^{T}=\begin{bmatrix} 4 & 2x-3\\ x+2& x+1 \end{bmatrix}$
$A = A^{T}$
$\begin{bmatrix} 4 & x+2\\ 2x-3 & x+1 \end{bmatrix}= \begin{bmatrix} 4 & 2x-3\\ x+2& x+1 \end{bmatrix}$
$2x - 3 = x + 2$
$x = 5$

Everyone knows that RD Sharma class 12 chapter 4 exercise 4.5 is a popular choice of students who have already passed their board exams with flying colors. Students and teachers both praise and recommend the class 12 RD Sharma chapter 4 exercise 4.5 solution book so that aspiring students can experience the magic of using RD solutions for themselves.

Here is a list of reasons why students and teachers all over India highly recommend the class 12 RD Sharma chapter 4 exercise 4.5 solution book:-

  • Students who have already appeared for their board exams have found common questions from the book in their maths papers. This helped them solve those problems quickly and easily.

  • RD Sharma class 12 solutions chapter 4 ex 4.5 can be great for self-study, especially when exams are upcoming.

  • Maths requires self-practice for improvement. The RD Sharma class 12 solutions chapter 4 ex 4.5 books will help students check their own answers and mark their performance at home. You will even find common questions from the book in your exam papers.

  • School homework can be solved at home quickly and effectively when you use RD Sharma class 12 solutions chapter 4 ex 4.5 at home.

  • The RD Sharma class 12 solutions Algebra of Matrices ex 4.5 has answers created by experts from the education sector. Moreover, you will find a lot of new methods that will help you solve math problems quickly.

  • The class 12 RD Sharma chapter 4 exercise 4.5 solution book is updated regularly so that the answers in the book correspond to the questions in the NCERT textbooks. You can easily download RD Sharma class 12th exercise 4.5 pdf online from Career360 for free.

Chapter-wise RD Sharma Class 12 Solutions

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 21 Oct'25 (Online)