Careers360 Logo
RD Sharma Class 12 Exercise 4.4 Algebra of Matrices Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 4.4 Algebra of Matrices Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 20, 2022 01:54 PM IST

The RD Sharma solution books are used by every student who is preparing for their public examinations. When it comes to mathematics, many students struggle to find solutions while doing their homework. Even though Algebra of Matrices is an easy chapter, many students find it challenging to recheck their answer if it is correct or not. The RD Sharma Class 12th exercise 4.4 book will be a great help for them.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 4 Algebra of Matrices - Other Exercise

Algebra of Matrices Excercise: 4.4

Algebra of Matrices Excercise 4.4 Question 1 (i).

Given:
A=\begin{bmatrix} 2 &-3 \\ -7 &5 \end{bmatrix}, B=\begin{bmatrix} 1 &0 \\ 2 & -4 \end{bmatrix}
To prove: \left ( 2A \right )^{T}=2A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along its main diagonal
Solution:
\! \! \! \! \! \! \! \! A=\begin{bmatrix} 2 &-3 \\ -7 & 5 \end{bmatrix}, A^{T}=\begin{bmatrix} 2 &-7 \\ - 3& 5 \end{bmatrix}\\\\ 2A=2\begin{bmatrix} 2 &-3 \\ -7 & 5 \end{bmatrix}\\\\ 2A=\begin{bmatrix} 4 & -6\\ -14 & 10 \end{bmatrix}\\\\
\left ( 2A \right )^{T}=\begin{bmatrix} 4 &-14 \\ -6& 10 \end{bmatrix} …… (1)
2A ^{T}=2\begin{bmatrix} 2 & -7\\ -3 & 5 \end{bmatrix}=\begin{bmatrix} 4 &-14 \\ -6& 10 \end{bmatrix} …… (2)
From 1 & 2
\left ( 2A \right ) ^{T}=2A^{T}

Algebra of Matrices Excercise 4.4 Question 1 (ii).

Answer:\left ( A+B\right )^{T}=A^{T}+B^{T}
Given:
A=\begin{bmatrix} 2 &-3 \\ -7& 5 \end{bmatrix}, B=\begin{bmatrix} 1 &0 \\ 2& -4 \end{bmatrix}
To prove:\left ( A+B\right )^{T}=A^{T}+B^{T}
Hint: TheA^{T} of matrix A can be obtained by reflecting the elements along its main diagonal
Solution:
\left ( A+B\right )^{T}=A^{T}+B^{T}
R.H.S:
A^{T}=\begin{bmatrix} 2 &-7 \\ 3& 5 \end{bmatrix}, B^{T}=\begin{bmatrix} 1 &2 \\ 0& -4 \end{bmatrix}
A^{T}B^{T}=\begin{bmatrix} 2 & -7\\ 3 & 5 \end{bmatrix}+\begin{bmatrix} 1 &2\\ 0 &-4 \end{bmatrix}
=\begin{bmatrix} 3 & -5\\ -3& -1 \end{bmatrix} …… (1)
\left ( A+B \right )^{T}=\left ( \begin{bmatrix} 2 & -3\\ -7 & 5 \end{bmatrix}+\begin{bmatrix} 1 &0\\ 2 &-4 \end{bmatrix} \right )
=\left ( \begin{bmatrix} 2+1 & -3+0\\ -7+2 & 5-4 \end{bmatrix} \right )
=\left ( \begin{bmatrix} 3 & -3\\ -5 & 1 \end{bmatrix} \right )^{T}
= \begin{bmatrix} 3 & -5\\ -3 & 1 \end{bmatrix} -\left ( 2 \right )
From 1 & 2
\left ( A+B\right )^{T}=A^{T}+B^{T}

Algebra of Matrices Excercise 4.4 Question 1 (iii).

Answer:\left ( A-B \right )^{T}=A^{T}-B^{T}
Given:A=\begin{bmatrix} 2 &-3 \\ -7 &-5 \end{bmatrix}, B=\begin{bmatrix} 1 &0 \\ 2& -4 \end{bmatrix}
Hint: TheA^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 2 &-7 \\ -3 &-5 \end{bmatrix}, B^{T}=\begin{bmatrix} 1 &2 \\ 0& -4 \end{bmatrix}
\left ( A-B \right )^{T}=A^{T}-B^{T}
\left ( \begin{bmatrix} 2 &-3 \\ -7 &5 \end{bmatrix}-\begin{bmatrix} 1 &0 \\ 2& -4 \end{bmatrix} \right )=\begin{bmatrix} 2 &-7 \\ -3 & 5 \end{bmatrix}-\begin{bmatrix} 1 &2 \\ 0&-4 \end{bmatrix}
\begin{bmatrix} 1 &-3 \\ -9 &9 \end{bmatrix}^{T} =\begin{bmatrix} 1 &-9 \\ -3 & 9 \end{bmatrix}
\begin{bmatrix} 1 &-9 \\ -3 &9 \end{bmatrix}^{T} =\begin{bmatrix} 1 &-9 \\ -3 & 9 \end{bmatrix}
∴ LHS=RHS

Algebra of Matrices Excercise 4.4 Question 1 (iv).

Answer:\left ( AB \right )^{T}=B^{T}A^{T}
Given:A=\begin{bmatrix} 2 &-3 \\ -7 & 5 \end{bmatrix},B=\begin{bmatrix} 1 &0 \\ 2 &-4 \end{bmatrix}
Hint: TheA^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
B^{T}=\begin{bmatrix} 1 &2 \\ 0& -4 \end{bmatrix}, A^{T}=\begin{bmatrix} 2 & -7\\ -3& 5 \end{bmatrix}
\left ( AB \right )^{T}=B^{T}A^{T}
\left ( \begin{bmatrix} 2 &-3 \\ -7& 5 \end{bmatrix}\begin{bmatrix} 1 & 0\\ 2& -4 \end{bmatrix}\right )=\begin{bmatrix} 1 &2 \\ 0& -4 \end{bmatrix}\begin{bmatrix} 2 & -7\\ -3& 5 \end{bmatrix}
\left ( \begin{bmatrix} 2-6 &0+12\\ -7+10& 0-20 \end{bmatrix} \right )^{T}=\begin{bmatrix} 2-6 &-7+10\\ 0+12& 0-20 \end{bmatrix}
\left ( \begin{bmatrix} -4 &12\\ -3& -20 \end{bmatrix} \right )^{T}=\begin{bmatrix} -4 &3\\ 12& -20 \end{bmatrix}
\begin{bmatrix} -4 &3\\ 12& -20 \end{bmatrix} =\begin{bmatrix} -4 &3\\ 12& -20 \end{bmatrix}
∴LHS=RHS


Algebra of Matrices Excercise 4.4 Question 2

Answer: \left ( AB \right )^{T}=B^{T}A^{T}
Given:A=\begin{bmatrix} 3\\ 5\\ 1 \end{bmatrix}, B=\begin{bmatrix} 1 &0 &4 \end{bmatrix}
Hint: The A^{T} of matrixA can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 3\\ 5\\ 2 \end{bmatrix}, B^{T}=\begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}
A=\begin{bmatrix} 3\\ 5\\ 2 \end{bmatrix}, B=\begin{bmatrix} 1 &0 &4 \end{bmatrix}
\left ( AB \right )^{T}=\begin{bmatrix} 3 &5 &5 \\ 0& 0 & 0\\ 12 & 20 & 8 \end{bmatrix} … (1)
B^{T}A^{T}=\begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}\begin{bmatrix} 3 & 5 &2 \end{bmatrix}
=\begin{bmatrix} 3 &5 &2 \\ 0& 0 & 0\\ 12 & 20 & 8 \end{bmatrix} ….. (2)
(1) &( 2)
\left ( AB \right )^{T}=B^{T}A^{T}


Algebra of Matrices Excercise 4.4 Question 3 (i).

Answer:\left ( A+B\right )^{T}=A^{T}+B^{T}
Given:A=\begin{bmatrix} 1 & -1 &0 \\ 2&1 & 3\\ 1 &2 & 1 \end{bmatrix}, B=\begin{bmatrix} 1 & 2 &3 \\ 2 & 1&3 \\ 0 & 1 & 1 \end{bmatrix}
To prove:\left ( A+B\right )^{T}=A^{T}+B^{T}
Hint: The A^{T} of matrixA can be obtained by reflecting the elements along it’s main diagonal.
Solution:
\left ( A+B\right )^{T}=A^{T}+B^{T}
\left ( \begin{bmatrix} 1 &-1 &0 \\ 2 & 1 &3 \\ 1 & 2 & 1 \end{bmatrix}+\begin{bmatrix} 1 & 2 &3 \\ 2 &1 &3 \\ 0 & 1 & 1 \end{bmatrix} \right )^{T}= \begin{bmatrix} 1 &-1 &0 \\ 2 &1 &3 \\ 1 &2 &1 \end{bmatrix}^{T}+\begin{bmatrix} 1 & 2 & 3\\ 2 & 1 &3 \\ 0 & 1 & 1 \end{bmatrix}^{T}
\begin{bmatrix} 1+1 &-1+2 &0+3 \\ 2+2 & 1+1 &3+3 \\ 1+0 & 2+1 & 1+1 \end{bmatrix} ^{T}= \begin{bmatrix} 1 &2 &1 \\ -1 &1 &2 \\ 0 &3 &1 \end{bmatrix}+\begin{bmatrix} 1 & 2 & 0\\ 2 & 1 &1 \\ 3 & 3 & 1 \end{bmatrix}
\begin{bmatrix} 2 &1 &3 \\ 4 & 2 &6 \\ 1 & 3 & 2 \end{bmatrix} ^{T}= \begin{bmatrix} 2 &4 &1 \\ 1 &2 &3 \\ 3&6 &2 \end{bmatrix}
\begin{bmatrix} 2 &4 &1 \\ 1 &2 &3 \\ 3&6 &2 \end{bmatrix}= \begin{bmatrix} 2 &4 &1 \\ 1 &2 &3 \\ 3&6 &2 \end{bmatrix}
LHS=RHS

Algebra of Matrices Excercise 4.4 Question 3 (ii).

Answer:\left ( AB \right )^{T}=B^{T}A^{T}
Given:A=\begin{bmatrix} 1 & -1 &0 \\ 2&1 & 3\\ 1 &2 & 1 \end{bmatrix}, B=\begin{bmatrix} 1 & 2 &3 \\ 2 & 1&3 \\ 0 & 1 & 1 \end{bmatrix}
To prove:\left ( AB \right )^{T}=B^{T}A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
B^{T}=\begin{bmatrix} 1 &2 & 0\\ 2 & 1 & 1\\ 3 &3 &1 \end{bmatrix}, A^{T}=\begin{bmatrix} 1 & 2 &1 \\ -1 & 1 & 2\\ 0 & 3 & 1 \end{bmatrix}
\left ( AB \right )^{T}=B^{T}A^{T}
\left ( \begin{bmatrix} 1 & -1 &0 \\ 2 & 1 &1 \\ 3 &3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 2 & 1 & 3\\ 0 & 1 & 1 \end{bmatrix}\right )^{T}=\begin{bmatrix} 1 & 2 &0 \\ 2 & 1 & 1\\ 3 & 3 &1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1\\ -1 & 1 & 2\\ 0 &3 & 1 \end{bmatrix}
\begin{bmatrix} 1-2+0 & 2-1+0 &3-3+0 \\ 2+2+0 & 4+1+3 &6+3+3 \\ 1+4+0 & 2+2+1 & 3+6+1 \end{bmatrix}^{T}=\begin{bmatrix} 1-2+0 & 2+2+0 &1+4+0 \\ 2-1+0 &4+1+3 &2+2+1 \\ 3-3+0 &6+3+3 & 3+6+1 \end{bmatrix}
\begin{bmatrix} -1 & 1 &0 \\ 4 & 8 &12\\ 5 & 5 & 10 \end{bmatrix}^{T}=\begin{bmatrix} -1 & 4 &5 \\ 1 &8 &5 \\ 0&12 & 10 \end{bmatrix}
\begin{bmatrix} -1 & 4 &5 \\ 1 &8 &5 \\ 0&12 & 10 \end{bmatrix}=\begin{bmatrix} -1 & 4 &5 \\ 1 &8 &5 \\ 0&12 & 10 \end{bmatrix}
∴LHS=RHS


Algebra of Matrices Excercise 4.4 Question 3 (iii).

Answer:\left ( 2A^{T} \right )=2A^{T}
Given: A=\begin{bmatrix} 1 & -1 &0 \\ 2&1 & 3\\ 1 &2 & 1 \end{bmatrix}, B=\begin{bmatrix} 1 & 2 &3 \\ 2 & 1&3 \\ 0 & 1 & 1 \end{bmatrix}
To prove:\left ( 2A^{T} \right )=2A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 1 & 2 &1 \\ -1 & 1& 2\\ 0 &3 & 1 \end{bmatrix}
\left ( 2A^{T} \right )=2A^{T}
\left ( 2\begin{bmatrix} 1 & -1 & 0\\ 2& 1 &3 \\ 1 & 2 & 1 \end{bmatrix} \right )^{T}=2\begin{bmatrix} 1 &2 &-1 \\ -1 &1 & 2\\ 0 &3 & 1 \end{bmatrix}
\begin{bmatrix} 2 & -2 & 0\\ 4& 2 &6 \\ 2 & 4 & 2 \end{bmatrix}^{T}=\begin{bmatrix} 2 &4 &2 \\ -2 &2 & 4\\ 0 &6 & 2 \end{bmatrix}
\begin{bmatrix} 2 &4 &2 \\ -2 &2 & 4\\ 0 &6 & 2 \end{bmatrix}=\begin{bmatrix} 2 &4 &2 \\ -2 &2 & 4\\ 0 &6 & 2 \end{bmatrix}
∴LHS=RHS
\left ( 2A^{T} \right )=2A^{T}


Algebra of Matrices Excercise 4.4 Question 4

Answer:\left ( AB \right )^{T}=B^{T}A^{T}
Given:A=-\begin{bmatrix} -2\\ 4\\ 5 \end{bmatrix}, B=\begin{bmatrix} 1 & 3 &- 6 \end{bmatrix}
To prove:\left ( AB \right )^{T}=B^{T}A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} -2 & 4 &5 \end{bmatrix}, B^{T}=\begin{bmatrix} 1\\ 3\\ -6 \end{bmatrix}
\left ( AB \right )^{T}=B^{T}A^{T}
\left ( \begin{bmatrix} -2\\ 4\\ 5 \end{bmatrix}\begin{bmatrix} 1 &3 & -6 \end{bmatrix} \right )^{T}=\begin{bmatrix} 1\\ 3\\ -6 \end{bmatrix}\begin{bmatrix} -2 &4 & 5 \end{bmatrix}
\begin{bmatrix} -2 & -6 &12 \\ 4& 12 & -24\\ 5 & 15 & -30 \end{bmatrix}=\begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}
\begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}=\begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}
∴LHS=RHS
Hence, \left ( AB \right )^{T}=B^{T}A^{T} is proved.

Question:5

Algebra of Matrices Excercise 4.4 Question 5

Answer: \left ( AB\right )^{T}=\begin{bmatrix} 0 &1 \\ 15 & -2 \end{bmatrix}
Given:A=\begin{bmatrix} 2 & 4 & -1\\ -1 &0 & 2 \end{bmatrix},B=\begin{bmatrix} 3 &4 \\ -1 &2 \\ 2 & 1 \end{bmatrix}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
\left ( AB \right )=\begin{bmatrix} 2 & 4 &-1 \\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 3 & 4\\ -1 & 2\\ 2 & 1 \end{bmatrix}
=\begin{bmatrix} 6-4-2 & 8+8-1\\ -3-0+4 & -4+0+2 \end{bmatrix}
\left [ AB \right ]=\begin{bmatrix} 0 & 15\\ 1 & -2 \end{bmatrix}
\left [ AB \right ]^{T}=\begin{bmatrix} 0 & 1\\ 15 & -2 \end{bmatrix}

Algebra of Matrices Excercise 4.4 Question 6 (i).

Answer:\left (AB \right )^{T}=B^{T}A^{T}
Given:A=\begin{bmatrix} 2 & 1 &3 \\ 4 & 1 & 0 \end{bmatrix}, B=\begin{bmatrix} 1 &-1 \\ 0 & 2\\ 5 & 0 \end{bmatrix}
To prove:\left ( AB \right )^{T}=B^{T}A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 2 &4 \\ 1 &1 \\ 3 & 0 \end{bmatrix}, B^{T}=\begin{bmatrix} 1 & 0 &5 \\ -1 & 2& 0 \end{bmatrix}
\left ( AB \right )^{T}=B^{T}A^{T}
\left ( \begin{bmatrix} 2 & 1 &3 \\ 4 &1 & 0 \end{bmatrix}\begin{bmatrix} 1 &-1 \\ 0 &2 \\ 5 & 0 \end{bmatrix} \right )^{T}=\begin{bmatrix} 1& 0 &5 \\ -1 &2 & 0 \end{bmatrix}\begin{bmatrix} 2 &4 \\ 1 &1 \\ 3 & 0 \end{bmatrix}
\left ( \begin{bmatrix} 2+0+15& -2+2+0\\ 4+0+0 & -4+2+0 \end{bmatrix} \right )^{T}=\begin{bmatrix} 2+0+15 &4+0+0 \\ -2+2+0 & -4+2+0 \end{bmatrix}
\begin{bmatrix} 17 &0 \\ 4 & -2 \end{bmatrix}^{T}=\begin{bmatrix} 17 &4 \\ 0& -2 \end{bmatrix}
\begin{bmatrix} 17 &0 \\ 4 & -2 \end{bmatrix}^{T}=\begin{bmatrix} 17 &4 \\ 0& -2 \end{bmatrix}
∴LHS=RHS
Hence, \left ( AB \right )^{T}=B^{T}A^{T}, is proved.


Algebra of Matrices Excercise 4.4 Question 6 (ii).

Answer:\left (AB \right )^{T}=B^{T}A^{T}
Given: A=\begin{bmatrix} 1 &3 \\ 2 & 4 \end{bmatrix},B=\begin{bmatrix} 1 &4 \\ 2& 5 \end{bmatrix}
To prove:\left (AB \right )^{T}=B^{T}A^{T}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix},B^{T}=\begin{bmatrix} 1 &2\\ 4& 5 \end{bmatrix}
\left (AB \right )^{T}=B^{T}A^{T}
\left ( \begin{bmatrix} 1 &3 \\ 2& 4 \end{bmatrix}\begin{bmatrix} 1 &4 \\ 2 & 5 \end{bmatrix} \right )^{T}=\begin{bmatrix} 1 &2 \\ 4& 5 \end{bmatrix}\begin{bmatrix} 1 &2 \\ 3& 4 \end{bmatrix}
\begin{bmatrix} 1+6 &4+15 \\ 2+8 & 8+20 \end{bmatrix}^{T}=\begin{bmatrix} 1+6 & 2+8\\ 4+15 &8+20 \end{bmatrix}
\begin{bmatrix} 7 & 19\\ 10 & 28 \end{bmatrix}^{T}=\begin{bmatrix} 7 &10 \\ 19& 28 \end{bmatrix}
\begin{bmatrix} 7 & 19\\ 10 & 28 \end{bmatrix}=\begin{bmatrix} 7 &19 \\ 19& 28 \end{bmatrix}
∴LHS=RHS
Hence, \left (AB \right )^{T}=B^{T}A^{T} is proved.


Algebra of Matrices Excercise 4.4 Question 7

Answer:A^{T}-B^{T}=\begin{bmatrix} 4 &3 \\ -3& 0\\ -1 & -2 \end{bmatrix}
Given:\begin{bmatrix} 3 &4 \\ -1 & 2\\ 0 & 1 \end{bmatrix}=A^{T},B=\begin{bmatrix} -1 &2 &1 \\ 1& 2 & 3 \end{bmatrix}
Hint: The A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.
Solution:
A^{T}=\begin{bmatrix} 3 &4 \\ -1 & 2\\ 0 & 1 \end{bmatrix},B^{T}=\begin{bmatrix} -1 &1 \\ 2 &2 \\ 1 &3 \end{bmatrix}
A^{T}-B^{T}=\begin{bmatrix} 3 &4 \\ -1 & 2\\ 0 & 1 \end{bmatrix}-\begin{bmatrix} -1 &1 \\ 2 &2 \\ 1 &3 \end{bmatrix}
\begin{bmatrix} 3+1 &4-1 \\ -1-2& 2-2\\0-1&1-3 \end{bmatrix}=\begin{bmatrix} 4 &3 \\ -3& 0\\ -1 &-2 \end{bmatrix}


Algebra of Matrices Excercise 4.4 Question 8

Answer:A^{T}A=I_{2}
Given:=\begin{bmatrix} \cos \alpha &-\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}
Hint:I_{2} refers to an identity matrix with two rows and two columns.
Solution:
A^{T}A=I_{2}
Consider: LHS=A^{T}A
=\begin{bmatrix} \cos \alpha &-\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}\begin{bmatrix} \cos \alpha &\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}
=\begin{bmatrix} \cos \alpha &-\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}\begin{bmatrix} \cos \alpha &\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}
\begin{bmatrix} \cos ^{2 }\alpha +\sin^{2} \alpha &\cos \alpha \sin \alpha -\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha -\cos \alpha \sin \alpha & \sin ^{2}\alpha +\cos ^{2}\alpha \end{bmatrix}
= \begin{bmatrix} 1 & 0\\ 0& 1 \end{bmatrix}=RHS
∴LHS=RHS
Hence,A^{T}A=I_{2} is proved.


Algebra of Matrices Excercise 4.4 Question 9

Answer:A^{T}A=I_{2}
Given: A=\begin{bmatrix} \sin \alpha &\cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}
Hint:I_{2} refers to an identity matrix with two rows and two columns.
Try to multiplyA^{T} with A.
Solution:
A^{T}A=I_{2}
Consider: LHS=A^{T}A
=\begin{bmatrix} \sin \alpha &\cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}^{T}\begin{bmatrix} \sin \alpha &\cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}
=\begin{bmatrix} \sin \alpha &-\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix}\begin{bmatrix} \sin \alpha &\cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}
\begin{bmatrix} \sin ^{2 }\alpha +\cos^{2} \alpha &\sin \alpha \cos \alpha -sin \alpha \cos \alpha \\ \sin \alpha \cos\alpha -\sin \alpha \cos\alpha & \cos ^{2}\alpha +\sin^{2}\alpha \end{bmatrix}
= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}= I
LHS=RHS
A^{T}A=I_{2} is proved


Algebra of Matrices Excercise 4.4 Question 10

Answer:AA^{T}=I
Given: If l_{i},m_{i},n_{i},i=1,2,3 denotes direction cosines of 3 mutually ⊥ vertices
A=\begin{bmatrix} l_{1} &m_{1} &n_{1} \\ l_{2} & m_{2} & n_{2}\\ l_{3} & m_{3} & n_{3} \end{bmatrix}
Hint: I refers to identity function, theA^{T} of matrix A can be obtained by reflecting the elements along its main diagonal.
Solution:
Given\left ( l_{1}, m_{1}, n_{1} \right ),\left ( l_{2}, m_{2}, n_{2}\right ), (l_{3}, m_{3}, n_{3}) are the direction cosines of 3 mutually + vectors in space.
\begin{Bmatrix} l_{1}^{2}+ m_{1}^{2}+ n_{1}^{2}=1 \\ l_{2}^{2}+ m_{2}^{2}+ n_{2}^{2}=1\\ l_{3}^{2}+m_{3}^{2}+ n_{3}^{2} =1 \end{Bmatrix} ……. (1)
\begin{Bmatrix} l_{1}l_{2}+ m_{1}m_{2}+ n_{1}n_{2}=0 \\ l_{2}l_{3}+ m_{2}m_{3}+ n_{2}n_{3}=0\\ l_{3}l_{1}+m_{3}m_{1}+ n_{3}n_{1} =0 \end{Bmatrix} ……….. (2)
Let, A=\begin{bmatrix} l_{1} &m_{1} &n_{1} \\ l_{2} & m_{2} & n_{2}\\ l_{3} & m_{3} & n_{3} \end{bmatrix},A^{T}=\begin{bmatrix} l_{1} &l_{2} &l_{3} \\ m_{1} & m_{2} & m_{3}\\ n_{1} & n_{2} & n_{3} \end{bmatrix}
AA^{T}=\begin{bmatrix} l_{1} &m_{1} &n_{1} \\ l_{2} & m_{2} & n_{2}\\ l_{3} & m_{3} & n_{3} \end{bmatrix}\begin{bmatrix} l_{1} &l_{2} &l_{3} \\ m_{1} & m_{2} & m_{3}\\ n_{1} & n_{2} & n_{3} \end{bmatrix}
AA^{T}=\begin{bmatrix} l_{1}^{2}+m_{1}^{2} +n_{1}^{2} & l_{1} l_{2}+m_{1}m_{2}+n_{1}n_{2} & l_{3}l_{1}+m_{3}m_{1}+n_{3}n_{1}\\ l_{1} l_{2}+m_{1}m_{2}+n_{1}n_{2} & l_{2}^{2}+m_{2}^{2} +n_{2}^{2} &l_{2}l_{3}+m_{2}m_{3}+n_{2}n_{3} \\ l_{3}l_{1}+m_{3}m_{1}+n_{3}n_{1} &l_{2}l_{3}+m_{2}m_{3}+n_{2}n_{3} & l_{3}^{2}+m_{3}^{2}+n_{3}^{2} \end{bmatrix}
From (1) & (2) we get
AA^{T}=\begin{bmatrix} 1 & 0 &0 \\ 0& 1 & 0\\ 0 &0 &1 \end{bmatrix}=I
Hence, proved.

Chapter 4, Algebra of Matrices in class 12, creates a confused state among students and complications. Primarily, students find it even difficult to find the answers to the questions in exercise 4.4. RD Sharma Class 12th exercise 4.4 are about 16 questions in this exercise, including its subparts. The concepts present in this exercise are Transpose of a matrix, Inverse of Matrix, and Matrix vectors. To solve the questions on these concepts or cross-check your answers, you can use the RD Sharma Class 12 Chapter 3 Exercise 4.4 book.

Various experts provide the solutions in this book for the well-being of the students. The RD Sharma books follow the NCERT pattern, making it even more beneficial for the CBSE board students to use it. If you see yourself scoring low marks in the chapter Algebra of Matrices, make use of the Class 12 RD Sharma Chapter 4 Exercise 4.4 solutions material to understand the concepts in a better way. With constant practice in these portions, you will see yourself crossing your benchmark scores and scoring even higher in the exams.

Even though the RD Sharma books provide the best solutions for the students, not even a penny is charged to buy the book. You can download a copy of the RD Sharma Class 12 Solutions Algebra of Matrices at the Career360 website whenever you want. And you need not pay for it. This makes it easily accessible for every student.

As a result, many chances for questions for the class 12 public exams will be taken from this book. Referring to the RD Sharma Class 12 Solutions Chapter 4 Ex 4.4 is the best way to achieve more marks effortlessly. Have the RD Sharma solutions book by your side every time you do your homework and assignments. It is a must to use it for your exam preparation too. Soon, you’ll be witnessing that your marks have elevated to a place that you have never thought of. Visit the Career 360 website and download your copy soon.

Chapter-wise RD Sharma Class 12 Solutions

Frequently Asked Question (FAQs)

1. Which book is the best for the grade 12 students to prepare for their public exams?

The RD Sharma solution books are the best option for every student preparing for their class 12 examinations. They can clear their doubts and cross-check their answers with the help of this book.

2. Are the solutions given in the RD Sharma mathematics books elaborated?

Every solution in the RD Sharma books is given in the elaborated and shortcut methods. It is the choice of the student to follow the ones that they find comfortable.

3. Where can I clear my doubts regarding the Algebra of Matrices chapter?

The one-stop solution to clear all your doubts regarding the chapter Algebra of Matrices is the RD Sharma Class 12th exercise 4.4 book. You can also check your answers if you have tried the sums by yourself.

4. Can the Solutions given in the RD Sharma Class 12th exercise 4.4 books be trusted?

Every solution present in the RD Sharma Class 12 Chapter 4 Exercise 4.4 is provided and verified by experts in the educational sector. Hence, you need not have any hesitations regarding the accuracy of those solutions.

5. Is RD Sharma Class 12th exercise 4.4 Algebra of Matrices an easy chapter to solve?

Everything becomes easier once you start practicing the sums with the help of RD Sharma books. This makes the process quicker, and you need not bang your head looking out for the answers.

Articles

Get answers from students and experts
Back to top