RD Sharma is well known by many students as it is one of the top-selling books in the country. RD Sharma's books are known for their extremely detailed and informative answers which are solved step-by-step to make it easier for students to understand. Class 12 RD Sharma chapter 17 exercise 17.2 solution is titled 'Maxima and Minima.' The book will have many examples based on the chapter and students can practice these solutions to develop their skills on the maths subject. However, solving a complex chapter like Maxima and Minima is a tricky and tedious task. The RD Sharma class 12th exercise 17.2 solution will then come to the rescue of students and help them score well.
This Story also Contains
Maxima and Minima Exercise 17.2 question 2
Answer:Maxima and Minima Exercise 17.2 Question 3
Answer:Maxima and Minima Exercise 17.2 Question 4
Answer:Maxima and Minima Exercise 17.2 Question 5
Answer:Maxima and Minima Exercise 17.2 Question 6
Answer:Maxima and Minima Exercise 17.2 Question 7
Answer:Maxima and Minima Exercise 17.2 Question 8
Answer:
By first derivative test, for local maxima and local minima ,we have
$f^{\prime}(x)$
$\begin{aligned} &\Rightarrow \cos x+\sin x=0 \Rightarrow-\cos x=+\sin x\\ &\Rightarrow-1=\frac{\sin x}{\cos x} \Rightarrow \tan x=-1 \quad\left[\because \frac{\sin \theta}{\cos \theta}=\tan \theta\right]\\ &\Rightarrow \tan x=-\left(\tan \frac{\pi}{4}\right) \quad\left[\because 1=\tan \frac{\pi}{4}\right]\\ &\Rightarrow \tan x=\tan \left(-\frac{\pi}{4}\right) \quad[\because-\tan \theta=\tan (-\theta)]\\ &\Rightarrow x=n \pi+\left(-\frac{\pi}{4}\right) ; n \in z \quad[\tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha ; n \in z]\\ \end{aligned}$
$\Rightarrow x=n \pi-\frac{\pi}{4}\\$
$x=-\frac{\pi}{4},\left(\pi-\frac{\pi}{4}\right),\left(2 \pi-\frac{\pi}{4}\right),\left(-\pi-\frac{\pi}{4}\right)\left(-2 \pi-\frac{\pi}{4}\right)\\$
$\Rightarrow x=-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{-5 \pi}{4}, \frac{-9 \pi}{4}\\$
$\Rightarrow x=\frac{3 \pi}{4}, \frac{7 \pi}{4}[\text { since } 0<x<2 \pi, \text { so neglecting other values }]$
+ - +
-∞ $\frac{3 \pi}{4}$ $\frac{7\pi}{4}$ ∞
since ${f}'\left ( x \right )$ changes from +ve to –ve when $x$ increases through $\frac{3\pi}{4}$ .
So,$x=\frac{3\pi}{4}$ is the point of local maxima.
The value of local maxima of $f\left ( x \right )$ at $x=\frac{3\pi}{4}$ is
$\begin{aligned} &f\left(\frac{3 \pi}{4}\right)=\sin \frac{3 \pi}{4}-\cos \frac{3 \pi}{4} \\ \end{aligned}$
$=\operatorname{Sin}\left(\pi-\frac{\pi}{4}\right)-\cos \left(\pi-\frac{\pi}{4}\right) \\$
$\quad=\operatorname{Sin} \frac{\pi}{4}-\left(-\operatorname{Cos} \frac{\pi}{4}\right) \quad[\because \sin (\pi-\theta)=\sin \theta \& \cos (\pi-\theta)=-\operatorname{Cos} \theta] \\$
$=\operatorname{Sin} \frac{\pi}{4}+\operatorname{Cos} \frac{\pi}{4}$
$\\ \quad=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \quad\left[\because \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4}\right] \\ \quad=\frac{2}{\sqrt{2}}=\sqrt{2}$
Again since ${f}'\left ( x \right )$ changes from –ve to +ve when $x$ increases through $\frac{7\pi}{4}$ .
So,$x=\frac{7\pi}{4}$ is the point of local minima
The value of local minima of $f\left ( x \right )$ at $x=\frac{7\pi}{4}$is
$\begin{aligned} &f\left(\frac{7 \pi}{4}\right)=\sin \frac{7 \pi}{4}-\cos \frac{7 \pi}{4} \\ &=\sin \left(2 \pi-\frac{\pi}{4}\right)-\cos \left(2 \pi-\frac{\pi}{4}\right) \\ &=-\sin \frac{\pi}{4}-\cos \frac{\pi}{4} \\ &=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \quad\left[\begin{array}{l} \therefore \sin (2 \pi-\theta)=-\sin \theta \\ \cos (2 \pi-\theta)=\cos \theta \end{array}\right] \\ &=-\frac{2}{\sqrt{2}} \\ &=-\sqrt{2} \end{aligned}$
maxima and minima exercise 17.2 question 9
Answer:
There is no local maxima and local minima of $f\left ( x \right )$ at interval (0,π)
Hint:
Use first derivative test to find the point and value of local maxima or local minima.
Given:
$f(x)=\operatorname{Cos} x \quad 0<x<\pi$
Solution:
$f(x)=\operatorname{Cos} x$
Differentiating $f\left ( x \right )$with respect to ‘x’ then,
$\begin{aligned} &\frac{d}{d x}\{f(x)\}=\frac{d}{d x} \operatorname{Cos} x \\ &\because f^{\prime}(x)=-\sin x\left[\because \frac{d(\cos x)}{d x}=-\sin x\right] \end{aligned}$
By first derivative test, for local maxima or local minima ,we have
$\begin{aligned} &f^{\prime}(x)=0 \\ &\Rightarrow-\sin x=0 \Rightarrow \operatorname{Sin} x=0 \\ &\Rightarrow x=n \pi \quad ; \mathrm{n} \in \mathbb{Z} \\ &\Rightarrow \mathrm{x}=0, \pi,-\pi, 2 \pi,-2 \pi \ldots . \end{aligned}$
But these points of x lies outside the interval (0,π)
So there is no local maxima and minima will exist in the interval (0,π)
Maxima and Minima exercise 17.2 question 10
Answer:
$x=\frac{\pi}{6}$ and $x=-\frac{\pi}{6}$is the point of local maxima and local minima respectively. The value of
local maxima and local minima is $\frac{\sqrt{3}}{2}-\frac{\pi}{6} \text { and } \frac{-\sqrt{3}}{2}+\frac{\pi}{6}$ respectively.
Hint:
Use first derivative test to find the point and value of local maxima or local minima.
Given:
$f(x)=\sin 2 x-x, \frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$
Solution:
$f(x)=\sin 2 x-x$
Differentiating $f(x)$ with respect to ‘x’ then,
$\begin{aligned} \frac{d}{d x}\left\{f^{\prime}(x)\right\} &=\frac{d}{d x}(\operatorname{Sin} 2 x-x)=\frac{d}{d x} \operatorname{Sin} 2 x-\frac{d}{d x}(x)\left[\because \frac{d}{d x}(h(x) \pm g(x))=\frac{d}{d x} h(x) \pm \frac{d}{d x} g(x)\right] \\ &=\operatorname{Cos} 2 x .2-1 \quad\left[\because \frac{d}{d x}(\operatorname{Sin} a x)=\operatorname{Cos} a x \cdot a\right] \\ f^{\prime}(x) &=2 \operatorname{Cos} 2 x-1 \quad\left[\because \frac{d}{d x}(x)=1\right] \\ \Rightarrow f^{\prime}(x) &=-(1-2 \operatorname{Cos} 2 x) \end{aligned}$
By first derivative test, for local maxima and local minima ,we have
$\begin{aligned} &f^{\prime}(x)=0 \\ &\Rightarrow-(1-2 \operatorname{Cos} 2 x)=0 \Rightarrow 1-2 \operatorname{Cos} 2 x=0 \\ &\Rightarrow 2 \operatorname{Cos} 2 x-1=0 \Rightarrow 2 \operatorname{Cos} 2 x=1 \\ &\Rightarrow \operatorname{Cos} 2 x=\frac{1}{2} \Rightarrow \operatorname{Cos} 2 x=\operatorname{Cos} \frac{\pi}{3} \\ &\Rightarrow 2 x=2 n \pi \pm \frac{\pi}{3} ; \mathrm{n} \in \mathbb{Z}[\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha, n \in \mathbb{Z}] \\ \end{aligned}$
$\Rightarrow \mathrm{x}=\pm \frac{\pi}{6} ; \mathrm{n} \in \mathbb{Z} \\$
$\Rightarrow x=\frac{\pi}{6}, \pi \pm \frac{\pi}{6} \cdots \\$
$\Rightarrow \mathrm{x}=\frac{\pi}{6},-\frac{\pi}{6}\left[\text { neglecting other values of } \mathrm{x} \text { since }-\frac{\pi}{2} \leq \mathrm{x} \leq \frac{\pi}{2}\right]$
- + -
-∞ $\frac{-\pi}{6}$ $\frac{\pi}{6}$ ∞
since ${f}'\left ( x \right )$ changes from +ve to –ve when $x$ increases through $\frac{\pi}{6}$ .
So,$x=\frac{\pi}{6}$ is the point of local maxima
The value of local maxima of $f\left ( x \right )$ at $x=\frac{\pi}{6}$ is
$\begin{aligned} &f\left(\frac{\pi}{6}\right)=\sin 2 \frac{\pi}{6}-\frac{\pi}{6} \\ &=\sin \frac{\pi}{3}-\frac{\pi}{6} \\ &=\frac{\sqrt{3}}{2}-\frac{\pi}{6} \end{aligned}$
Again since${f}'\left ( x \right )$ changes from –ve to +ve when $x$ increases through $\frac{-\pi}{6}$ .
So,$x=\frac{-\pi}{6}$ is the point of local minima
The value of local minima of $f\left ( x \right )$ at $x=\frac{-\pi}{6}$is
$\begin{aligned} &f\left(-\frac{\pi}{6}\right)=\sin 2 \times\left(-\frac{\pi}{6}\right)-\left(-\frac{\pi}{6}\right) \\ &=-\sin \frac{\pi}{3}+\frac{\pi}{6} \quad[\because \sin (-\theta)=-\sin \theta] \\ &=-\frac{\sqrt{3}}{2}+\frac{\pi}{6} \quad\left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right] \end{aligned}$
Maxima and Minima exercise 17.2 question 11
Answermaxima and minima exercise 17.2 question 12
Answer
$$$ x=2 / 3 \text { is the point of local maxima and the value of local maxima is } \frac{2 \sqrt{3}}{9}$
Hint:
Use first derivative test to find the value and point of local maxima and local minima.
Given:
$$$ f(x)=x \sqrt{1-x} \quad, x>0$
Differentiating $$$ f(x) w \cdot r . t^{\prime} x^{\prime} \text { then }$
$$$ \begin{aligned} \frac{d}{d x}\{f(x)\} &=\frac{d}{d x}(x \sqrt{1-x}) \\ &=x \frac{d}{d x}(\sqrt{1-x})+\sqrt{1-x} \frac{d}{d x}(x) \quad\left[\because \frac{d}{d x}(y x)=y \frac{d}{d x} x+x \frac{d}{d x} y\right] \\ &=x \frac{d}{d x}(\sqrt{1-x})+(\sqrt{1-x}) \frac{d}{d x}(x) \\ &=x \frac{1}{2}(1-x)^{\frac{1}{2}-1} \frac{d}{d x}(1-x)+\sqrt{1-x} \cdot 1\left[\because \frac{d}{d x}(x+a)^{n}=n(x+a)^{n-1} \frac{d}{d x}(x+a)\right] \\ \end{aligned}$
$=x \cdot \frac{1}{2}(1-x)^{\frac{1-2}{1}}\left\{\frac{d}{d x}(1)-\frac{d}{d x}(x)\right\}+\sqrt{1-x} \quad\left[\because \frac{d}{d x}(x+a)=\frac{d}{d x}(x)+\frac{d}{d x}(a)\right] \\$
$=\frac{x}{2}(1-x)^{-1 / 2}\{0-1\}+\sqrt{1-x} \quad\left[\because \frac{d}{d x} \text { Constant }=0, \frac{d}{d x}(x)=1\right] \\$
$=\frac{x}{2 \sqrt{1-x}}(0-1)+\sqrt{1-x} \\$
$=\frac{-x}{2 \sqrt{1-x}}+\sqrt{1-x} \\$
$=\frac{-x+2(1-x)}{2 \sqrt{1-x}} \\$
$=\frac{-x+2-2 x}{2 \sqrt{1-x}} \\$
$=\frac{2-3 x}{2 \sqrt{1-x}}$
${f}'\left ( x \right )=\frac{-\left ( 3x-2 \right )}{2 \sqrt{1-x}}$
By first derivative test, for local maxima and local minima, we have
$\begin{aligned} &f^{\prime}(x)=0 \\ &\Rightarrow \frac{-(3 x-2)}{2 \sqrt{1-x}}=0 \quad \Rightarrow \frac{3 x-2}{2 \sqrt{1-x}}=0 \Rightarrow \frac{3 x-2}{\sqrt{1-x}}=0 \quad\left[\because \frac{1}{2} \neq 0\right] \\ &\Rightarrow 3 x-2=0 \quad \Rightarrow \quad 3 x=2 \quad x=2 / 3 \end{aligned}$
$\text { Since, } f^{\prime}(x) \text { changes } f \text { rom }+\text { ve to }-\text { ve when } x \text { increases through } 2 / 3 \text { is the point of local minima }$
$\begin{aligned} &\therefore \text { the value of the local maxima of } f(x) \text { at } x=2 / 3 \text { is }\\ &f\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{1-\frac{2}{3}}=\frac{2}{3} \sqrt{\frac{3-2}{3}}=\frac{2}{3} \sqrt{\frac{1}{3}}\\ &=\frac{2}{3} \cdot \frac{1}{\sqrt{3}}=\frac{2}{3 \sqrt{3}}\\ &=\frac{2}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3 \times 3}=\frac{2 \sqrt{3}}{9} \end{aligned}$
Maxima and Minima Exercise 17.2 Question 13
Answer
$x=\frac{1}{4}$ is the point of local minima and the values of local minima at $x=\frac{1}{4} \ \ \ is \ \ \ \ \frac{-1}{512}$
Hint
Use first derivative test to find the value and point of local maxima and local minima.
Given:
$f(x)=x^{3}(2 x-1)^{3}$
Solution: -
$f(x)=x^{3}(2 x-1)^{3}$
Differentiating $f(x) w \cdot r . t^{\prime} x^{\prime} then$
$\begin{aligned} f^{\prime}(x) &=\frac{d}{d x}\left\{x^{3}(2 x-1)^{3}\right\} \\ &=x^{3} \frac{d}{d x}(2 x-1)^{3}+(2 x-1)^{3} \frac{d}{d x} x^{3} \quad\left\{\because \frac{d}{d x}(y x)=y \frac{d}{d x} x+x \frac{d}{d x} y\right\} \\ &=x^{3} 3(2 x-1)^{3-1} \frac{d}{d x}(2 x-1)+(2 x-1)^{3} 3 x^{3-1} \quad\left\{\because \frac{d}{d x} x^{n}=n x^{n-1} \& \frac{d}{d x}(a x+b)^{n}=n(a x+b)^{n-1} \frac{d}{d x}(a x+b)\right\} \\ &=x^{3} 3(2 x-1)^{2}\left\{\frac{d}{d x}(2 x)-\frac{d}{d x}(1)^{2}\right\}+(2 x-1)^{3} 3 x^{2} \quad\left\{\because \frac{d}{d x}(a x+b)=\frac{d}{d x}(a x)+\frac{d}{d x}(b)\right\} \end{aligned}$
$=x^{3} 3(2 x-1)^{2}\left\{2 \frac{d}{d x}(x)-0\right\}+(2 x-1)^{3} 3 x^{2} \quad\left\{\because \frac{d}{d x}(a x)=a \frac{d}{d x}(x), \frac{d}{d x}(x)=1, \frac{d}{d x} \text { constant }=0\right\}$
$\\ =3 x^{3}(2 x-1)^{2}(2 \cdot 1)+3 x^{2}(2 x-1)^{3} \\ =6 x^{3}(2 x-1)^{2}+3 x^{2}(2 x-1)^{3} \\ =3 x^{2}(2 x-1)^{2}(2 x+2 x-1) \\$
$f^{\prime}(x) =3 x^{2}(2 x-1)^{2}(4 x-1)$
By first derivative test, for local maxima and local minima, we have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}(2 x-1)^{2}(4 x-1)=0$
$\Rightarrow x^{2}(2 x-1)^{2}(4 x-1)=0 \quad[\because 3 \neq 0]$
$\Rightarrow x^{2}=0 \quad$ or $(2 x-1)^{2}=0 \Rightarrow(4 x-1)=0$
$\Rightarrow x=0 \quad$ or $(2 x-1)=0 \Rightarrow 2 x=1$ or $\Rightarrow 4 x=1 \Rightarrow x=1 / 4$
$\Rightarrow x=1 / 2$
$\therefore x=0, \frac{1}{2}, \frac{1}{4}$
- - + +
-∞ 0 1/4 1/2 ∞
Since f(x) changes from –ve to +ve when x increases through $\frac{1}{4}$ so $x=\frac{1}{4}$ is the point of local minima
The value of the local minima of $f\left ( x \right )$ at $x=\frac{1}{4}$
$\begin{aligned} f\left(\frac{1}{4}\right) &=\left(\frac{1}{4}\right)^{3}\left(2 \cdot \frac{1}{4}-1\right)^{3} \\ &=\frac{1}{4^{3}}\left(\frac{1}{2}-1\right)^{3}=\frac{1}{64}\left(\frac{1-2}{2}\right)^{3}=\frac{1}{64}\left(\frac{-1}{2}\right)^{3} \\ &=\frac{1}{64} \cdot \frac{-1}{8}=\frac{-1}{512} \end{aligned}$
Maxima and Minima Exercise 17.2 Question 14
Answer:
$x=2$ is the point of local minima and the value of local minima is 2
Hint:
Use first derivative test to find the value and point of local maxima and local minima
Given:
$f(x)=\frac{x}{2}+\frac{2}{x}, x>0$
Solution:-
$f(x)=\frac{x}{2}+\frac{2}{x}$
Differentiating $f(x) w \cdot r . t^{\prime} x^{\prime}then$
$\begin{aligned} \frac{d}{d x}\{f(x)\} &=\frac{d}{d x}\left\{\frac{2}{x}+\frac{x}{2}\right\} \\ &=\frac{d}{d x}\left\{\frac{2}{x}\right\}+\frac{d}{d x}\left\{\frac{x}{2}\right\} \quad\left[\frac{d}{d x}\{f(x)+h(x)\}=\frac{d}{d x}\{f(x)\}+\frac{d}{d x}\{h(x)\}\right] \\ &=2 \frac{d}{d x}\left(x^{-1}\right)+\frac{1}{2} \frac{d}{d x}(x) \quad\left[\frac{d}{d x}\left(a x^{n}\right)=a \frac{d}{d x}\left(x^{n}\right)\right] \\ &=2(-1) x^{-1-1}+\frac{1}{2} x^{1-1} \quad\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right] \\ \end{aligned}$
$=-2 x^{-2}+\frac{1}{2} x^{0} \\$
$=\frac{-2}{x^{2}}+\frac{1}{2} \\ f^{\prime}(x) =\frac{1}{2}-\frac{2}{x^{2}}$
By first derivative test, for local maxima and local minima, we ha
$f^{\prime}(x)=0$
$\Rightarrow \frac{1}{2}-\frac{2}{x^{2}}=0 \Rightarrow \frac{1}{2}=\frac{2}{x^{2}}$
$\Rightarrow \quad x^{2}=4 \quad \Rightarrow x=\pm 2$
$\Rightarrow x=2$ $[x=-2$ is not possible since $x>0]$
- +
-∞ 2 +∞
Since ${f}'\left ( x \right )$ changes from $-v e$ to $+v e$ when $x$ increases through 2. So $x=2$ is the point of local minima
The value of local minima of $f\left ( x \right )$ at $x=2$ is
$\begin{aligned} f(2) &=\frac{2}{2}+\frac{2}{2}=1+1 \\ &=2 \end{aligned}$
The RD Sharma class 12 solution of Minima and maxima exercise 17.2 consists of 14 questions including subparts, that cover up almost the majority of all the topics of the chapter maxima and minima. The concept covered in this chapter are-
Higher-order derivative test for local maxima and minima
Theorem based on higher derivative test
Point of inflection
Point of inflection
Properties of maxima and minima
Maximum and minimum values in a closed interval
Applied problems on maxima and minima
The RD Sharma class 12 solutions chapter 17 exercise 17.2 is given into two levels that divide the questions into easy, moderate, and tough categories, these two-level questions are designed by maths experts with helpful tips to prepare well for the 12th board exams. The solutions provided in the RD Sharma class 12th exercise 17.2 are best for revision and also help in solving homework as it contains solved questions for reference.
The RD Sharma class 12th exercise 17.2 is trusted by a thousand of students for its originality and basic concepts that is easy to understand because the RD Sharma class 12th exercise 17.2 is prepared by hand-picked experts in maths from around the country and in addition they also provide tips to guide students through the process of understanding maths in an easy alternate way.
The study material for the RD Sharma class 12th exercise 17.2 can be accessed online through the website of Careers360 for free of cost. Even all the materials of RD Sharma solutions are available on the website of career360 which can be downloaded online without paying any charge for it.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE