Careers360 Logo
RD Sharma Class 12 Exercise 4.2 Algebra of Matrices Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 4.2 Algebra of Matrices Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 20, 2022 01:43 PM IST

We are pretty sure you have already heard about RD Sharma solutions from your teachers and friends. RD Sharma class 12th exercise 4.2 especially is an excellent guide for students who are in class 12. With the help of RD Sharma class 12 chapter 4 exercise 4.2, they will be able to improve their knowledge of their subjects and prepare themselves for their exams. These answers prepared by experts from all over the country span the 4th chapter of the book, Algebra Of Matrices. This exercise contains detailed information on addition, subtraction, multiplication of matrices, types of matrices like skew-symmetric matrix, null matrix, and symmetric matrix, application-based question using matrix method, and how to perform Algebra calculations with them. RD Sharma class 12th exercise 4.2 contains 22 questions on two levels. The RD Sharma Solutions have a lot of benefits for students, which we will discuss below:-

RD Sharma Class 12 Solutions Chapter 4 Algebra of Matrices - Other Exercise

Algebra of Matrices Excercise: 4.2

Algebra of Matrices Exercise 4.2 Question 1(i)

Answer:\begin{bmatrix} 1 &2 \\ 2 & 7 \end{bmatrix}
Hint: Add the two matrices simply.
Given: \begin{bmatrix} 3 &-2 \\ 1 & 4 \end{bmatrix}+\begin{bmatrix} -2 &4 \\ 1& 3 \end{bmatrix}
Solution:
\begin{bmatrix} 3 &-2 \\ 1 & 4 \end{bmatrix}+\begin{bmatrix} -2 &4 \\ 1& 3 \end{bmatrix} = \begin{bmatrix} 3-2 &-2+4 \\ 1+1 & 4+3 \end{bmatrix}
= \begin{bmatrix} 1&2 \\ 2 & 7 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 1 (ii)

Answer:\begin{bmatrix} 3 & -1 & 6\\ 2& 9& 6\\ -1 & -1 &6 \end{bmatrix}
Hint: Add the two matrices simply.
Given:\begin{bmatrix} 2 & 1& 3\\ 0& 3& 5\\ -1 & 2 &5 \end{bmatrix}+\begin{bmatrix} 1 &-2 &3 \\ 2 &6 &1 \\ 0 &-3 &1 \end{bmatrix}
Solution:
\begin{bmatrix} 2 & 1& 3\\ 0& 3& 5\\ -1 & 2 &5 \end{bmatrix}+\begin{bmatrix} 1 &-2 &3 \\ 2 &6 &1 \\ 0 &-3 &1 \end{bmatrix} = \begin{bmatrix} 2+1 & 1-2& 3+3\\ 0+2& 3+6& 5+1\\ -1+0 & 2-3 &5+1 \end{bmatrix}
= \begin{bmatrix} 3 & -1 & 6\\ 2& 9& 6\\ -1 & -1 &6 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 2(i)

Answer: \begin{bmatrix} 1 &-1 \\ 12 &-11 \end{bmatrix}
Hint: Multiply the A matrix with 2, then multiply B matrix with 3. Then, subtract it from A.
Given:
A= \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} , B= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix} and C= \begin{bmatrix}-2 &5 \\ 3 &4 \end{bmatrix}
Here, we have to compute 2A-3B
Solution:
2A-3B=2 \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} -3 \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix}
= \begin{bmatrix} 4 &8 \\ 6 &4 \end{bmatrix}-\begin{bmatrix} 3 &9 \\ -6 & 15 \end{bmatrix}
= \begin{bmatrix} 4-3 &8-9 \\ 6 +6&4-15 \end{bmatrix}
= \begin{bmatrix} 1 &-1 \\ 12&-11 \end{bmatrix}
Note: Here, C is not mandatory

Algebra of Matrices Exercise 4.2 Question 2 (ii)

Answer: \begin{bmatrix} 9 &-17 \\ -14 &-11 \end{bmatrix}
Hint: Multiply the C matrix with 4. Then, subtract it from B.
Given:
A= \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} , B= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix} and C= \begin{bmatrix}-2 &5 \\ 3 &4 \end{bmatrix}
Here, we have to computeB - 4C.
Solution:
B-4C=1 \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix}-4 \begin{bmatrix} -2 &5 \\ 3 &4 \end{bmatrix}
= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix}-\begin{bmatrix} -8 &20 \\ 12 & 16 \end{bmatrix}
= \begin{bmatrix} 1+8 &3-20 \\ -2-12&5-16 \end{bmatrix}
= \begin{bmatrix} 9 &-17 \\ -14 &-11 \end{bmatrix}
Note: Here, A is not mandatory.

Algebra of Matrices Exercise 4.2 Question 2 (iii)

Answer: \begin{bmatrix} 8 &7 \\ 6 &2 \end{bmatrix}
Hint: Multiply the A matrix with 3. Then, solve 3A - C.
Given:A= \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} , B= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix} and C= \begin{bmatrix}-2 &5 \\ 3 &4 \end{bmatrix}
Here, we have to compute 3A - C.
Solution:
3A-C=3 \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix}- \begin{bmatrix}- 2 &5 \\ 3 &4 \end{bmatrix}
= \begin{bmatrix} 6 &12 \\ 9&6 \end{bmatrix}-\begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}
= \begin{bmatrix} 6+2 &12-5 \\ 9-3&6-4 \end{bmatrix}
= \begin{bmatrix} 8 &7 \\ 6 &2 \end{bmatrix}
Note: Here, B is not mandatory.

Algebra of Matrices Exercise 4.2 Question 3 (i)

Answer:\begin{bmatrix} -2 &2 &5 \\ 5& 5 & 1 \end{bmatrix}
Hint: A + B doesn’t exist because the number of elements in A are not equal to the number of elements in B or we can say, the order of matrices is not equal.
Given: A= \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} , B= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix} and C= \begin{bmatrix}-2 &5 \\ 3 &4 \end{bmatrix}
Here, we have to compute A + B and B + C.
Solution:
A+B doesn’t exist because the no. of rows and columns of both the matrices are not same.
B + C= \begin{bmatrix} -1 & 0 & 2\\ 3& 4& 1 \end{bmatrix}+\begin{bmatrix} -1 &2 &3 \\ 2 & 1 &0 \end{bmatrix}
= \begin{bmatrix} -1-1 & 0+2 & 2+3\\ 3+2 & 4+1 & 1+0 \end{bmatrix}
= \begin{bmatrix} -2 & 2 & 5\\ 5 &5 & 1 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 3(ii)

Answer: \begin{bmatrix} 1 & 6 &1 \\ -6& -13 & -4 \end{bmatrix}
Hint: 2B + 3A don’t exist because the number of elements in A are not equal to the number of elements in B or we can say, the order of matrices is not equal.
Given:A= \begin{bmatrix} 2 &3 \\ 5 &7 \end{bmatrix} , B= \begin{bmatrix} -1 &0 &2 \\ 3& 4 &1 \end{bmatrix} and C= \begin{bmatrix} -1 & 2& 3\\ 2 &1 &0 \end{bmatrix}
Here, we have to compute 2B + 3A and 3C - 4B.
Solution:
2B + 3A don’t exist because the no. of rows and columns of both the matrices are not same.
3C - 4B=3\begin{bmatrix} -1 & 2 & 3\\ 2 & 1 & 0 \end{bmatrix}-4\begin{bmatrix} -1 &0 &2 \\ 3 & 4 &1 \end{bmatrix}
=\begin{bmatrix} -3 & 6 & 9\\ 6 & 3 & 0 \end{bmatrix}-\begin{bmatrix} -4 &0 &8 \\ 12 & 16 &4 \end{bmatrix}
=\begin{bmatrix} -3+4 & 6-0 & 9-8\\ 6-12 & 3-16 & 0 -4\end{bmatrix}
=\begin{bmatrix} 1 & 6 & 1\\ -6 & -13 & -4\end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 3 (iii)

Answer: \begin{bmatrix} 2 & -14 &-3 \\ 27 & 11 & -11 \end{bmatrix}
Hint: Just add and subtract the matrix in the form 2A - 3B + 4C.
Given:A=\begin{bmatrix} -1 & 0 &2 \\ 3 &1 &4 \end{bmatrix},B=\begin{bmatrix} 0 &-2 &5 \\ 1 & -3 & 1 \end{bmatrix} and C=\begin{bmatrix} 1 & -5 &2 \\ 6 &0 &-4 \end{bmatrix}
Here, we have to compute 2A - 3B + 4C.
Solution:
2A-3B+4C=2\begin{bmatrix} -1 & 0 &2 \\ 3 &1 &4 \end{bmatrix}-3\begin{bmatrix} 0 &-2 &5 \\ 1 & -3 & 1 \end{bmatrix}+4\begin{bmatrix} 1 & -5 &2 \\ 6 &0 &-4 \end{bmatrix}
= \begin{bmatrix} -2 &0 &4 \\ 6 & 2 & 8 \end{bmatrix}-\begin{bmatrix} 0 & -6 &15 \\ 3 &-9 & 3 \end{bmatrix}+\begin{bmatrix} 4 & -20 &8 \\ 24 & 0 & -16 \end{bmatrix}
= \begin{bmatrix} -2-0+4 &0+6-20 &4-15+8 \\ 6-3+24 &2+9+0 & 8-3-16 \end{bmatrix}
= \begin{bmatrix} 2 & -14 &-3 \\ 27 & 11 & -11 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 2 (iv)

Answer:\begin{bmatrix} -2 &21 \\ 22 &8 \end{bmatrix}
Hint: Multiply the A, B, and C with 3, 2, and 3 respectively. Then, solve 3A – 2B + 3C.
Given: A= \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix} , B= \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix} and C= \begin{bmatrix}-2 &5 \\ 3 &4 \end{bmatrix}
Here, we have to compute 3A - 2B + 3C.
Solution:
3A-2B+3C=3 \begin{bmatrix} 2 &4 \\ 3 &2 \end{bmatrix}-2 \begin{bmatrix} 1 &3 \\ -2 &5 \end{bmatrix}+3\begin{bmatrix} -2 & 5\\ 3 & 4 \end{bmatrix}
= \begin{bmatrix} 6 & 12\\ 9 &6 \end{bmatrix}- \begin{bmatrix} 2 &6 \\ -4 &10 \end{bmatrix}+\begin{bmatrix} -6 & 15\\ 9& 12 \end{bmatrix}
= \begin{bmatrix} 6-2-6 & 12-6+15\\ 9+4+9 &6-10+12 \end{bmatrix}
= \begin{bmatrix} -2 &21 \\ 22 &8 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 5 (i)

Answer:diag (0, -7, 17)
Hint:
diag=\begin{bmatrix} 1 &0 &0 \\ 0& 1&0 \\ 0& 0 & 1 \end{bmatrix} using this formula in A, B, C and solve A-2B.
Given: A = diag (2 -5 9), B = diag (1 1 -4) and C = diag (-6 3 4)
Here, we have to compute:A-2B.
Solution:
A=\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix},B=\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 &0 \\ 0 &0 & -4 \end{bmatrix}

A-2B=\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix}-2\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 &0 \\ 0 &0 & -4 \end{bmatrix}
=\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix}-2\begin{bmatrix} 2 & 0 &0 \\ 0 & 2 &0 \\ 0 &0 & -8 \end{bmatrix}
=\begin{bmatrix} 2 -2&0 -0 &0 -0\\ 0- 0& -5-2 &0-0 \\ 0-0 & 0 -0& 9+8 \end{bmatrix}
=\begin{bmatrix} 0&0&0\\ 0& -7 &0 \\ 0 & 0 & 17 \end{bmatrix}
= diag (0, -7, 17)
Note: Here, C is not mandatory.

Algebra of Matrices Exercise 4.2 Question 5 (ii)

Answer:diag (-9 14 -18)
Hint:
diag= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1& 0\\ 0 & 0 & 1 \end{bmatrix} using this formula in A, B, C and solve B + C -2A.
Given:A = diag (2 -5 9), B = diag (1 1 -4) and\: C = diag (-6 3 4)
Here, we have to compute: B + C -2A.
Solution:
A=\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix},B=\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 &0 \\ 0 &0 & -4 \end{bmatrix},C= \begin{bmatrix} -6 &0 & 0\\ 0 & 3 &0 \\ 0 & 0 & 4 \end{bmatrix}

B+C-2A=\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 & 0 & -4 \end{bmatrix}+\begin{bmatrix} -6 & 0 &0 \\ 0 & 3 &0 \\ 0 &0 & 4 \end{bmatrix}-2 \begin{bmatrix} 2 &0 & 0\\ 0 & -5 &0 \\ 0 & 0 & 9 \end{bmatrix}
=\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 & 0 & -4 \end{bmatrix}+\begin{bmatrix} -6 & 0 &0 \\ 0 & 3 &0 \\ 0 &0 & 4 \end{bmatrix}-\begin{bmatrix} 4 &0 & 0\\ 0 & -10 &0 \\ 0 & 0 & 18 \end{bmatrix}
=\begin{bmatrix} 1-6-4 &0+0-0 &0+0-0 \\ 0+0-0& 1+3+10 &0+0-0 \\ 0 +0-0& 0+0-0 & -4+4-18 \end{bmatrix}
=\begin{bmatrix} -9 &0 &0\\ 0& 14 &0 \\ 0 & 0 & -18 \end{bmatrix}
= diag (-9\: \ 14 -18)


Algebra of Matrices Exercise 4.2 Question 5 (iii)

Answer:diag (37 -22 -14)
Hint: using this formula inA, B, C and solve 2A + 3B - 5C.
Given:A = diag (2 -5 9), B = diag (1 1 -4) and\: C = diag (-6 3 4)
Here, we have to compute:2A + 3B - 5C.
Solution:
A=\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix},B=\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 &0 \\ 0 &0 & -4 \end{bmatrix},C= \begin{bmatrix} -6 &0 & 0\\ 0 & 3 &0 \\ 0 & 0 & 4 \end{bmatrix}
2A+3B-5C=2\begin{bmatrix} 2 &0 &0 \\ 0& -5 &0 \\ 0 & 0 & 9 \end{bmatrix}+3\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 &0 \\ 0 &0 & -4 \end{bmatrix}-5 \begin{bmatrix} -6 &0 & 0\\ 0 & 3 &0 \\ 0 & 0 & 4 \end{bmatrix}
=\begin{bmatrix} 4 &0 &0 \\ 0& -10 &0 \\ 0 & 0 & 18 \end{bmatrix}+3\begin{bmatrix} 3 & 0 &0 \\ 0 & 3 &0 \\ 0 &0 & -12 \end{bmatrix}-5 \begin{bmatrix} -30 &0 & 0\\ 0 & 15 &0 \\ 0 & 0 & 20 \end{bmatrix}
=\begin{bmatrix} 4+3+30 &0+0-0 &0+0-0 \\ 0+0-0& -10+3-15 &0+0-0 \\ 0+0-0 & 0+0-0 & 18-12-20 \end{bmatrix}
=\begin{bmatrix} 37 &0 &0\\ 0& -22 &0\\ 0 & 0 & -14 \end{bmatrix}
= diag (37 -22 -14)

Algebra of Matrices Exercise 4.2 Question 6

Hint: In LHS, solve (A + B) by adding A and B matrix. Then, add C matrix. and In RHS, first solve (B+C) then add A to it.
Given: To prove:(A + B) + C = A + (B + C)
A = \begin{bmatrix} 2 & 1 & 1\\ 3 & -1& 0\\ 0 & 2 & 4 \end{bmatrix} , B = \begin{bmatrix} 9& 7&-1 \\ 3 & 5 & 4\\ 2 & 1 &6 \end{bmatrix} , C = \begin{bmatrix} 2 & -4 & 3\\ 1 & -1 &0 \\ 9 &4 & 5 \end{bmatrix}
Solution:
LHS = (A + B) + C
= \left ( \begin{bmatrix} 2 & 1 & 1\\ 3 & -1& 0\\ 0 & 2 & 4 \end{bmatrix} + \begin{bmatrix} 9& 7&-1 \\ 3 & 5 & 4\\ 2 & 1 &6 \end{bmatrix} \right )+ \begin{bmatrix} 2 & -4 & 3\\ 1 & -1 &0 \\ 9 &4 & 5 \end{bmatrix}
= \left ( \begin{bmatrix} 2+9 & 1+7 & 1-1\\ 3+3 & -1+5& 0+4\\ 0+2 & 2+1 & 4+6 \end{bmatrix} \right )+ \begin{bmatrix} 2 & -4 & 3\\ 1 & -1 &0 \\ 9 &4 & 5 \end{bmatrix}
= \begin{bmatrix} 2+9+2 & 1+7 -4& 1-1+3\\ 3+3+1 & -1+5-1& 0+4+0\\ 0+2+9 & 2+1 +4& 4+6 +5\end{bmatrix}
= \begin{bmatrix} 13 & 4& 3\\ 7 & 3& 4\\ 11 & 7& 15\end{bmatrix} … (1)

RHS = A + (B + C)
= \begin{bmatrix} 2 & 1 & 1\\ 3 & -1& 0\\ 0 & 2 & 4 \end{bmatrix} \left ( \begin{bmatrix} 9& 7&-1 \\ 3 & 5 & 4\\ 2 & 1 &6 \end{bmatrix} +\begin{bmatrix} 2 & -4 & 3\\ 1 & -1 &0 \\ 9 &4 & 5 \end{bmatrix} \right )
= \begin{bmatrix} 2 & 1 & 1\\ 3 & -1& 0\\ 0 & 2 & 4 \end{bmatrix} \left ( \begin{bmatrix} 9+2& 7-4&-1+3 \\ 3+1 & 5-1 & 4+0\\ 2+9 & 1+4 &6 +5\end{bmatrix} \right )
= \begin{bmatrix} 2+9+2&1+ 7-4&1-1+3 \\3+ 3+1 &-1+0+ 5-1 & 0+4+0\\0+ 2+9 & 2+1+4 &4+6 +5\end{bmatrix}
= \begin{bmatrix} 13&4&3 \\7 &3 & 4\\11 & 7 &15\end{bmatrix} … (2)
From (1) and (2)
LHS = RHS
Hence,(A + B) + C = A + (B + C) is proved.

Algebra of Matrices Exercise 4.2 Question 7

Answer:X= \begin{bmatrix} 4 & 4\\ 0 & 4 \end{bmatrix} and \: Y=\begin{bmatrix} 1 &-2 \\ 0 & 5 \end{bmatrix}
Hint: Try to add two matrices and find variable ‘X ’. Then substitute ‘X ’ value in any matrix to find ‘Y ’.
Given: X + Y = \begin{bmatrix} 5 & 2\\ 0 & 9 \end{bmatrix} and\: X - Y = \begin{bmatrix} 3&6 \\ 0 & -1 \end{bmatrix}
Here, we have to compute X and Y.
Solution:
\left ( X + Y \right )+\left ( X - Y \right ) = \begin{bmatrix} 5 & 2\\ 0 & 9 \end{bmatrix} + \begin{bmatrix} 3&6 \\ 0 & -1 \end{bmatrix}
\left ( X + Y \right )+\left ( X - Y \right ) = \begin{bmatrix} 5+3 & 2+6\\ 0+0 & 9-1 \end{bmatrix}
2X = \begin{bmatrix} 8 & 8\\ 0 & 8 \end{bmatrix}
X =\frac{1}{2} \begin{bmatrix} 8 & 8\\ 0 & 8 \end{bmatrix}
X = \begin{bmatrix} 4 & 4\\ 0 & 4 \end{bmatrix}
Now,
X+Y = \begin{bmatrix} 5 & 2\\ 0 & 9 \end{bmatrix}
\begin{bmatrix} 4 &4 \\ 0 & 4 \end{bmatrix}+Y = \begin{bmatrix} 5 & 2\\ 0 & 9 \end{bmatrix}
Y = \begin{bmatrix} 5 & 2\\ 0 & 9 \end{bmatrix}-\begin{bmatrix} 4 &4 \\ 0 & 4 \end{bmatrix}
Y = \begin{bmatrix} 1&- 2\\ 0 & 5 \end{bmatrix}
X= \begin{bmatrix} 4 & 4\\ 0 & 4 \end{bmatrix} and \: Y=\begin{bmatrix} 1 &-2 \\ 0 & 5 \end{bmatrix}


Algebra of Matrices Exercise 4.2 Question 8

Answer: X= \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}
Hint: Substitute Y value\: in\: 2X+Y .
Given:2X+Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix} and \: Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}
Here, we have to compute X .
Solution:
2X+Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}, Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}
2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}
2X= \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}
X= \frac{1}{2}\begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}
X= \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}


Answer: X = 3-21-21-1 and Y = 02200-3
Hint: Try to take the one variable out by using Addition and Multiplication.
Given: 2X-Y = 6-60-421 and X+2Y = 325-21-7
Here, we have to compute X and Y .
Solution:
2X-Y =6-60-421 … (1)
X+2Y = 325-21-7 … (2)
Multiplying equation (1) with 2, we get:
2(2X-Y ) = 26-60-421
4X-2 Y = 12-120-842 … (3)
Adding equation (2) with equation (3), we get:
(4X-2 Y) + (X+2Y ) = 12-120-842 + 325-21-7
4X-2 Y + X+2Y = 12+3-12+20+5-8-24+12-7
5X = 15-105-105-5
X = 15 15-105-105-5
X = 3-21-21-1
Applying ‘X ’ value in equation (2), we get:
X+2Y = 325-21-7
3-21-21-1 + 2Y = 325-21-7
2Y = 3-32+25-1-2+21-1- 7+1
Y = 12 04400-6
Y = 02200-3


Algebra of Matrices Exercise 4.2 Question 10

Answer: X = \begin{bmatrix} 2 &3 &1 \\ 0 &1 &2 \\ 6 &4 &0 \end{bmatrix} and Y = \begin{bmatrix} 1 & 2 &0 \\ -1 & 0 &2 \\ 5 & 4 & 0 \end{bmatrix}
Hint: Try to add two matrices and find variable ‘X ’. Then substitute ‘X ’ value in any matrix to find ‘Y ’.
Given:X+Y= \begin{bmatrix} 3 &5 &1 \\ -1 &1 &4 \\ 11 & 8 & 0 \end{bmatrix} and X-Y = \begin{bmatrix} 1 &1 &1 \\ 1 &1 &0 \\ 1&0 &0 \end{bmatrix}
Here, we have to compute X and Y .
Solution:
X+Y+X-Y = \begin{bmatrix} 3 & 5 &1 \\ -1 &1 &4 \\ 11 & 8 &0 \end{bmatrix} +\begin{bmatrix} 1 & 1 & 1\\ 1 & 1& 0\\ 1 &0 & 0 \end{bmatrix}
X+Y+X-Y= \begin{bmatrix} 3+1 & 5+1& 1+1\\ -1+1 &1+1 &4+0 \\ 11+1 & 8+0 & 0+0 \end{bmatrix}
2X= \begin{bmatrix} 4 & 6& 2\\ 0 &2 &4\\ 12 & 8 & 0 \end{bmatrix}
X= \frac{1}{2}\begin{bmatrix} 4 & 6& 2\\ 0 &2 &4\\ 12 & 8 & 0 \end{bmatrix}
X= \begin{bmatrix} 2 & 3& 1\\ 0 &1 &2\\ 6 & 4 & 0 \end{bmatrix}
Now,
X+Y= \begin{bmatrix} 3 &5 &1 \\ -1 &1 &4 \\ 11 & 8 & 0 \end{bmatrix}
\begin{bmatrix} 2 & 3& 1\\ 0 &1 &2\\ 6 & 4 & 0 \end{bmatrix}+Y = \begin{bmatrix} 3 &5 &1 \\ -1 &1 &4 \\ 11 & 8 & 0 \end{bmatrix}= \begin{bmatrix} 3 &5 &1 \\ -1 &1 &4 \\ 11 & 8 & 0 \end{bmatrix}
Y = \begin{bmatrix} 3-2 & 5-3 & 1-1\\ -1-0 & 1-1 &4-2 \\ 11-6 &8-4 & 0-0 \end{bmatrix}
Y = \begin{bmatrix} 1 & 2 &0 \\ -1 & 0 &2 \\ 5 & 4 & 0 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 11

Answer:A = \begin{bmatrix} 8 & -3& 5\\ -2 & -3 & -6 \end{bmatrix}
Hint: Transposing the matrix from LHS to RHS
Given:\begin{bmatrix} 1 & 2 &-1 \\ 0 & 4 & 9 \end{bmatrix} + A =\begin{bmatrix} 9 &-1 &4 \\ -2& 1 &3 \end{bmatrix}
Here, we have to compute A.
Solution:
\begin{bmatrix} 1 & 2 &-1 \\ 0 & 4 & 9 \end{bmatrix} + A =\begin{bmatrix} 9 &-1 &4 \\ -2& 1 &3 \end{bmatrix}
A =\begin{bmatrix} 9 &-1 &4 \\ -2& 1 &3 \end{bmatrix}-\begin{bmatrix} 1 & 2 &-1 \\ 0 & 4 & 9 \end{bmatrix}
A =\begin{bmatrix} 9-1 &-1-2 &4 +1\\ -2-0& 1-4 &3 -9 \end{bmatrix}
A = \begin{bmatrix} 8 & -3& 5\\ -2 & -3 & -6 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 12

Answer: C = \begin{bmatrix} -24 &-10 \\ -28 & -38 \end{bmatrix}
Hint: Null matrix is \begin{bmatrix} 0 &0\\ 0 & 0 \end{bmatrix}
Given: A =\begin{bmatrix} 9 &1 \\ 7 & 8 \end{bmatrix} , B =\begin{bmatrix} 1 & 5\\ 7 & 12 \end{bmatrix}, 5A + 3B + 2C = 0
Here, we have to compute C.
Solution:
5A + 3B + 2C = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}
5\begin{bmatrix} 9 & 1\\ 7 & 8 \end{bmatrix} + 3\begin{bmatrix} 1 & 5\\ 7 & 12 \end{bmatrix} + 2C = \begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}
\begin{bmatrix} 45 & 5\\ 35 & 40 \end{bmatrix} + \begin{bmatrix} 3 & 15\\ 21 & 36 \end{bmatrix} + 2C = \begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}
\begin{bmatrix} 45+3 & 5+15\\ 35+21 & 40+36 \end{bmatrix} + 2C = \begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}
\begin{bmatrix} 48 & 20\\ 56 & 76 \end{bmatrix} + 2C = \begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}
2C = \begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}-\begin{bmatrix} 48 & 20\\ 56 & 76 \end{bmatrix}
2C = \begin{bmatrix} -48 & -20\\ -56 & -76 \end{bmatrix}
C =\frac{1}{2}\begin{bmatrix} -48 & -20\\ -56 & -76 \end{bmatrix}
C = \begin{bmatrix} -24 &-10 \\ -28 & -38 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 13

Answer:
X = \begin{bmatrix} 12 &\frac{4}{3} \\ \\ 4 &\frac{-14}{3} \\ \\ \frac{25}{3} & \frac{28}{3} \end{bmatrix}
Hint: Try to separate the ‘X’ variable into LHS.
Given:A =\begin{bmatrix} 2 &-2 \\ 4 &2 \\ -5 & 1 \end{bmatrix} , B =\begin{bmatrix} 8 & 0\\ 4 & -2\\ 3 & 6 \end{bmatrix} , 2A + 3x = 5B
Here, we have to compute x.
Solution:
2A + 3 X = 5B
2\begin{bmatrix} 2 & -2\\ 4& 2\\ -5& 1 \end{bmatrix}+3X=5\begin{bmatrix} 8 &0 \\ 4& -2\\ 3 & 6 \end{bmatrix}
\begin{bmatrix} 4 & -4\\ 8& 4\\ -10& 2 \end{bmatrix}+3X=\begin{bmatrix} 40 &0 \\ 20& -10\\ 15 & 30 \end{bmatrix}
3X=\begin{bmatrix} 40 &0 \\ 20& -10\\ 15 & 30 \end{bmatrix}-\begin{bmatrix} 4 & -4\\ 8& 4\\ -10& 2 \end{bmatrix}
3X=\begin{bmatrix} 40-4 &0+4 \\ 20-8& -10-4\\ 15+10 & 30-2 \end{bmatrix}
3X=\begin{bmatrix} 36 &4 \\ 12& -14\\ 25 & 28 \end{bmatrix}
X=\frac{1}{3}\begin{bmatrix} 36 &4 \\ 12& -14\\ 25 & 28 \end{bmatrix}
X = \begin{bmatrix} 12 &\frac{4}{3} \\ \\ 4 &\frac{-14}{3} \\ \\ \frac{25}{3} & \frac{28}{3} \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 14

Answer: C = \begin{bmatrix} -3 &4 &-1 \\ -3& 0 &-1 \end{bmatrix}
Hint: Zero matrix is \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}
Add A and B matrices. Then, find C.
Given:A =\begin{bmatrix} 1 &-3 &2 \\ 2 & 0 &2 \end{bmatrix} , B =\begin{bmatrix} 2 &-1 & -1\\ 1& 0 & -1 \end{bmatrix} , A + B + C = 0
Here, we have to compute C.
Solution:
A + B + C =\begin{bmatrix} 0 &0 &0 \\ 0& 0 & 0 \end{bmatrix}
\begin{bmatrix} 1 & -3 &2 \\ 2 &0 &2 \end{bmatrix} +\begin{bmatrix} 2 & -1&-1 \\ 1& 0 & -1 \end{bmatrix} + C = \begin{bmatrix} 0 &0 &0 \\ 0& 0& 0 \end{bmatrix}
\begin{bmatrix} 3 & -4 &1\\ 3 &0 &1 \end{bmatrix} + C = \begin{bmatrix} 0 &0 &0 \\ 0& 0& 0 \end{bmatrix}
C = \begin{bmatrix} 0 &0 &0 \\ 0& 0& 0 \end{bmatrix}-\begin{bmatrix} 3 & -4 &1\\ 3 &0 &1 \end{bmatrix}
C = \begin{bmatrix} -3 &4 &-1 \\ -3& 0 &-1 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question15 (i)

Answer:x = 32\: and\: y = -32
Hint: Solve LHS and then equate with RHS.
Given:\begin{bmatrix} x-y &2 & -2\\ 4 &x & 6 \end{bmatrix} +\begin{bmatrix} 3 & -2 &2 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
Here, we have to compute x and y.
Solution:
\begin{bmatrix} x-y &2 & -2\\ 4 &x & 6 \end{bmatrix} +\begin{bmatrix} 3 & -2 &2 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
\begin{bmatrix} x-y+3 &2-2 & -2+2\\ 4+1 &x+0 & 6-1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
Equating this, we get:
x-y + 3 = 6
\Rightarrow x-y = 3 … (1)
Also,
x = 2x + y
\Rightarrow y = -x …. (2)
Applying the value of ‘y’ in equation (1), we get:
x-(-x) = 3
2x = 3
x = 32
Applying the value of ‘x ’ in equation (2), we get:y = -32


Algebra of Matrices Exercise 4.2 Question 15 (ii)

Answer: x = 1, y = 3\: and\: z = 10
Hint: Solve LHS and then equate with RHS.
Given: \begin{bmatrix} x & y+z & z-3 \end{bmatrix}+\begin{bmatrix} y & 4 & 5 \end{bmatrix}= \begin{bmatrix} 4 & 9 & 12 \end{bmatrix}
Here, we have to compute x , y and z.
Solution:
\begin{bmatrix} x & y+2 & z-3 \end{bmatrix}+\begin{bmatrix} y & 4 & 5 \end{bmatrix}= \begin{bmatrix} 4 & 9 & 12 \end{bmatrix}
\begin{bmatrix} x+y & y+2+4 & z-3+5 \end{bmatrix}= \begin{bmatrix} 4 & 9 & 12 \end{bmatrix}
Equating this, we get:
x+y = 4 …(1)
Also,
y + 6 = 9
\Rightarrow y = 3
z + 2 = 12
\Rightarrow z = 10
Applying the value of ‘y’ in equation (1), we get:
x + 3 = 4
x = 1

Algebra of Matrices Exercise 4.2 Question 15 (iii)

Answer:x = 1, y = 2
Hint: Solve LHS part and then equate with RHS part.
Given:
x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} 3\\5 \end{bmatrix} +\begin{bmatrix} -8\\11 \end{bmatrix} = 0
Here, we have to compute x and y .
Solution:
x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} 3\\5 \end{bmatrix} +\begin{bmatrix} -8\\11 \end{bmatrix} = 0
\begin{bmatrix} 2x+3y-8\\x+5y-11 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}
Equating this, we get:
2x+3y-8 = 0
\Rightarrow 2x+3y=8 …(1)
Also,
x+5y-11 = 0
\Rightarrow x=11-5y …(2)
Applying the value of ‘x ’ in equation (1), we get:
2(11 -5y) + 3y = 8
22 -10y + 3y = 8
-7y = 8 -22
-7y = -14
y = 2
Applying the value of ‘y’ in equation (2), we get:
x = 11 - 5(2)
x = 11- 10
x = 1

Algebra of Matrices Exercise 4.2 Question 16

Answer:x = 2, y = -8
Hint: Add LHS part and then equate with RHS part.
Given:2\begin{bmatrix} 3 & 4\\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 &y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 &0 \\ 10& 5 \end{bmatrix}
Here, we have to compute x and y.
Solution:
2\begin{bmatrix} 3 & 4\\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 &y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 &0 \\ 10& 5 \end{bmatrix}
\begin{bmatrix} 6 & 8\\ 10 &2 x \end{bmatrix} + \begin{bmatrix} 1 &y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 &0 \\ 10& 5 \end{bmatrix}
\begin{bmatrix} 6+1 & 8+y\\ 10+0 &2 x+1 \end{bmatrix} = \begin{bmatrix} 7 &0 \\ 10& 5 \end{bmatrix}
\begin{bmatrix} 7 & 8+y\\ 10 &2 x+1 \end{bmatrix} = \begin{bmatrix} 7 &0 \\ 10& 5 \end{bmatrix}
Equating this, we get:
8+y = 0
\Rightarrow y= -8
Also,
2x +1 = 5
2x = 4
\Rightarrow x =2

Algebra of Matrices Exercise 4.2 Question 17

Answer:\lambda = 2
Hint: Add LHS part of matrix and separate the variable \lambda .Then, solve.
Given:\lambda \begin{bmatrix} 1 & 0 &2 \\ 3 & 4 & 5 \end{bmatrix} +2 \begin{bmatrix} 1 & 2 & 3\\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 &10 \\ 4 & 2 & 14 \end{bmatrix}
Here, we have to find the value of \lambda
Solution:
\lambda \begin{bmatrix} 1 & 0 &2 \\ 3 & 4 & 5 \end{bmatrix} +2 \begin{bmatrix} 1 & 2 & 3\\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 &10 \\ 4 & 2 & 14 \end{bmatrix}
\lambda \begin{bmatrix} \lambda & 0 &2\lambda \\ 3\lambda & 4\lambda & 5\lambda \end{bmatrix} +2 \begin{bmatrix} 1 & 2 & 3\\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 &10 \\ 4 & 2 & 14 \end{bmatrix}
\lambda \begin{bmatrix} \lambda+2 & 0+4 &2\lambda +6 \\ 3\lambda -2 & 4\lambda -6 & 5\lambda +4 \end{bmatrix} = \begin{bmatrix} 4 & 4 &10 \\ 4 & 2 & 14 \end{bmatrix}
Equating this, we get:
\lambda +2 = 4
\lambda = 4 - 2
\Rightarrow \lambda = 2

Algebra of Matrices Exercise 4.2 Question 18 (i)

Answer:X = \begin{bmatrix} -1 & -2\\ -7 & -13 \end{bmatrix}
Hint: Add 2A + B matrix then transpose to RHS.
Given:A = \begin{bmatrix} -1 &2 \\ 3 & 4 \end{bmatrix} , B =\begin{bmatrix} 3 & -2\\ 1 & 5 \end{bmatrix}, 2A + B + x =0
Here, we have to compute X .
Solution:
2A + B + X =0
2\begin{bmatrix} -1 & 2\\ 3 & 4 \end{bmatrix} +\begin{bmatrix} 3 &-2 \\ 1 & 5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}
\begin{bmatrix} -2 & 4\\ 6 & 8 \end{bmatrix} +\begin{bmatrix} 3 &-2 \\ 1 & 5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}
\begin{bmatrix} -2+3 & 4-2\\ 6+1 & 8+5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}
\begin{bmatrix} 1 & 2\\ 7 & 13 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}X = \begin{bmatrix} -1 & -2\\ -7 & -13 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 18 (ii)

Answer:X = \begin{bmatrix} -2 &\frac{-10}{3} \\ \\ 12 &\frac{14}{3} \\ \\ \frac{-31}{3} & \frac{-7}{3} \end{bmatrix}
Hint: Take the variable 3X into RHS and 5B into LHS. Then, solve.
Given:A =\begin{bmatrix} 8 & 0\\ 4&-2 \\ 3&6 \end{bmatrix} , B =\begin{bmatrix} 2 &-2 \\ 4& 2\\ -5& 1 \end{bmatrix} , 2A + 3X = 5B
Here, we have to compute X.
Solution:
2A + 3X = 5B
2\begin{bmatrix} 8 & 0\\ 4& -2\\ 3&6 \end{bmatrix} + 3X = 5\begin{bmatrix} 2&-2 \\ 4 &2 \\ -5 &1 \end{bmatrix}
\begin{bmatrix} 16 & 0\\ 8& -4\\ 6&12 \end{bmatrix} + 3X = \begin{bmatrix} 10&-10 \\ 20 &10 \\ -25 &5 \end{bmatrix}
3X = \begin{bmatrix} 10&-10 \\ 20 &10 \\ -25 &5 \end{bmatrix}-\begin{bmatrix} 16 & 0\\ 8& -4\\ 6&12 \end{bmatrix}
3X = \begin{bmatrix} -6 &-10 \\ 12 &14 \\ -31 &-7 \end{bmatrix}
X = \frac{1}{3}\begin{bmatrix} -6 &-10 \\ 12 &14 \\ -31 &-7 \end{bmatrix}
X = \begin{bmatrix} -2 &\frac{-10}{3} \\ \\ 12 &\frac{14}{3} \\ \\ \frac{-31}{3} & \frac{-7}{3} \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 19 (i)

Answer:x = 2, y = 4, z = 1, t =3
Hint: Solve LHS part and equate with RHS part.
Given: 3 \begin{bmatrix} x &y \\ z&t \end{bmatrix} = \begin{bmatrix} x &6 \\ -1 &2t \end{bmatrix} + \begin{bmatrix} 4 &x+y \\ z+t & 2t+3 \end{bmatrix}
Here, we have to compute x, y, z and t.
Solution:
3 \begin{bmatrix} x &y \\ z&t \end{bmatrix} = \begin{bmatrix} x &6 \\ -1 &2t \end{bmatrix} + \begin{bmatrix} 4 &x+y \\ z+t & 2t+3 \end{bmatrix}
\begin{bmatrix} 3x &3y \\ 3z&3t \end{bmatrix} = \begin{bmatrix} x &6 \\ -1 &2t \end{bmatrix} + \begin{bmatrix} 4 &x+y \\ z+t & 2t+3 \end{bmatrix}
\begin{bmatrix} 3x &3y \\ 3z&3t \end{bmatrix} = \begin{bmatrix} x+4 &6+x+y \\ -1+z+t &2t+3 \end{bmatrix}
Equating this, we get:
\! \! \! \! \! \! \! \! 3 x = x + 4\\ 2x = 4 \\ \Rightarrow x = 2
Also,
\! \! \! \! \! \! \! \! 3y = 6 + x + y \\ 2y = 6 + x
Putting the value of ‘x ’, we get:
\! \! \! \! \! \! \! \! 2y = 6 + 2\\ 2y = 8\\ \Rightarrow y = 4
Also,
\! \! \! \! \! \! \! 3t = 2t + 3\\ \Rightarrow t = 3
Now,
\! \! \! \! \! \! \! \! \! 3z = -1 + z + t\\ 2z = - 1 + t
Putting the value of ‘t’, we get:
\! \! \! \! \! \! \! 2z = -1 + 3\\ 2z = 2\\ \Rightarrow z = 1

Algebra of Matrices Exercise 4.2 Question 19 (ii)

Answer:x = 2\: and\: y = 9
Hint: Add LHS part and equate with RHS part.
Given:2 \begin{bmatrix} x & 5\\ 7& y-3 \end{bmatrix} + \begin{bmatrix} 3 &4 \\ 1 &2 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 15 & 14 \end{bmatrix}
Here, we have to compute x, y, z and t.
Solution:
2 \begin{bmatrix} x & 5\\ 7& y-3 \end{bmatrix} + \begin{bmatrix} 3 &4 \\ 1 &2 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 15 & 14 \end{bmatrix}
\begin{bmatrix} 2x & 10\\ 14&2 y-6 \end{bmatrix} + \begin{bmatrix} 3 &4 \\ 1 &2 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 15 & 14 \end{bmatrix}
\begin{bmatrix} 2x+3 & 10+4\\ 14+1&2 y-6+2 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 15 & 14 \end{bmatrix}
Equating this, we get:
\! \! \! \! \! \! \! \! \! 2 x + 3 = 7\\ 2x = 4\\ \Rightarrow x = 2
Also,
\! \! \! \! \! \! \! \! \! \! 2y - 6 + 2 = 14\\ 2y -4 = 14\\ 2y = 18\\\Rightarrow y=9

Algebra of Matrices Exercise 4.2 Question 20

Answer:X = \begin{bmatrix} -2 &0 \\ -1 & -3 \end{bmatrix} and\: Y = \begin{bmatrix} 2& 1\\ 2 & 2 \end{bmatrix}
Hint: Subtract matrix,2X + 3Y and\: 3X + 2Y. Then, solve.
Given:2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and\: 3X + 2Y = \begin{bmatrix} -2 &2 \\ 1 & -5 \end{bmatrix}
Here, we have to compute x and y.
Solution:
3 (2X + 3Y) - 2 (3X + 2Y) = 3 \begin{bmatrix} 2 & 3\\ 4& 0 \end{bmatrix} - 2 \begin{bmatrix} -2 &2 \\ 1&-5 \end{bmatrix}
6X + 9Y - 6X - 4Y =\begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix} - \begin{bmatrix} -4 & 4\\ 2& -10 \end{bmatrix}
5Y = \begin{bmatrix} 6+4 & 9-4\\ 12-2 & 0+10 \end{bmatrix}
5Y = \begin{bmatrix} 10 &5 \\ 10 & 10 \end{bmatrix}
Y = \begin{bmatrix} 2 &1\\ 2 & 2 \end{bmatrix}
Also,
2 (2X + 3Y) - 3 (3X + 2Y) = 2 \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - 3 \begin{bmatrix} -2 &2 \\ 1 & -5 \end{bmatrix}
4X + 6Y -9X-6Y =\begin{bmatrix} 4 &6 \\ 8 & 0 \end{bmatrix} - \begin{bmatrix} -6 &6 \\ 3 & -15 \end{bmatrix}
-5X = \begin{bmatrix} 4+6 &6-6 \\ 8-3 & 0+15 \end{bmatrix}
-5X = \begin{bmatrix} 10 &0 \\ 5 & 15 \end{bmatrix}
X = \begin{bmatrix} -2 &0 \\ -1& -3 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 21

Answer:
\begin{bmatrix} 450\\ 180\\ 30\\ 30 \end{bmatrix}
Hint: Put a matrix for peons, clerks, typist, sector officers. Multiply with 30 for calculating all 30 colleges.
Given: There are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 sector officer.
Solution:
No. of different types of posts in any college is given by:
X=\begin{bmatrix} 15\\ 6\\ 1\\ 1 \end{bmatrix}
Total no. of posts of each kind in all the colleges = 30X
=30\begin{bmatrix} 15\\ 6\\ 1\\ 1 \end{bmatrix}
=\begin{bmatrix} 450\\ 180\\ 30\\ 30 \end{bmatrix}

Algebra of Matrices Exercise 4.2 Question 22

Answer:X = 30000\: and \: Y = 15000
Hint: Try to solve monthly saving of Aryan and Babban using the ratio.
Recall that the solution to the system of equations that can be written as AX = B.AX = B.
Given: The monthly income of Aryan and Babban are in the ratio 3:4.The monthly expenditures are in the ratio5:7.Saving of each month is Rs. 15000.
Solution:
Let the monthly income of Aryan and Babban be 3X and 4X respectively. Suppose that monthly expenditures are 5Y and7Y respectively.
Since, each save Rs. 15000 per month,
Monthly saving of Aryan:3X - 5Y = 15000
Monthly saving of Babban:4X - 7Y = 15000
The above system of equations can be written in the matrix form as follows:
\begin{bmatrix} 3 &-5 \\ 4 & -7 \end{bmatrix}\begin{bmatrix} X\\Y \end{bmatrix}= \begin{bmatrix} 15000\\15000 \end{bmatrix}
Now,
A = \begin{bmatrix} 3 & -5\\ 4 & -7 \end{bmatrix} = 3\times \left ( -7 \right )-4\times \left ( -5 \right )
= -21 - (-20)
= -1
Adj(A) = \begin{bmatrix} -7 &-4 \\ 5 & 3 \end{bmatrix}^{T} = \begin{bmatrix} -7 &5 \\ -4& 3 \end{bmatrix}
So,
A^{-1} = \frac{1}{\left | A \right |} Adj (A)
= (-1) \begin{bmatrix} - 7& 5\\ -4& 3 \end{bmatrix}
= \begin{bmatrix} 7& -5\\ 4& -3 \end{bmatrix}
\therefore X = A^{-1}B
\begin{bmatrix} X\\Y \end{bmatrix} = \begin{bmatrix} 7 & -5\\ 4 & -3 \end{bmatrix}\begin{bmatrix} 15000\\15000 \end{bmatrix}
\begin{bmatrix} X\\Y \end{bmatrix} = \begin{bmatrix} 105000 &-75000 \\ 60000 & -45000 \end{bmatrix}
\begin{bmatrix} X\\Y \end{bmatrix} = \begin{bmatrix} 30000\\15000 \end{bmatrix}
X = 30000, Y = 15000
Therefore,
Monthly income of Aryan = 3X
\! \! \! \! \! \! \! \! \! = 3 (30000)\\ = Rs. 90,000
Monthly income of Aryan= 4X
\! \! \! \! \! \! \! \! = 4 (30000)\\ = Rs. 1,20,000
Note:
From this problem, we are encouraged to understand the power of savings. We should save certain part of our monthly income for the future.

Algebra of Matrices Exercise 4.2 Question 15 (i)

Answer:x = \frac{3}{2}\: and\: y = \frac{-3}{2}
Hint: Solve LHS and then equate with RHS.
Given:\begin{bmatrix} x-y &2 & -2\\ 4 &x & 6 \end{bmatrix} +\begin{bmatrix} 3 & -2 &2 \\ 1 & 0 &- 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
Here, we have to compute x and y.
Solution:
\begin{bmatrix} x-y &2 & -2\\ 4 &x & 6 \end{bmatrix} +\begin{bmatrix} 3 & -2 &2 \\ 1 & 0 &- 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
\begin{bmatrix} x-y+3 &2-2 & -2+2\\ 4+1 &x+0 & 6-1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0\\ 5 & 2x+y & 5 \end{bmatrix}
Equating this, we get:
x-y + 3 = 6
\Rightarrow x-y = 3 … (1)
Also,
x = 2x + y
\Rightarrow y = -x …. (2)
Applying the value of ‘y’ in equation (1), we get:
x-(-x) = 3
2x = 3
x = \frac{3}{2}
Applying the value of ‘x ’ in equation (2), we get:y = \frac{-3}{2}

Teachers do not get ample time to explain mathematical concepts clearly in class due to time constraints. The class 12 RD Sharma chapter 4 exercise 4.2 solution will help them clear their doubts and test themselves at home.

  • The RD Sharma class 12 solutions Algebra of Matrices ex 4.2 is regularly updated by experts to include the latest syllabus. Students have all the knowledge they will require to perform well in exams.

  • The RD Sharma class 12 solutions chapter 4 ex 4.2 can also help in school exams and JEE mains preparations. Students have found common questions from the book in all these exams.

  • Teachers like to use the RD Sharma class 12th exercise 4.2 to test students in class or give them homework. Using RD Sharma class 12th exercise 4.2 will allow you to solve these homework questions easily.

  • Maths is a complex subject that needs focus, attention, and patience coupled with a lot of self-practice. In this case, you will find class 12 RD Sharma chapter 4 exercise 4.2 solution to be quite effective in helping you with the correct answers.

  • The class 12 RD Sharma chapter 4 exercise 4.2 solution book can be downloaded online from Career360, which has all subjects available. You won't have to pay them anything to access and download the software copies of the class 12 RD Sharma chapter 4 exercise 4.2 solution book.

Chapter-wise RD Sharma Class 12 Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Question (FAQs)

1. How can one use class 12 RD Sharma chapter 4 exercise 4.2 solution for self-study?

The class 12 RD Sharma chapter 4 exercise 4.2 solution book contains the answers to the questions in your NCERT textbooks. These answers from the RD Sharma solutions will help you compare your answer and see if you have solved the problems correctly.

2. Will I get common questions in exams if I study the RD Sharma class 12 chapter 4 exercise 4.2?

Students who have followed RD Sharma solutions and appeared for exams have claimed to have found common questions in their mathematics papers. So, there is a high chance you will also find some common questions if you read the RD Sharma solutions thoroughly.

3. How can I download the RD Sharma class 12th exercise 4.2 solutions pdf?

The RD Sharma class 12 solutions chapter 4 ex 4.2 pdf is always available online at Career360. They can be downloaded free of cost

4. Should I ask my child to use the class 12 RD Sharma chapter 4 exercise 4.2 solution?

The class 12 RD Sharma chapter 4 exercise 4.2 solution book is highly beneficial for students who are appearing for board exams. It will be a great way to conduct mock tests at home before school and board exams.

5. Is RD Sharma class 12 solutions Algebra of Matrices ex 4.2 solutions easy to understand?

The solutions that are given in the RD Sharma class 12 solutions Algebra of Matrices ex 4.2 books have simple and easy answers with quick problem-solving methods so that students can understand them quickly.

Articles

Get answers from students and experts
Back to top