Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 17 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 17 MCQ

Edited By Satyajeet Kumar | Updated on Jan 21, 2022 02:57 PM IST

Class 12 RD Sharma chapter 17 exercise MCQ solution is a sought-after book that is used by almost all students in class 12. The RD Sharma class 12th exercise MCQ covers questions from the entire NCERT maths book and provides intensive knowledge and essential information for all concepts and chapters. RD Sharma Solutions It is designed to aid students to perform well in any school and entrance exam and expand their knowledge on the maths subject.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 17 MCQ Maxima and Minima - Other Exercise
  2. Maxima and Minima Excercise: MCQ
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter 17 MCQ Maxima and Minima - Other Exercise

Maxima and Minima Excercise: MCQ

Maxima and Minima exercise MCQ question 1

Answer: option (b) e1e
Hint: For local maxima or minima, we must have.dydx=0
Given:y=x1x
Solution:
y=x1x
logy=1xlogex
1ydydx=1x1x+logex(1x2)
For maximum or minimum dydx=0
dydx=y(1x21x2(logex))=01x2=1x2logex1x2(logex1)=0
logex1
x = e is maximum value
Hence,
x1x=e1e
Maximum Value =f(e)=e1e.

Maxima and Minima exercise Multiple choice question, question 2

Answer: option (b) abc24
Hint: For local maxima or minima, we must have f'(x) =0.
Given:ax+bxc
Solution:
We have,
ax+bxc
Minimum value of ax+bx=c
Now,
f(x)=ax+bx
f(x)=abx2
f(x)=0
abx2=0
ax2b=0
x2=ba
x=±ba
f(x)=2bx3
Taking x=xb
f(ba)=2b(ba)3f(ba)=2b(a)32(b)32>0
So, x=xb is a point of local minima.
f(ba)=a(ba)+b(ba)cf(ba)=ab+abc
2abc
abc2
abc24
Option (b) is correct.

Maxima and Minima exercise MCQ question 3

Answer: e
Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=xlogex
Solution:
We have,
f(x)=xlogexf(x)=logex1(logex)2
For maxima and minima f(x)=0
logex1(logex)2=0
logex1=0
logex=10
x=e
Now,
f(x)=1x(logex)2+2x(logex)3f(e)=1e+2e=1e>0
So, x=e is a point of local minima.
Minimum Value of f(e)=elogee=e

Maxima and Minima exercise MCQ question 4

Answer: (d)Maximum Value < Minimum Value
Hint: For local maxima or minima, we must havef'(x) =0.
Given:f(x)=x+1x
Solution:
We have,
f(x)=x+1x
f(x)=11x2
For maxima and minima f(x)=0
11x2=0
x21=0
x2=1
x=±1
Now,
f(x)=2x3
f(1)=2>0
So, x =1 is a point of local minima.
Also, f(1)=2<0
So, x = -1 is a point of local maxima.
Maximum Value < Minimum Value

Maxima and Minima exercise MCQ question 5
Answer: Option (b) a minimum at x = 1

Hint: For local maxima or minima, we must have f'(x) =0 .
Given: f(x)=x3+3x29x+2
Solution:
We have,
f(x)=x3+3x29x+2
f(x)=3x2+6x9
For maxima and minima f(x)=0
3x2+6x9=0
x2+2x3=0
(x+3)(x1)=0
x=3,1
Now,
f(x)=6x+6
f(1)=12>0
So, x =1 is a point of local minima.
Also, f(3)=18+6=12<0
So, x = -3 is a point of local maxima.

Maxima and Minima exercise MCQ question 6
Answer: option (b) 4

Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=x4x22x+6
Solution:
We have,
f(x)=x4x22x+6
f(x)=4x32x2
f(x)=(x1)(4x2+4x+2)
For maxima and minima f(x)=0
(x1)(4x2+4x+2)=0
x1=0
x=1
Now,
f(x)=12x22
f(1)=122=10>0
So, x = 1 is a point of local minima.
The local minimum value is given by f(1)=112+6=4

Maxima and Minima exercise MCQ question 7

Answer: option(a) 12
Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=xx2
Solution:
We have,
f(x)=xx2
f(x)=12x
For maxima and minima f(x)=0
12x=0
x=12
Now,
f(x)=2<0
So, x=12 is a point of local maxima.
The local maximum value is given by f(12)=1214=12

Maxima and Minima exercise MCQ question 8
Answer: option(a) a+b+c3

Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=(xa)2+(xb)2+(xc)2
Solution:
We have,
f(x)=(xa)2+(xb)2+(xc)2
f(x)=2(xa)+2(xb)+2(xc)
For maxima and minima f(x)=0
2(xa)+2(xb)+2(xc)=0
2x2a+2x2b+2x2c=0
6x2a2b2c=0
6x=2(a+b+c)
x=(a+b+c)3
Now,
f(x)=2+2+2=6>0
So,x=a+b+c3 is a point of local minima.

Maxima and Minima exercise MCQ question 9.

Answer: option (b) 12
Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=1x+1y
Solution:
Let the two non-zero numbers be x and y.
x + y =8
y = 8 -x ...(i)
We have,
f(x)=1x+1y
f(x)=1x+1(8x) …(ii) From Equation (i)
On differentiating w.r.t x
f(x)=1x2+1(8x)2
for maxima and minimaf(x)=0
1x2+1(8x)2=0
(8x)2+x2x2(8x)2=0
64x2+16x+x2=0
16x=64
x=4
Now, again differentiating (ii) w.r.t x
f(x)=2x32(8x)3f(4)=2432(84)3f(4)=264264=0
Minimum Value =14+14=24=12

Maxima and Minima exercise MCQ question 10.

Answer: option(c) 3
Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=r15(xr)2
Solution:
We have,
f(x)=r15(xr)2
f(x)=(x1)2+(x2)2+(x3)2+(x4)2+(x5)2f(x)=2(x1+x2+x3+x4+x5)f(x)=2(5x15)
For maxima and minima
f(x)=0
2(5x15)=0
5x15=0
5x=15
x=3
Now,
f(x)=10>0
So, x =3 is a point of local minima.

Maxima and Minima exercise MCQ question 11

Answer: option (d) None of these.
Hint: For local maxima or minima, we must have f'(x) =0.
Given:f(x)=2sin3x+3cos3x
Solution:
We have,
f(x)=2sin3x+3cos3x
f(x)=6cos3x9sin3x
For maxima and minima f(x)=0
6cos3x9sin3x=0
6cos3x=9sin3x
sin3xcos3x=23
tan3x=23
At x=5π6, tan3x=tan5π2=tanπ2 = not defined
So, tan3x is not defined [tan3x23]
Thus, x=56 is not a critical point.

Maxima and Minima exercise MCQ question 12


Answer: option(c) x =1

Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x2+x+1
Solution:
We have,
f(x)=x2+x+1
f(x)=2x+1
For maxima and minima f(x)=0
2x+1
x=12\euro[0,1]
At extreme points,
f(0)=1>0
f(1)=1+1+1=3>0
So, x = 1 is a local minima.

Maxima and Minima exercise MCQ question 13.

Answer: option(d) 0

Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x318x2+96x
Solution:
We have,
f(x)=x318x2+96x
f(x)=3x236x+96
For maxima and minima f(x)=0
3x236x+96=0
x212x+32=0
(x4)(x8)=0
x=4,8
At x = 4, f(4)=(4)318(4)2+96(4)=64288+384=160
At x = 8, f(4)=(8)318(8)2+96(8)=5121152+768=128
Now at the extreme points of [0, 9]
f(0)=(0)318(0)2+96(0)=0
f(9)=(9)318(9)2+96(9)=7291458=864=135
Hence, 0 is the minimum value in the range [0, 9].

Maxima and Minima exercise MCQ question 14.

Answer: 14
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x4x+x2
Solution:
We have,
f(x)=x4x+x2f(x)=4x+x2x(1+2x)(4x+x2)2
For maxima and minima f(x)=0
4x+x2x(1+2x)(4x+x2)2
4x+x2x(1+2x)=0
4x2=0
x2=4
x=±2\euro[1,1]
f(1)=14+1+1=16
f(1)=141+1=14
Hence, the maximum value is 14.
Note: option is not matching with the answer given in the book.

Maxima and Minima exercise MCQ question 15

Answer: (1,2)
Hint: Using Distance Formula, calculate the value of variables.
Given:y2=2x
Solution:
Let the required point be (x,y) which is nearest to (2,1).
y2=2x
x=y24 …(i)
Now,
d=(x2)2+(y1)2
Squaring on both sides, we get
d2=(x2)2+(y1)2d2=(y242)2+(y1)2d2=y416+4y2+y2+12y
Now,
Z=d2=y216+52y
dZdy=y342 …(ii)
For extremadZdy=0
y342=0
y34=2
y3=8
y=2
Substitute the value in Equation (i),
x=224=1
Now, differentiating (ii) w.r.t y
d2Zdy2=3y24d2Zdy2=3(2)24=3>0
The nearest point is (1, 2).

Maxima and Minima exercise MCQ question 16.

Answer: option(b) 16
Hint: For local maxima or minima, we must have f(x)=0.
Given: x + y = 8
Solution:
We have,
x+y=8y=8x …(i)
Let f(x)=xy
f(x)=x(8x) (From Equation i)
f(x)=82x
For maxima and minima f(x)=0
82x=0
8=2x
x=4
y=8x=84=4
Now,
f(x)=2
f(4)=2<0
So, x = 4 is the local maxima.
Hence, f(4)=4×4=16

Maxima and Minima exercise MCQ question 17.

Answer: least=0, greatest=54
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x36x2+9x
Solution:
We have,
f(x)=x36x2+9x
f(x)=3x212x+9
For maxima and minima f(x)=0
3x212x+9=0
x24x+3=0
(x1)(x3)=0
x=1,3
Now,
f(1)=136(1)2+9(1)=16+9=4
f(3)=336(2)2+9(6)=2754+27=0
And at the extreme point of [0, 6]
f(0)=036(0)2+9(0)=0
f(6)=636(6)2+9(6)=216216+54=54
The least and greatest values of f(x)=x36x2+9x in (0 ,6) are 0 and 54.
Note: Option is not matching with the answer, given in the book.

Maxima and Minima exercise MCQ question 18.

Answer: option(c) π6

Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=sinx+3cosx
Solution:
We have,
f(x)=sinx+3cosx
f(x)=cosx3sinx
For maxima and minima f(x)=0
cosx3sinx=0
cosx=3sinx
tanx=13
x=π6
Now,
f(x)=sinx3cosxf(π6)=sin(π6)3cos(π6)f(π6)=1232=2<0
So x=π6 is local maxima.

Maxima and Minima exercise MCQ question 19

Answer: option(d) 23
Hint: For local maxima or minima, we must have f(x)=0.
Given:h=R+R2r2
Solution:
We have,
Solution:

AB=2r
OC=r
CD=R+h
We have,
h=R+R2r2
hR=R2r2
Squaring on both sides,
(hR)=(R2r2)2
h2+R22hR=R2r2
r2=2hRh2 …(i)
Now,
V=13πr2h
V=π3(2hRh2)h …using equation(i)
V=π3(2h2Rh3)dVdh=π3(4hR3h2)
For maxima and minima dVdh=0
π3(4hR3h2)=04hR3h2=03h2=4hRh=4R3
Now,
d2Vdh2=π3(4R6h)=π3(4R6×4R3)=π34R(163)=π34R(33)=4πR3<0
Volume is maximum, when h=4R3
h=2(2R)3
h2R=23

Maxima and Minima exercise MCQ question 20

Answer: option(a) 75
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x2+250x
Solution:
We have,
f(x)=x2+250x
f(x)=2x250x2
For maxima and minima f(x)=0
2x250x2=0
2x3=250
x3=125
x=5
Now,
f(x)=2+500x3=2+50053=2+500125=750125=6>0
So, x = 5 is a local minima.
f(x)min=(5)2+2505=25+50=75

Maxima and Minima exercise MCQ question 21.

Answer: option(d) None of these
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x+1x
Solution:
We have,
f(x)=x+1x
f(x)=11x2
For maxima and minima f(x)=0
11x2=0
x21=0
x2=1
x=±1
x=1(x>0)
Now,
f(x)=2x3
f(1)=213=2>0
So, x = 1 is a local minima.

Maxima and Minima exercise MCQ question 22

Answer: option(a) 43
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=14x2+2x+1
Solution:
We have,
Maximum Value of 14x2+2x+1 = Minimum Value of 4x2+2x+1
f(x)=4x2+2x+1
f(x)=8x+2
For maxima and minima f(x)=0
8x+2=0
x=28
x=14
Now,
f(x)=8
f(1)=8>0
So,x=14 is a local minima.
Thus, 14x2+2x+1 is maximum at x=14
Maximum Value of
14x2+2x+1=14(14)2+2(14)+1=14(116)+2(14)+1=114+12+1=114+1=134=43

Maxima and Minima exercise MCQ question 23

Answer: option (b) 2
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x+1x
Solution:
We have,
xy =1
y=1x
f(x)=x+1x
f(x)=11x2
For maxima and minima f(x)=0
11x2=0
x21=0
x2=1
x=1
1y=1
y=1
Now,
f(x)=2x3
f(1)=213=2>0
So, x = 1 is a local minima.
Minimum Value of f(1)=1+11=1+1=2

Maxima and Minima exercise MCQ question 24


Answer: option (a) Minimum at x=π2

Hint: For local maxima or minima, we must have f(x)=0.
Given: f(x)=1+2sinx+3cos2x
Solution:
We have,
f(x)=1+2sinx+3cos2x
f(x)=2cosx6cosxsinx
f(x)=2cosx(13sinx) (i)
For maxima and minima f(x)=0
2cosx(13sinx)=02cosx=0 or (13sinx)=0
cosx=0sinx=13
x=π2 x=sin1(13)
Now,
f(x)=2cosx(3cosx)+(13sinx)(2sinx)=6cos2x2sinx+6sin2x=6(cos2xsin2x)2sinx6cos2x2sinx[cos2xsin2x=cos2x]
 at x=π2,f(π2)=6cosπ2sinπ2=6(1)2×1[cosπ=1,sinπ2=1]2+6=4>0
So, x=π2 is local minima
 at x=sin1(13)f(x)=f(sin1(13))=2sin(sin1(13))6(12sin2x)[cos2x=12sin2x]
=2×136+12(sinx)2=236+12(sin(sin1(13)))2=236+12×(13)2=236+12×19
=23643=21843=243=8f(x)<0
So, x=sin1(13) is local maxima

Maxima and Minima exercise MCQ question 25

Answer: option(d) 2
Hint: For local maxima or minima, we must have f(x)=0.
Given: f(x)=2x315x2+36x+4
Solution:
We have,
f(x)=2x315x2+36x+4
f(x)=6x230x+36
For maxima and minima f(x)=0
6x230x+36=0
x25x+6=0
(x2)(x3)=0
x=2,3
Now,
f(x)=12x30
f(2)=2430=6<0
f(3)=3630=6>0
So, x= 2 is the local maxima.

Maxima and Minima exercise MCQ question 26

Answer: option(c) 16
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=x4+x+x2
Solution:
We have,
f(x)=x4+x+x2
f(x)=4+x+x2x(12x)(4+x+x2)2
For maxima and minima f(x)=0
4+x+x2x(12x)(4+x+x2)2=0
4+x+x2x2x2=04x2=0x2=4x=±2[1,1]f(1)=14+1+1=16f(1)=141+1=14
So, 16 is the maximum value.

Maxima and Minima exercise MCQ question 27

Answer: option (b) -1
Hint: For maxima or minima, we must have f(x)=0.
Given:f(x)=2x33x212x+5
Solution:
We have,
f(x)=2x33x212x+5
f(x)=6x26x12
For maxima and minima f(x)=0
6x26x12=0x2x2=0(x2)(x+1)=0x=2,1
Now,
f(x)=12x6
f(1)=12(1)6=126=18<0
So, x = -1 is the local maxima.
f(2)=12(2)6=246=18>0
So, x = 2 is the local minima.

Maxima and Minima exercise MCQ question 28

Answer: option(c) 1e
Hint: For local maxima or minima, we must havef(x)=0.
Given: f(x)=xlogex
Solution:
We have,
f(x)=xlogex
f(x)=logex+1
For maxima and minima f(x)=0
logex+1=0
logex=1
x=e1
Now,
f(x)=1x
f(e1)=1e1=e>0
So,x=e1is the local minima.
Minimum value of f(x)=f(e1)=e1loge(e1)=e1=1e

Maxima and Minima exercise MCQ question 29

Answer: option(a) -128
Hint: For local maxima or minima, we must have f(x)=0.
Given: f(x)=2x321x2+36x20
Solution:
We have,
f(x)=2x321x2+36x20
f(x)=6x242x+36
For maxima and minima f(x)=0
6x242x+36=0
x27x+6=0
(x1)(x6)=0
x=1,6
Now,
f(x)=12x42f(1)=1242=30<0
So, x = 1 is the local maxima.
f(6)=7242=30>0
So, x = 6 is the local minima.
f(6)=2(6)321(6)2+36(6)20=432756+21620=128

Maxima and Minima exercise MCQ question 30

Answer: option(d) f (x) is an increasing function.

Hint: For local maxima or minima, we must have f(x)=0 .
Given: f(x)=2x+cosx
Solution:
We have,
f(x)=2x+cosx
fx=2sinx>0
Hence, f (x) is an increasing function.

Maxima and Minima exercise MCQ question 31

Answer: option(c)1
Hint: For local maxima or minima, we must have f(x)=0.
Given:y=x28x+17
Solution:
We have,
y=x28x+17
f(y)=2x8
For maxima and minima f(x)=0
2x8=0
2x=8
x=4
f(4)=428(4)+17=1632+17=3332=1>0
Hence, minimum value f(x) of is 1 at x = 4

Maxima and Minima exercise MCQ question 32
Answer: option(b) 12

Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=sinxcosx
Solution:
We have,
f(x)=sinxcosx
We know that,
sin2x=2sinxcosxf(x)=12sin2xf(x)=12ddx(sin2x)
f(x)=12(cos2x)×2f(x)=cos2x
For maxima and minima f(x)=0
cos2x=0
cos2x=cosπ2
2x=π2
x=π4
f(x)=2sin2xf(π4)=2sin2(π4)=2sin(π2)=2<0
=∴x=π4 is local maxima.
f(π4)=sin(π4)cos(π4)=(12)(12)=12
Hence, maximum value of f (x) is 12

Maxima and Minima exercise MCQ question 33


Answer: ( c) e1e

Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=(1x)x
Solution:
We have,
f(x)=(1x)x
f(x)=(1x)x(log(1x)1)
For maxima and minima f(x)=0
(1x)x(log(1x)1)=0
log1logx=1
1x=e
x=1e

Maxima and Minima exercise MCQ question 34

Answer: (b) 1e
Hint: For local maxima or minima, we must have f(x)=0.
Given:y=xx
Solution:
Let us consider
y=xx
Applying log on both sides,
logy=xlogx,(x>0)
On differentiating, we get
1ydydx=1.logx+x1xdydx=(x)x(1+logx)dydx=0(x)x(1+logx)=0
1+logx=0
logx=1
x=e1
x=1e
Therefore, the stationary point is x=1e

Maxima and Minima exercise MCQ question 35


Answer: (b) 12

Hint: For local maxima or minima, we must have f(x)=0.
Given: Maximum slope of the curve y=x3+3x2+9x27
Solution:
Slope of the curve is given by
m=dydx=3x2+6x+9
dmdx=6x+6
d2md2x=6<0 ∀x
So, m is maximum, when x = 1
Putting x = 1 in the slope of the curve, we get, m = -3+6+9=12
The slope is maximum at the point (1, 12).
Maximum value of slope is m = 12

Maxima and Minima exercise MCQ question 36

Answer: (c) One Maximum and One Minimum
Hint: For local maxima or minima, we must have f(x)=0.
Given:f(x)=2x33x212x+4
Solution:
Slope of the curve is given by,
f(x)=2x33x212x+4
f(x)=6x26x12
For maxima and minima f(x)=0
6x26x12=0x2x2=0x=1±14×1×22x=1±32x=2,1f(x)=12x6f(2)=12(2)6=246=18>0
So, x = 2 is local minima.
f(1)=12(1)6=126=18<0
So, x = -1 is local maxima.
Therefore, One Maxima and One Minima is the answer.\

RD Sharma class 12th exercise MCQ comprises 36 MCQs that incorporates the entire syllabus of chapter 17. The solutions are elaborate yet easy to understand. These solutions will work to solve all your queries and doubts. It include the following concepts:

  • Maximum and minimum values

  • Local maxima

  • Local minima

  • First derivative test for local maxima and minima

  • Higher-order derivative test

  • Theorem and algorithm based on higher derivative test

  • Application based problems on maxima and minima

The RD sharma class 12 solution of Maxima and Minima exercise MCQ is the multiple choice questions, it gives you options to select the correct one which makes it quite easy for you to find accurate answers. The questions provided in the RD Sharma class 12th exercise MCQ are hand-picked by maths experts from across the country and their exceptional tips gives you the benefit and skill of solving the questions in less time.

The RD Sharma class 12 solutions chapter 17 exercise MCQ is particularly praised by students as the questions answered in these texts often appear in school and board exams. Therefore, these solutions are trusted by all the students for their prominence in the maths field. RD Sharma class 12th exercise MCQ has helped countless students with it's basic, simple and straightforward concepts.

The RD Sharma class 12th exercise MCQ can easily be studied by downloading it from the Career360 website and can be used offline from any device. The online PDFs of the RD Sharma class 12th exercise MCQ is available free of cost on the Career360 website. So don't wait anymore and get yourself the solutions without any hustle.

RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. What are the benefits of using RD Sharma Solutions?

 RD Sharma Solutions can be extremely useful for students preparing for their upcoming board exams. Using these answers, students can keep track of their knowledge and performance at home.

2. Where do you find a free pdf of RD Sharma Class 12 Chapter 17 MCQs?

Careers360 will provide free copies of the Class 12 RD Sharma Chapter 17  MCQs pdf to all students. It can be downloaded for free from any device.

3. Is RD Sharma Class 12 Chapter 17 MCQs adequate for CBSE students?

 RD Sharma Class 12 Solutions from Careers360 is one of the best reference materials for their Class 12 RD Sharma Chapter 17 MCQs solution that can be used by CBSE students. The solutions follow an updated syllabus and provide answers to all questions in NCERT Books.

4. How many questions are there in Class 12 RD Sharma Chapter 17 MCQs?

There are 36 questions in Class 12 RD Sharma Chapter 17  MCQ

Articles

Upcoming School Exams

Application Date:24 March,2025 - 23 April,2025

Admit Card Date:25 March,2025 - 21 April,2025

Admit Card Date:25 March,2025 - 17 April,2025

View All School Exams
Get answers from students and experts
Back to top