RD Sharma Class 12 Exercise 17.4 Maxima And Minima Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 17.4 Maxima And Minima Solutions Maths - Download PDF Free Online

Updated on 21 Jan 2022, 02:34 PM IST

Rd Sharma class 12 chapter 17 exercises 17.4 answers are penned down in a way that they appear to be simple and easy to grasp. This quality of the answers will further help students to understand all the formulae and techniques. RD Sharma class 12 solutions ex 17.4 will be based on the 17th chapter of the maths book and will have a total of 8 answers.

This Story also Contains

  1. RD Sharma Class 12 Solutions Chapter 17 Maxima and Minima - Other Exercise
  2. Maxima and Minima Excercise: 17.4
  3. Maxima and Minima exercise 17.4 question 4
  4. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter 17 Maxima and Minima - Other Exercise

Maxima and Minima Excercise: 17.4

Maxima and Minima exercise 17.4 question 1 (i)

Answer:

Absolute Maximum = 8 at $x=4,$
Absolute Minimum = -10 at $x=-2$
Hint:
Find x where $f^{\prime}(x)=0$
Given:
$f(x)=4 x-x^{2} / 2 \text { in }[-2,4.5]$
Explanation:
$f^{\prime}(x)=4 \times 1-2 x / 2$
$\begin{aligned} &=4-x \\ &f^{\prime}(x)=4-x=0 \\ &x=4 \\ &f(4)=4 \times 4-(4)^{2} / 2=16-16 / 2 \end{aligned}$
Now, we find the value of f(x) at end points
$\begin{aligned} &f(-2)=4 \times-2-(-2)^{2} / 2=-8-2=-10 \\ &f(4.5)=4 \times 4.5-(4.5)^{2} / 2=18-10.125=7.875 \end{aligned}$
Now,
The maximum value of $f (x)$ at $x=8$ & minimum at $x=-2$
Hence,
Absolute maximum = 8 at $x=4,$
Absolute minimum = -10 at $x=-2$

Maxima and Minima exercise 17.4 question 1 (ii)

Answer:
Absolute Maximum = 19 at $x=-3$,
Absolute Minimum = 3 at $x=1$
Hint:
Find the critical points
Given:
$f(x)=(x-1)^{2}+3 \text { in }[-3,1]$
Explanation:
$\begin{aligned} &f^{\prime}(x)=2(x-1)+0 \\ &=2 x-2 \\ &f^{\prime}(x)=0 \\ &2 x-2=0 \\ &x=1 \end{aligned}$
Now,
We check the value of $f(x)$ at $x=-3, 1$
Hence,
Absolute maximum = 19 at $x=-3$
Absolute minimum = 3 at $x=1$

Maxima and Minima exercise 17.4 question 1 (iii)

Answer:
Absolute Maximum = 25 at $x=0,$
Absolute Minimum = -39 at $x=-2$
Hint:
Find the critical points and check the value of $f(x)$
Given:
$f(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+25 \text { in }[0,3]$
Explanation:
$f^{\prime}(x)=12 x^{3}-24 x^{2}+24 x-48$
$\begin{aligned} &f^{\prime}(x)=0 \\ &12 x^{3}-24 x^{2}+24 x-42=0 \\ &x^{3}-2 x^{2}+2 x-4=0 \\ &x^{2}(x-2)+2(x-2)=0 \\ &\left(x^{2}+2\right)(x-2)=0 \\ &x=2 \end{aligned}$
Now, we check the value of $f(x)$ at $x=0, 2, 3$
$\begin{aligned} &f(0)=3 \times 0-2 \times 8+12 \times 0-48 \times 0+25=25 \\ &f(2)=3 \times(2)^{4}-8 \times(2)^{3}+12 \times(2)^{2}-48 \times 2+25 \\ &=48-64+48-96+25 \\ &=-39 \end{aligned}$
$\begin{aligned} &f(3)=3 \times(3)^{4}-8 \times(3)^{3}+12 \times(3)^{2}-48 \times 3+25 \\ &=243-216+108-144+25 \\ &=16 \end{aligned}$
Hence,
Absolute maximum = 25 at $x=0,$
Absolute minimum = -39 at $x=-2$

Maxima and Minima exercise 17.4 question 1 (iv)

Answer:
Absolute Maximum $=14 \sqrt{2} \text { at } x=9$
Absolute Minimum $=\frac{-2}{3 \sqrt{3}} \text { at } x=4 / 3$
Hint:
Check the value of f(x) at critical and end points
Given:
$f(x)=(x-2) \sqrt{x-1} \text { in }(1,9)$
Explanation:
$f^{\prime}(x)=(x-2) \times \frac{1}{2 \sqrt{x-1}}+\sqrt{x-1}$
$\begin{aligned} &=\frac{x-2+(\sqrt{x-1})(\sqrt{x-1})}{2 \sqrt{x-1}} \\\\ &=\frac{x-2+2(x-1)}{2 \sqrt{x-1}} \\\\ &=\frac{3 x-4}{2 \sqrt{x-1}} \end{aligned}$
$\begin{aligned} &f^{\prime}(x)=0 \\\\ &\frac{3 x-4}{2 \sqrt{x-1}}=0 \\\\ &3 x-4=0 \\\\ &x=\frac{4}{3} \end{aligned}$
Now, check the value of $f(x) \text { at } x=1,4 / 3,9$
$\begin{aligned} &f(1)=(1-2) \sqrt{1-1}=0 \\\\ &f\left(\frac{4}{3}\right)=\left(\frac{4}{3}-2\right) \sqrt{\frac{4}{3}-1} \end{aligned}$
$\begin{aligned} &=\frac{-2}{3} \sqrt{\frac{1}{3}}=\frac{-2}{3 \sqrt{3}} \\\\ &f(9)=(9-2) \sqrt{9-1} \\\\ &=7 \sqrt{8}=14 \sqrt{2} \end{aligned}$
Hence,
Absolute maximum $=14 \sqrt{2} \text { at } x=9$
Absolute minimum $=\frac{-2}{3 \sqrt{3}} \text { at } x=4 / 3$

Maxima and Minima exercise 17.4 question 2

Answer:
Maximum value $=89 \text { at } x=3 \text { in }[1,3]$
Maximum value $=139 \text { at } x=2 \text { in }[-3,-1]$
Hint:
check the value of f(x) at end points where f ‘(x) = 0
Given:
$f(x)=2 x^{3}-24 x+107 \text { in }[1,3]$ , $4 \text { in }[-3,-1]$
Explanation:
$f^{\prime}(x)=6 x^{2}-24$
$\begin{aligned} &f^{\prime}(x)=0 \\ &6 x^{2}-24=0 \\ &x^{2}-4=0 \end{aligned}$
$\begin{aligned} &(x-2)(x+2)=0 \quad\quad\quad\quad\left[a^{2}-b^{2}=(a-b)(a+b)\right] \\ &x=2, x=-2 \end{aligned}$
Now, we check first in the internal (1,3)
$\begin{aligned} &f(1)=2 \times 1-24 \times 1+107=109-24=85 \\ &f(2)=2 \times\left(2^{3}\right)-24 \times 2+107=16-42+107=75 \\ &f(3)=2 \times\left(3^{3}\right)-24 \times 3+107=54-72+107=89 \end{aligned}$
Hence,
Absolute Maximum $=89 \text { at } x=3 \text { in }[1,3]$
Now, we check in the internal $[-3,-1]$
$\begin{aligned} &f(-3)=2 \times(-3)^{3}-24 \times(-3)+107 \\\\ &=-54+72+107=125 \\\\ &f(-2)=2 \times(-2)^{3}-24 \times(-2)+107 \end{aligned}$

$\begin{aligned} &=-16+42+107=139 \\\\ &f(-1)=2 \times(-1)^{3}-24 \times(-1)+107 \\\\ &=-2+24+107=129 \end{aligned}$
Absolute Maximum $=139 \text { at } x=-2$

Maxima and Minima exercise 17.4 question 3
Answer:

Absolute maximum $=5/4$
Absolute minimum $=1$
Hint:
check the value of f(x) at endpoints & critical point
Given:
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$
Explanation:
$f^{\prime}(x)=2 \cos x(-\sin x)+\cos x$
$=\cos x(-2 \sin x+1)$
$\begin{aligned} &f^{\prime}(x)=0 \\\\ &\cos x(-2 \sin x+1)=0 \\\\ &\cos x=0 \\\\ &-2 \sin x+1=0 \end{aligned}$
$\begin{aligned} &x=\frac{\pi}{2} \in(0, \pi) \\\\ &-2 \sin x=-1 \\\\ &\sin x=\frac{1}{2} \\\\ &x=\frac{\pi}{6}, \frac{5 \pi}{6} \in[0, \pi] \end{aligned}$
Now,
$\begin{aligned} &f(0)=\cos ^{2} 0+\sin 0=1 \\ &f\left(\frac{\pi}{6}\right)=\cos ^{2} \frac{\pi}{6}+\sin \frac{\pi}{6}=\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{3}{4}+\frac{1}{2} \\ &=\frac{5}{4} \end{aligned}$
$\begin{aligned} &f\left(\frac{5 \pi}{6}\right)=\cos ^{2} \frac{5 \pi}{6}+\sin \frac{5 \pi}{6} \\ &=\left(\cos \left(\pi-\frac{\pi}{6}\right)\right)^{2}+\sin \left(\pi-\frac{\pi}{6}\right) \end{aligned}$
$\begin{aligned} &=\cos ^{2} \frac{\pi}{6}+\sin \frac{\pi}{6} \\ &=\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{5}{4} \end{aligned}$
$f(\pi)=\cos ^{2} \pi+\sin \pi=(-1)^{2}+0=1$
Hence,
Absolute Maximum $=5 / 4 \text { in } \pi / 6,5 \pi / 6$
Absolute minimum $=1 \text { in } 0, \pi$


Maxima and Minima exercise 17.4 question 4

Answer:
Absolute Maximum $=18 \text { at } x=-1$
Absolute minimum $=-\frac{9}{4} \mathrm{at} \; \; \mathrm{x}=\frac{1}{8}$
Hint:
check the value of f(x) at end points & where f ‘ (x) = 0
Given:
$f(x)=12 x^{4 / 3}-6 x^{1 / 3}, x \in(-1,1)$
Explanation:
$f^{\prime}(x)=12(4 / 3) x^{\frac{4}{3}-1}-6(1 / 3) x^{\frac{1}{3}-1}$
$\begin{aligned} &=16 x^{1 / 3}-2 x^{-2 / 3} \\ &f^{\prime}(x)=0 \\ &16 x^{1 / 3}-2 x^{-2 / 3}=0 \\ &8 x^{1 / 3}=x^{-2 / 3} \\ &x^{1 / 3} / x^{-2 / 3}=\frac{1}{8} \\ &x=\frac{1}{8} \end{aligned}$
Check the value of $f(x) \text { at } x=-1, \frac{1}{8}, 1$
$\begin{aligned} &f(-1)=12(-1)^{\frac{4}{3}}-6(-1)^{\frac{1}{3}} \\\\ &=12+6=18 \\\\ &f\left(\frac{1}{8}\right)=12\left(\frac{1}{8}\right)^{\frac{4}{3}}-6\left(\frac{1}{8}\right)^{\frac{1}{3}} \end{aligned}$
$\begin{aligned} &=12\left(\left(\frac{1}{2}\right)^{3}\right)^{\frac{4}{3}}-6\left(\left(\frac{1}{2}\right)^{3}\right)^{\frac{1}{3}} \\\\ &=\frac{12}{16}-3=\frac{3}{4}-3=\frac{-9}{4} \\\\ &f(1)=12(1)^{\frac{4}{3}}-6(1)^{\frac{1}{3}} \\\\ &=12-6=6 \end{aligned}$
Hence,
Absolute Maximum $=18 \text { at } x=-1$
Absolute minimum $=-\frac{9}{4} \mathrm{at} \; \; \mathrm{x}=\frac{1}{8}$

Maxima and Minima exercise 17.4 question 5

Answer:
Absolute maximum $=56 \text { at } x=5$
Absolute minimum $=24 \text { at } x=1$
Hint:
check the value of f(x) at end points & where f ‘(x) = 0
Given:
$f(x)=2 x^{3}-15 x^{2}+36 x+1 \text { on }[1,5]$
Explanation:
$f^{\prime}(x)=6 x^{2}-30 x+36$
$\begin{aligned} &f^{\prime}(x)=0 \\ &6 x^{2}-30 x+36=0 \\ &x^{2}-5 x+6=0 \\ &x^{2}-3 x-2 x+6=0 \\ &x(x-3)-2(x-3)=0 \end{aligned}$
$\begin{aligned} &(x-2)(x-3)=0 \\ &x-2=0, x-3=0 \\ &x=2,3 \end{aligned}$
Check the value of $f(x) \text { at } 1,2,3,5$
$\begin{aligned} &f(1)=2 \times 1^{3}-15 \times 1^{2}+36 \times 1+1=24 \\ &f(2)=2 \times 2^{3}-15 \times 2^{2}+36 \times 2+1=29 \\ &f(3)=2 \times 3^{3}-15 \times 3^{2}+36 \times 3+1=28 \\ &f(5)=2 \times 5^{3}-15 \times 5^{2}+36 \times 5+1=56 \end{aligned}$
Hence,
Absolute maximum $=56 \text { at } x=5$
Absolute minimum $=24 \text { at } x=1$

RD Sharma Class 12th Exercise 17.4 Chapter 17 Maxima and Minima is the ultimate guide for maths that aims to solve doubts and provide accurate answers for comparison. Class 12 RD Sharma chapter 17 exercise 17.4 solution is trusted by countless students across the nation who have successfully passed their board exams with flying colors. This particular part of RD Sharma Solutions will cover the following concepts and theorems:-

  • Hypothesis and calculation dependent on higher subordinate test
  • Mark of emphasis
  • Mark of emphasis
  • Properties of maxima and minima
  • Most extreme and most minor qualities in a shut stretch
  • Applied issues on maxima and minima

The Rd Sharma class 12th exercise 17.4 has been the top choice of many individuals in India. The coursebook is popular for many reasons some of which are discussed below:-

  • At Career360, you will find all the copies of RD Sharman solutions including maths.
  • Students can use the answers to mark themselves after taking mock tests.
  • These solutions do not cost anything as they are provided for free at the website.
  • The book covers all the latest developments in the syllabus and will have answers to all chapters alike.
  • The book will assist students in solving homework questions as well.
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book
Upcoming School Exams
Ongoing Dates
JAC 12th Board Exam Date

2 Sep'25 - 8 Sep'25 (Offline)

Ongoing Dates
JAC 10th Exam Date

2 Sep'25 - 8 Sep'25 (Offline)