##### VMC VIQ Scholarship Test

ApplyRegister for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.

Edited By Satyajeet Kumar | Updated on Jan 27, 2022 02:55 PM IST

RD Sharma books are considered the best source of information for CBSE students. They contain comprehensive material that is helpful for students to get a good insight into the subject. They are widely used all over the country and contain detailed exercises on all concepts. Moreover, many faculties use the RD Sharma book as a medium for setting up question papers. This is why it is beneficial for students.

**JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days**

**JEE Main 2025: Maths Formulas | Study Materials**

**JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics **

RD Sharma Class 12th Chapter 11 MCQ contains 28 questions that are easy to solve and based on fundamentals. Students can breeze through this exercise with no problem if they are familiar with the basics of this chapter. RD Sharma Solutions It covers topics like finding second-order derivatives and evaluating differential equations. Students can get good knowledge about evaluating trigonometric and logarithmic equations through this exercise.

- Chapter-11 -Vector or Cross Product -Ex-11.1
- Chapter-11 -Vector or Cross Product -Ex-FBQ
- Chapter-11 -Vector or Cross Product- Ex-VSA

Higher Order Derivatives Exercise Multiple Choice Questions Question 1

(b)

Hint:

We must know the derivative of and .

Given:

Explanation:

Differentiate on both sides,

Higher Order Derivatives Exercise Multiple Choice Questions Question 2

Answer:(d)

Hint:

We must know about the derivative of .

Given:

Explanation:

Differentiate on both sides,

Higher Order Derivatives Exercise Multiple Choice Questions Question 3

Answer:(b)

Hint:

We must know the derivative of and .

Given:

Explanation:

Higher Order Derivatives Exercise Multiple Choice Question question 4

Answer:(b)

Hint:

We must know the derivative of .

Given:

Explanation:

First let us solve the inner function,

Using identity

So, now we have to compute derivative of

Since, successive derivative of cycle in

derivative of is derivative of is also .

Keep chain in mind,

Higher Order Derivatives Exercise Multiple Choice Question question 5

Answer:(b)

Hint:

We must know the derivative of and

Given:

Explanation:

Differentiate on both sides,

Higher Order Derivatives Exercise Multiple Choice Question question 6

Answer:(b)

Hint:

We must know the derivative of .

Given:

, are arbitrary constant.

Explanation:

Higher Order Derivatives Excercise Multiple Choice Questions Question 7

Answer:(c)

Hint:

We must know about the derivative of and .

Given:

and , then is equal to.

Explanation:

Using Fourier series,

Differentiate on both sides,

Higher Order Derivatives Excercise Multiple Choice Questions Question 8

Answer:(a)

Hint:

We must know about the derivative of and .

Given:

Explanation:

Higher Order Derivatives Excercise Multiple Choice Questions Question 9

Answer:(a)

Hint:

We must know about the derivative of .

Given:

, then

Explanation:

Differentiate with respect to ,

Therefore,

Higher Order Derivatives Exercise Multiple Choice Question Question 10

Answer:(c)

Hint:

We must know about the derivative of logarithm and .

Given:

Explanation:

Higher Order Derivatives Exercise Multiple Choice Question Question 11

Answer:(a)

Hint:

We know about the derivative of polynomials.

Given:

be a polynomial, .

Explanation:

Similarly,

Higher Order Derivatives Exercise Multiple Choice Question Question 12

Answer: Option (c)Hint:

We must know about the derivative of and logarithm.

Given:

Explanation:

Differentiate both side with respect to

Again differentiating with respect to ,

or

Hence option the value of is

Higher Order Derivatives Exercise Multiple Choice Questions Question 13

Answer:(a)

Hint:

We must know about the derivative of

Given:

, where is constant.

Explanation:

Higher Order Derivatives Exercise Multiple Choice Questions Question 14

Answer:(a)

Hint:

We must know about the derivative.

Given:

Explanation:

Differentiate on both sides,

Higher Order Derivatives Exercise Multiple Choice Questions Question 15

Answer:(c)

Hint:

We must have known about the derivative of inverse trigonometric functions like .

Given:

Explanation:

Differentiating both sides with respect ,

Again differentiate with respect to ,

or

Higher Order Derivatives Exercise Multiple Choice Question question 16

Answer:(a)

Hint:

We must have known about the derivative of trigonometric function like .

Given:

Explanation:

Differentiate with respect to

Again differentiate with respect to

Higher Order Derivatives Exercise Multiple Choice Question question 17

Answer:(c)

Hint:

We must have known about the derivative of and .

Given:

Explanation:

Again differentiate with respect to ,

Higher Order Derivatives Exercise Multiple Choice Question question 18

Answer:(b)

Hint:

We must know about the derivative of trigonometric function.

Given:

Explanation:

Differentiate again,

Higher Order Derivatives Exercise Multiple Choice Question question 19

Answer:(a)

Hint:

We must know about the derivative of

Given:

Explanation:

Differentiate with respect to

Again differentiate,

Differentiate again with respect to

Higher Order Derivatives Exercise Multiple Choice Question question 20

Answer:(a)

Hint:

We must know about the derivative of logarithm.

Given:

Explanation:

Differentiate with respect to

Differentiate with respect to

… (i)

And

Differentiate with respect to

From (i)

Higher Order Derivatives Exercise Multiple Choice Question question 21

Answer: (c)Hint:

We must know about the derivative of trigonometric function.

Given:

Explanation:

Higher Order Derivatives Exercise Multiple Choice Question question 22

Answer:(b)

Hint:

We must have known about the derivative of

Given:

Explanation:

Differentiate with respect to

Squaring both sides,

… (i)

Now

Given

Squaring both sides,

Putting this value in (i)

Differentiate with respect to ,

Higher Order Derivatives Exercise Multiple Choice Question question 23

Answer:(c)

Hint:

We must know about the rules of finding the derivative.

Given:

Explanation:

Comparing the coefficients of above two equations,

Similarly,

Higher Order Derivatives Exercise Multiple Choice Question question 24

Answer:(a)

Hint:

We must know about the derivative of logarithm.

Given:

Explanation:

Higher Order Derivatives Exercise Multiple Choice Questions Question 25

Answer:(c)

Hint:

We must know about the derivative of logarithm.

Given:

satisfy the equation

Explanation:

Compare with given equation,

Higher Order Derivatives Exercise Multiple Choice Questions Question 26

(a)

Hint:

We must know about the derivative values of every function.

Given:

Explanation:

= Constant

Higher Order Derivatives Excercise: 1.3

Higher Order Derivatives Exercise Multiple Choice Questions Question 27

Answer:(a)

Hint:

We must know about the derivative rules of exponential functions.

Given:

Explanation:

Again differentiate with respect to

Higher Order Derivatives Exercise Multiple Choice Question Question 28

Answer:(d)

Hint:

We must know about the derivative rules of logarithm.

Given:

Explanation:

Differentiate with respect to

Again differentiate,

RD Sharma Class 12th Chapter 11 MCQ material contains solutions that are designed by experts who have years of experience with CBSE question papers. As it complies with the CBSE syllabus and covers, all chapters students can refer to this material for following up and marking their progress in classes. In addition, this material can serve as an excellent guidebook that can help students excel in their exams.

Every answer from RD Sharma Class 12th Chapter 11 MCQ solutions goes through a series of checks to ensure that the result is accurate and according to the standards. Moreover, as maths contains hundreds of sums, solving every one of them is a tiring task. This is why Career360 has offered this material to enable students to study efficiently and save time. In addition, the solutions are updated to the latest version, which means that the answers are from the newest version of the book.

RD Sharma Class 12th Chapter 11 MCQ material makes revision easier as all the solutions are uploaded in one place, which is easier for students to refer to quickly. Another advantage of this material is that students can complete the portion while saving time for revision as it contains solved questions that are easy to understand. Furthermore, every solution has a step-by-step explanation which is helpful for students to understand even if they are weak at maths.

Additionally, the entire material is uploaded on Career360’s website and is accessible for three students to take advantage of this and prepare for their exams. Students can use RD Sharma Class 12th Chapter 11 MCQ solutions to find different ways to solve a question and choose the easiest one. Thousands of students have already started using this material, so everyone must try it to score well in exams.

- Chapter 1 - Relations
- Chapter 2 - Functions
- Chapter 3 - Inverse Trigonometric Functions
- Chapter 4 - Algebra of Matrices
- Chapter 5 - Determinants
- Chapter 6 - Adjoint and Inverse of a Matrix
- Chapter 7 - Solution of Simultaneous Linear Equations
- Chapter 8 - Continuity
- Chapter 9 - Differentiability
- Chapter 10 - Differentiation
- Chapter 11 - Higher Order Derivatives
- Chapter 12 - Derivative as a Rate Measurer
- Chapter 13 - Differentials, Errors and Approximations
- Chapter 14 - Mean Value Theorems
- Chapter 15 - Tangents and Normals
- Chapter 16 - Increasing and Decreasing Functions
- Chapter 17 - Maxima and Minima
- Chapter 18 - Indefinite Integrals
- Chapter 19 - Definite Integrals
- Chapter 20 - Areas of Bounded Regions
- Chapter 21 - Differential Equations
- Chapter 22 - Algebra of Vectors
- Chapter 23 - Scalar Or Dot Product
- Chapter 24 - Vector or Cross Product
- Chapter 25 - Scalar Triple Product
- Chapter 26 - Direction Cosines and Direction Ratios
- Chapter 27 - Straight Line in Space
- Chapter 28 - The Plane
- Chapter 29 - Linear programming
- Chapter 30- Probability
- Chapter 31 - Mean and Variance of a Random Variable

JEE Main Highest Scoring Chapters & Topics

Just Study 40% Syllabus and Score upto 100%

Download E-book1. Does the material contain all solutions?

Yes, RD Sharma Class 12 Chapter 11 MCQ material covers the entire syllabus. This material helps students simplify and streamline their preparation.

2. Where can I find the solutions for the next exercise?

You can find the solutions to all the exercises on Career360’s website, accessible free of cost.

3. Is RD Sharma class 12 chapter 11 MCQ helpful for homework?

Yes, Class 12 RD Sharma Chapter 11 MCQ Solutions help solve homework as the teachers use the same book for assigning and taking references to evaluate their homework. The solution available helps in solving questions efficiently and takes less time.

4. Where can I find this material?

RD Sharma Class 12 Solutions Higher Order Derivatives MCQ is available on the Career360 website free of cost

5. Is the RD Sharma class 12 chapter 11 MCQ of the latest syllabus?

Yes, RD Sharma Class 12 Solutions Chapter 11 MCQ is updated to the latest version. This is why students can rest assured that the answers they are referring to are from the newest edition of the book.

Application Date:09 September,2024 - 14 November,2024

Application Date:09 September,2024 - 14 November,2024

Application Date:01 October,2024 - 14 November,2024

Admit Card Date:04 October,2024 - 29 November,2024

Admit Card Date:04 October,2024 - 29 November,2024

Get answers from students and experts

Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

Accepted by more than 11,000 universities in over 150 countries worldwide

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 15th NOV'24! Trusted by 3,500+ universities globally

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

News and Notifications

Back to top