RD Sharma Class 12 Exercise 4.5 Algebra of Matrices Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 4.5 Algebra of Matrices Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 20, 2022 01:58 PM IST

Students in class 12 have a vast syllabus when it comes to mathematics. This is why students are recommended to use RD Sharma class 12th exercise 4.5 solutions to practice at home and improve their performance on the subject. The 4th chapter of the Mathematics Textbook has Algebra of Matrices, which talks about types of Matrices like skew-symmetric matrix and symmetric matrix, which are used in various Algebra calculations. RD Sharma Solutions The exercise in the book and in the RD Sharma class 12 chapter 4 exercise 4.5 solutions contain ten questions based on the chapter.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 4 Algebra of Matrices - Other Exercise

Answer:A - A^{T} is a skew-symmetric matrix.
Hint: MatrixB is said to be skew-symmetric if transpose of matrix A is equal to negative of matrix A i.e (B^{T} = -B)
Find AT and prove that (A -A^{T}) = - (A - A^{T})
Given:A =\begin{bmatrix} 2 &3 \\ 4& 5 \end{bmatrix}
Solution:
A^T= \begin{bmatrix} 2 & 4\\ 3 &5 \end{bmatrix}
A - A^{T} = \begin{bmatrix} 2 &3 \\ 4& 5 \end{bmatrix}-\begin{bmatrix} 2 &4 \\ 3& 5 \end{bmatrix}
= \begin{bmatrix} 0 &-1 \\ 1& 0 \end{bmatrix}
= B
B^{T} = \begin{bmatrix} 0 &1 \\ -1 &0 \end{bmatrix}
-B^{T} = \begin{bmatrix} 0 &-1 \\ 1 &0 \end{bmatrix}
- B^{T}= B
Hence,
B is a skew-symmetric matrix.

Algebra of Matrices Exercise 4.5- Question:2

Answer:A - A^{T} is a skew-symmetric matrix.
Hint: MatrixB is said to be skew-symmetric if transpose of matrix A is equal to negative of matrix A i.e (B^{T} = -B)
Prove that : (A - A^{T}) = - (A - A^{T})
Given:
A=\begin{bmatrix} 3 &-4 \\ 1 & 1 \end{bmatrix}
Solution:
A^{T}=\begin{bmatrix} 3 &1 \\ -4 & 1 \end{bmatrix}
A - A^{T} =\begin{bmatrix} 3 &-4 \\ 1& 1 \end{bmatrix} - \begin{bmatrix} 3& 1\\ -4 &1 \end{bmatrix}
=\begin{bmatrix} 0 & -5\\ 5& 0 \end{bmatrix}
= B
B^{T} =\begin{bmatrix} 0 &5 \\ -5& 0 \end{bmatrix}
-B^{T} =\begin{bmatrix} 0 &-5 \\ 5& 0 \end{bmatrix}
- B^{T} = B
Hence,
B is a skew-symmetric matrix.

Question:3

Algebra of Matrices Exercise 4.5

Answer: x = 4, y = 2, z\: \epsilon \: c, t = -3
Hint: If A is symmetric matrix, then A = A^{T}
Given:A = \begin{bmatrix} 5 &2 &x \\ y& z &-3 \\ 4& t &-7 \end{bmatrix}
Solution:
A^{T} = \begin{bmatrix} 5 &y &4 \\ 2& z &t \\ x& -3 &-7 \end{bmatrix}
We know that, A = A^{T}
\Rightarrow \begin{bmatrix} 5 &2 & x\\ y &z &-3 \\ 4& t &-7 \end{bmatrix}= \begin{bmatrix} 5 & y &4 \\ 2 &z & t\\ x& -3 &-7 \end{bmatrix}
Hence, we get
x = 4, y = 2, z = z, t = - 3
x = 4, y = 2, z\: \epsilon \: c, t = - 3

Question:4

Algebra of Matrices Exercise 4.5

Answer:
X =\begin{bmatrix} 3 &\frac{3}{2} &\frac{5}{2} \\\\ \frac{3}{2} &4 & 4\\ \\\frac{5}{2} & 4 & 8 \end{bmatrix} andY = \left [ 0 \frac{1}{2} \frac{9}{2} \frac{-1}{2} 0 -1 \frac{-9}{2} 1 0 \right ]
Hint: Find X =\frac{1}{2} (A + A^{T}) and \: Y=\frac{1}{2} (A - A^{T})
Given:A = \begin{bmatrix} 3 &2 &7 \\ 1 &4 &3 \\ -2 &5 &8 \end{bmatrix}
Solution:
Step - 1\rightarrow A =\begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 & 5 &8 \end{bmatrix} and AT =\begin{bmatrix} 3& 1 &-2 \\ 2 &4 &5 \\ 7& 3 &8 \end{bmatrix}\rightarrow A =\begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 & 5 &8 \end{bmatrix} and AT =\begin{bmatrix} 3& 1 &-2 \\ 2 &4 &5 \\ 7& 3 &8 \end{bmatrix}
Step - 2\rightarrow (A + A^{T}) = \left [ 6\, 3\, 5\, 3\, 8\, 8 \,5\,8 \,16 \right ]
Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 &1 &9 \\ -1& 0 & -2\\ -9& 2 &0 \end{bmatrix}
Step - 4 \rightarrow X= (A + A^{T}) = \left [ 3\,\frac{3}{2}\,\frac{5}{2}\,\frac{3}{2}\,4\,4\,\frac{5}{2}\,4\,8 \right ]
Y =\frac{1}{2} (A - A^{T})= \begin{bmatrix} 0 &\frac{1}{2} &\frac{9}{2} \\ \\ \frac{-1}{2} & 0 & -1\\ \\ \frac{-9}{2} &1 & 0 \end{bmatrix}
Step - 5\rightarrow X^{T} =\begin{bmatrix} 3 &\frac{3}{2} &\frac{5}{2} \\ \frac{3}{2} & 4 & 4\\ \frac{5}{2} &4 & 8 \end{bmatrix}= X and \, Y^{T} =\left [ 0 \frac{1}{2} \frac{9}{2} \frac{-1}{2} 0 -1 \frac{-9}{2} 1 0 \right ]= -Y

X is symmetric and Y is skew-symmetric. Also, X + Y = A.
\left [ 3\, \frac{3}{2}\, \frac{5}{2}\, \frac{3}{2}\, 4\, 4\, \frac{5}{2} \,4\, 8 \right ] + \left [ 0\, \frac{1}{2} \,\frac{9}{2}\, \frac{-1}{2} -1\, \frac{-9}{2}\, 1\, 0 \right ] = \begin{bmatrix} 3 &2 &7 \\ 1& 4 &3 \\ -2 &5 &8 \end{bmatrix}
Thus, A is expressed as a sum of symmetric and skew symmetric matrix.

Question:5

Algebra of Matrices Exercise 4.5

Answer:

Answer: Symmetric matrix = \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix} and Skew-symmetric matrix = \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}
Hint: FindP= \frac{1}{2} (A + A^{T}) and\: Q= \frac{1}{2}(A - A^{T})
Given:A = \begin{bmatrix} 4 & 2 &-1 \\ 3 &5 &7 \\ 1 &-2 &1 \end{bmatrix}
Solution:
Step - 1\rightarrow A\begin{bmatrix} 4 & 2&-1 \\ 3& 5& 7\\ 1&-2 & 1 \end{bmatrix} = and\: AT^{T}=\begin{bmatrix} 4 & 3 & 1\\ 2 &5 & -2\\ -1& 7 &1 \end{bmatrix}
Step - 2\rightarrow (A + A^{T}) = \left [ 8\, 5\, 0\, 5\, 10\, 5\, 0\, 5\, 2 \right ]
Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 &-1 &-2 \\ 1 &0 &9 \\ 2& -9 &0 \end{bmatrix}
Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) = \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}
Q =\frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}
Step - 5\rightarrow P^{T} = \begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}= P \: and \: Q^{T} = \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}= -Q

Now,P+ Q = A where P is symmetric and Qis skew-symmetric.
\begin{bmatrix} 4 &\frac{5}{2} &0 \\ \\ \frac{5}{2} & 5 &\frac{5}{2} \\ \\ 0 & \frac{5}{2} & 1 \end{bmatrix}+ \begin{bmatrix} 0 &\frac{-1}{2} &-1 \\ \\ \frac{1}{2} & 0 &\frac{9}{2} \\ \\ 1 & \frac{-9}{2} & 0 \end{bmatrix}= \begin{bmatrix} 4 & 2 &-1 \\ 3 &5 &7 \\ 1 &-2 &1 \end{bmatrix}
Thus,A is expressed as a sum of symmetric and skew symmetric matrix.

Question:6

Algebra of Matrices Exercise 4.5

Answer:A + A^{T}is a symmetric matrix.
Hint: FindA + A^{T}and prove that(A + A^{T}) = (A + A^{T})^{T}
Given:A = \begin{bmatrix} 2 &4 \\ 5 &6 \end{bmatrix}
Solution:A. is a symmetric matrix if and only ifA + A^{T} where AT is the transpose of matrix A.
AT = ^{T}= \begin{bmatrix} 2 &5 \\ 4 &6 \end{bmatrix}
A + A^{T} =\begin{bmatrix} 2 &4 \\ 5& 6 \end{bmatrix} + \begin{bmatrix} 2 & 5\\ 4& 6 \end{bmatrix}
= \begin{bmatrix} 4 &9 \\ 9& 12 \end{bmatrix}
(A + A^{T})^{T} =\begin{bmatrix} 4 &9 \\ 9 &12 \end{bmatrix}= A + A^{T}
Hence,
A + A^{T} is a symmetric matrix.

Question:6

Algebra of Matrices Exercise 4.5

Answer:A + A^{T}is a symmetric matrix.
Hint: FindA + A^{T}and prove that(A + A^{T}) = (A + A^{T})^{T}
Given:A = \begin{bmatrix} 2 &4 \\ 5 &6 \end{bmatrix}
Solution:A. is a symmetric matrix if and only ifA + A^{T} where AT is the transpose of matrix A.
AT = ^{T}= \begin{bmatrix} 2 &5 \\ 4 &6 \end{bmatrix}
A + A^{T} =\begin{bmatrix} 2 &4 \\ 5& 6 \end{bmatrix} + \begin{bmatrix} 2 & 5\\ 4& 6 \end{bmatrix}
= \begin{bmatrix} 4 &9 \\ 9& 12 \end{bmatrix}
(A + A^{T})^{T} =\begin{bmatrix} 4 &9 \\ 9 &12 \end{bmatrix}= A + A^{T}
Hence,
A + A^{T} is a symmetric matrix.

Question:7

Algebra of Matrices Exercise 4.5

Answer: Symmetric matrix \begin{bmatrix} 3 &\frac{-3}{2} \\ \frac{-3}{2} & -1 \end{bmatrix} and Skew-symmetric matrix =\begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2} & 0 \end{bmatrix}
Hint: FindP= \frac{1}{2} (A + A^{T}) and\: Q=\frac{1}{2} (A - A^{T})
Given:A = \begin{bmatrix} 3 &-4 \\ 1 & -1 \end{bmatrix}
Solution:
Step - 1\rightarrow A^{T} =\begin{bmatrix} 3 &1 \\ -4 &-1 \end{bmatrix}
Step - 2\rightarrow (A + A^{T}) = \begin{bmatrix} 6 &-3 \\ -3& -2 \end{bmatrix}
Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 & -5\\ 5& 0 \end{bmatrix}
Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) = \begin{bmatrix} 3 & \frac{-3}{2}\\ \frac{-3}{2} & -1 \end{bmatrix}
Q = \frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2}& 0 \end{bmatrix}
Step - 5\rightarrow P^{T} =\begin{bmatrix} 3 & \frac{-3}{2}\\ \frac{-3}{2}& -1 \end{bmatrix} = P \: and\: Q^{T} = \begin{bmatrix} 0 &\frac{5}{2} \\ \frac{-5}{2}& 0 \end{bmatrix}= -Q
Now, P+ Q = A whereP is symmetric and Q is skew-symmetric.
\begin{bmatrix} 3 &\frac{-3}{2} \\ \frac{-3}{2} & -1 \end{bmatrix}+\begin{bmatrix} 0 &\frac{-5}{2} \\ \frac{5}{2} & 0 \end{bmatrix}=\begin{bmatrix} 3 &-4\\ \1 & -1\end{bmatrix}
Thus, Ais expressed as a sum of symmetric and skew symmetric matrix

Question:8

Algebra of Matrices Exercise 4.5

Answer: Symmetric matrix = \begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} & -2 &-2 \end{bmatrix} and Skew-symmetric matrix = \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}
Hint: Find P= \frac{1}{2} (A + A^{T}) and \: Q=\frac{1}{2} (A - A^{T})
Given:A = \begin{bmatrix} 3 &-2 &-4 \\ 3& -2 &-5 \\ -1 &1 & 2 \end{bmatrix}
Solution:
Step - 1\rightarrow A^{T} = \begin{bmatrix} 3 &3 &-1 \\ -2& -2 &1 \\ -4 &-5 & 2 \end{bmatrix}
Step - 2\rightarrow (A + A^{T}) = \begin{bmatrix} 6 &-1 &-5 \\ 1& -4 & -4\\ -5& -4 &4 \end{bmatrix}
Step - 3\rightarrow (A - A^{T}) = \begin{bmatrix} 0 & -5 & -3\\ 5 &0 &-6 \\ 3& 6 & 0 \end{bmatrix}
Step - 4\rightarrow P=\frac{1}{2} (A + A^{T}) =\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} & -2 &-2 \\ \frac{-5}{2} & -2 &2 \end{bmatrix}
Q =\frac{1}{2} (A - A^{T}) = \begin{bmatrix} 0 &\frac{-5}{2} & \frac{-3}{2}\\ \frac{5}{2} & 0 & -3\\ \frac{3}{2} &3 &0 \end{bmatrix}
Step-5\rightarrow P^{T}=\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} &-2 &2 \end{bmatrix}= P\: and\: Q^{T} = \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}= -Q
Verify:P+ Q = A whereP is symmetric and Q is skew-symmetric.
\begin{bmatrix} 3 &\frac{1}{2} &\frac{-5}{2} \\ \frac{1}{2} &-2 &-2 \\ \frac{-5}{2} & -2 &-2 \end{bmatrix}+ \begin{bmatrix} 0 &\frac{-5}{2} &\frac{-3}{2} \\ \frac{5}{2} &0 &-3 \\ \frac{3}{2} & 3 &0 \end{bmatrix}=\begin{bmatrix} 3 & -2 & -4\\ 3 &-2 &-5 \\ -1& 1 &2 \end{bmatrix}
Thus, A is expressed as a sum of the symmetric and skew-symmetric matrix

Question:9

Algebra of Matrices Exercise 4.5

Answer:A + A^{T} is a symmetric matrix.
Hint: FindA + A^{T}and prove that (A + A^{T}) = (A + A^{T})^{T}
Given:A = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}
Solution: A is a symmetric matrix if and only if A + A^{T} where A^{T} is the transpose of the matrix A
A^{T} = \begin{bmatrix} 2 & 5\\ 3 &7 \end{bmatrix}
A + A^{T} = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}+\begin{bmatrix} 2 & 5\\ 3& 7 \end{bmatrix}
= \begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix}
(A + A^{T})^{T} =\begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix} = A + A^{T}
Hence,
A + A^{T}is a symmetric matrix.

Question:10

Algebra of Matrices Exercise 4.5.

Answer:5
Hint:A is symmetric matrix A = A^{T}
Given:A=\begin{bmatrix} 4 & x+2\\ 2x-3& x+1 \end{bmatrix}
Solution:
A^{T}=\begin{bmatrix} 4 & 2x-3\\ x+2& x+1 \end{bmatrix}
A = A^{T}
\begin{bmatrix} 4 & x+2\\ 2x-3 & x+1 \end{bmatrix}= \begin{bmatrix} 4 & 2x-3\\ x+2& x+1 \end{bmatrix}
2x - 3 = x + 2
x = 5

Everyone knows that RD Sharma class 12 chapter 4 exercise 4.5 is a popular choice of students who have already passed their board exams with flying colors. Students and teachers both praise and recommend the class 12 RD Sharma chapter 4 exercise 4.5 solution book so that aspiring students can experience the magic of using RD solutions for themselves.

Here is a list of reasons why students and teachers all over India highly recommend the class 12 RD Sharma chapter 4 exercise 4.5 solution book:-

  • Students who have already appeared for their board exams have found common questions from the book in their maths papers. This helped them solve those problems quickly and easily.

  • RD Sharma class 12 solutions chapter 4 ex 4.5 can be great for self-study, especially when exams are upcoming.

  • Maths requires self-practice for improvement. The RD Sharma class 12 solutions chapter 4 ex 4.5 books will help students check their own answers and mark their performance at home. You will even find common questions from the book in your exam papers.

  • School homework can be solved at home quickly and effectively when you use RD Sharma class 12 solutions chapter 4 ex 4.5 at home.

  • The RD Sharma class 12 solutions Algebra of Matrices ex 4.5 has answers created by experts from the education sector. Moreover, you will find a lot of new methods that will help you solve math problems quickly.

  • The class 12 RD Sharma chapter 4 exercise 4.5 solution book is updated regularly so that the answers in the book correspond to the questions in the NCERT textbooks. You can easily download RD Sharma class 12th exercise 4.5 pdf online from Career360 for free.

Chapter-wise RD Sharma Class 12 Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Who can use the RD Sharma class 12 solutions chapter 4 ex 4.5 solutions?

The RD Sharma class 12 solutions chapter 4 ex 4.5 solutions can be used by students who will appear for their board exams soon, like students from classes 11 and 12.


2. How can RD Sharma class 12 solutions Algebra of Matrices ex 4.5 be helpful for me?

The RD Sharma class 12 solutions Algebra of Matrices ex 4.5 can guide students who like to self-test themselves on their recent lessons. You can use the answers in the book to check your own answers and see if they are correct.

3. Is It necessary to purchase the class 12 RD Sharma chapter 4 exercise 4.5 solution book?

Students who want to avail the class 12 RD Sharma chapter 4 exercise 4.5 solution book do not have to purchase the book. You can download the pdf from Career360.

4. Can RD Sharma class 12th exercise 4.5 help me in solving homework?

RD Sharma class 12th exercise 4.5 solutions are the teacher's favorite when it comes to giving homework to students. Therefore, using the RD Sharma class 12th exercise 4.5 can help you solve your homework.

5. Is the latest version of class 12 RD Sharma chapter 4 exercise 4.5 solution book available online?

The class 12 RD Sharma chapter 4 exercise 4.5 solution book is always available online. The pdfs are updated regularly whenever there is a change in the syllabus.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top