Careers360 Logo
RD Sharma Class 12 Exercise 11.1 Higher Order Derivatives Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 11.1 Higher Order Derivatives Solutions Maths - Download PDF Free Online

Updated on Jan 27, 2022 02:55 PM IST

The RD Sharma Class 12th Exercise 11.1 have become an indispensable part of the class 12 students’ exam preparation routine. They use these books to complete their homework, assignments and study for the exams. These books are available for all the subjects and chapters.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 11 Higher Order Derivatives - Other Exercise

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 11 Higher Order Derivatives - Other Exercise
  2. Higher Order Derivatives Excercise:11.1
  3. RD Sharma Chapter-wise Solutions

Higher Order Derivatives Excercise:11.1

Higher Order Derivatives exercise 11.1 question 1(i)

Answer:
6x+2sec2xtanx
Hint:
You must know about derivative of tan x
Given:
x3+tanx
Solution:
Lety=x3+tanx
dydx=3x2+sec2x[d(tanx)dx=sec2x and dx3dx=3x2]d2ydx2=6x+2secxsecxtanxdsecxdx=secxtanxd2ydx2=6x+2sec2xtanx

Higher Order Derivatives exercise 11.1 question 1(ii)

Answer:
[sin(logx)+cos(logx)]x2
Hint:
You must know about derivative of sin x & log x
Given:
sin(logx)
Solution:
Lety=sin(logx)
dydx=cos(logx)×ddxlogx ( dsinxdx=cosx)dydx=cos(logx)×1x ( dlogxdx=1x)dydx=cos(logx)x
Use quotient rule
Asuv=uvvuv2
Wherev=xandu=cos(logx)
d2ydx2=xddx(cos(logx))cos(logx))ddx(x)x2d2ydx2=xsin(logx)d(logx)dx1cos(logx)x2(ddxx=1)d2ydx2=sin(logx)1xxcos(logx)x2(dlogxdx=1x)d2ydx2=sin(logx)cos(logx)x2d2ydx2=[sin(logx)+cos(logx)]x2

Higher Order Derivatives exercise 11.1 question 1(iii)

Answer:
cosec2x
Hint:
You must know about derivative of sin x & log x
Given:
log(sinx)
Solution:
Lety=log(sinx)
dydx=1sinxdsinxdx(dlogxdx=1x)dydx=1sinxcosx(dsinxdx=cosx)dydx=cotx(cosxsinx=cotx)d2ydx2=cotxd2ydx2=cosec2x(ddxcotx=cosec2x)

Higher Order Derivatives exercise 11.1 question 1(iv)

Answer:
24exsin5x+10excos5x
Hint:
You must know about derivative of sin x & ex
Given:
exsin5x
Solution:
Lety=exsin5x
Use multiplicative rule
AsUV=UV1+U1V
Where U=ex & V=sin 5x
dydx=exddxsin5x+ddxexsin5xdydx=excos5xddx5x+exsin5x(ddxex=ex)(dsin5xdx=cos5x)dydx=excos5x5+exsin5x(ddx5x=5)dydx=5excos5x+exsin5x
ddx(dydx)=ddx(5excos5x+exsin5x)
Again use multiplication rule
AsUV=UV1+U1V
Where U=ex & V=sin 5x
U=ex & V=cos 5x
d2ydx2=5[exddxcos5x+ddxexcos5x]+[exddxsin5x+ddxexsin5x]d2ydx2=5[ex(sin5x)ddx5x+excos5x]+[excos5xddx5x+exsin5x](dsinxdx=cosx,dcosxdx=sinx,d5xdx=5)
d2ydx2=5[ex(sin5x)5+excos5x]+[excos5x.5+exsin5x]d2ydx2=[25exsin5x+5excos5x]+[5excos5x+exsin5x]d2ydx2=24exsin5x+10excos5x

Higher Order Derivatives exercise 11.1 question 1(v)

Answer:
27e6xcos3x36e6xsin3x
Hint:
You must know about derivative of cos3x & e6x
Given:
e6xcos3x
Solution:
Lety=e6xcos3x
Use multiplicative rule
AsUV=UV1+U1V
Where U=e6x and V=cos3x
dydx=e6xddxcos3x+ddxe6xcos3xdydx=e6xsin3xddx3x+6e6xcos3x(dcosxdx=sinx,ddxe6x=e6x.6)dydx=3e6xsin3x+6e6xcos3xd2ydx2=3e6xsin3x+6e6xcos3x
AsUV=UV1+U1V
Where U=e6x and V=sin3x
d2ydx2=3[e6xcos3x(3)+e6xsin3x.6]+6[e6xcos3x6+e6x(sin3x)](dsin3xdx=3cos3x,dcos3xdx=3(sin3x),de6xdx=6e6x)d2ydx2=3[3e6xcos3x+6e6xsin3x]+6[e6xcos3x63e6xsin3x]d2ydx2=27e6xcos3x36e6xsin3x

Higher Order Derivatives exercise 11.1 question 1(vi)

Answer:
5x+6xlogx
HInt:
You must know about derivative of log x & x3
Given:
x3logx
Solution:
Lety=x3logx
Use multiplicative rule
As UV=UV1+U1V
Where U=x3 & V=log x
dydx=x3ddxlogx+ddxx3logxdydx=x31x+3x2logx(ddxlogx=1x,ddxx3=3x2) 
Use multiplicative rule
As UV=UV1+U1V
Where U=x2 & V=log x
d2ydx2=ddxx2+3[x2ddxlogx+ddxx2logx]d2ydx2=2x+3[x+2xlogx] ( ddxx2=2x,ddxlogx=1x)d2ydx2=2x+3x+6xlogxd2ydx2=5x+6xlogx

Higher Order Derivatives exercise 11.1 question 1(vii)

Answer:
2x(1+x2)2
Hint:
You must know about derivative of tan-1x
Given:
tan-1x
Solution:
Lety=tan1x
dydx=11+x2(dtan1xdx=11+x2)
Use Quotient rule
 As uv=u1vv1uv2 Where v=1+x2&u=1d2ydx2=(1+x2)ddx11ddx(1+x2)(1+x2)2d2ydx2=0(1+x2)1.2x(1+x2)2 ( ddx1=0,ddx(1+x2)=2x)d2ydx2=02x(1+x2)2d2ydx2=2x(1+x2)2

Higher Order Derivatives exercise 11.1 question 1(viii) maths

Answer:
xcosx2sinx
Hint:
You must know about derivative of x cos x
Given:
x cos x
Solution:
Letxcosx
Use multiplicative rule
As UV=UV1+U1V
Where U=x & V=cos x
dydx=xddxcosx+ddxxcosx(ddxx=1,ddxcosx=sinx)dydx=xsinx+cosx
Use multiplicative rule
As UV=UV1+U1V
Where U=x & V=sin x
d2ydx2=(xddxsinx+ddxxsinx)+dcosxdxd2ydx2=(xcosx+sinx)sinx(ddxcosx=sinx)d2ydx2=xcosxsinxsinxd2ydx2=xcosx2sinx

Higher Order Derivatives exercise 11.1 question 1(ix)

Answer:
(1+logx)x2(logx)2
Hint:
You must know about derivative of log(log x)
Given:
log(logx)
Solution:
Lety=log(logx)
dydx=ddxlog(logx)(dlogxdx=1x)dydx=1logxddx(logx)dydx=1logx1xdydx=1xlogx
Use Quotient rule
 As uv=u1vv1uv2 Where u=1&v=xlogx Use multiplicative rule  As UV=UV1+U1V Where U=1&V=logx
d2ydx2=ddx1xlogx1ddxxlogx(xlogx)2d2ydx2=0.xlogxxlogxx2(logx)2(ddxlogx=1x,ddx1=0,ddxx=1)d2ydx2=logx1x2(logx)2d2ydx2=(1+logx)x2(logx)2

Higher Order Derivatives exercise 11.1 question 2

Answer:
2exsinx
Hint:
You have to show
d2ydx2=2exsinx
Given:
If y=e-xcos x, show that
d2ydx2=2exsinx
Solution:
Let y=e-xcos x
Use multiplicative rule
 As UV=UV1+U1V Where U=ex&V=cosxdydx=exddxcosx+cosxddxexdydx=exsinxcosxex(dcosxdx=sinx,dexdx=1ex)
Again differentiating w.r.t.x we get
Use multiplicative rule
 As UV=UV1+U1V Where U=cosx&V=exd2ydx2=[sinxddxex+exddxsinx+cosxddxex+exddxcosx]d2ydx2=[sinx(ex)+excosx+cosx(ex)+ex(sinx)]
d2ydx2=[exsinx+excosxexcosxexsinx](ddxsinx=cosx,ddxcosx=sinx,ddxex=1ex)d2ydx2=[2sinxex]d2ydx2=2exsinx
Hence proved

Higher Order Derivatives exercise 11.1 question 3

Answer:
cos2xd2ydx22y+2x=0
Hint:
You have to show
cos2xd2ydx22y+2x=0
Given:
If y=x+tan x show that
cos2xd2ydx22y+2x=0
Solution:
Let y=x+tan x
y=x+tanx(dtanxdx=sec2x,ddxx=1)
dydx=1+sec2xd2ydx2=2secx(secxtanx)(ddxsec2x=2secx(secxtanx)d2ydx2=2sec2xtanx(sec2x=1cos2x,tanx=sinxcosx)d2ydx2=2sinxcos3x
According to question
cos2xd2ydx22y+2x=0
substituting these values we get
(2sinxcosx)2(x+tanx)+2x2sinxcosx2x2tanx+2x2tanx2x2tanx+2x=0
Hence proved

Higher Order Derivatives exercise 11.1 question 4 maths

Answer:
6x
HInt:
You must know about derivative of x3 & log x
Given:
If y=x3log x, Prove that
d4ydx4=6x
Solution:
Let y=x3log x
Use multiplicative rule
AsUV=UV1+U1V
 Where U=x3&V=logxdydx=x3ddxlogx+ddxx3logxdydx=x31x+3x2logx(dlogxdx=1x,ddxx3=3x2)dydx=x2+3x2logx
Use multiplicative rule
AsUV=UV1+U1V
 Where U=x2&V=logx
d2ydx2=3(x2ddxlogx+ddxx2logx)+ddxx2d2ydx2=3(x21x+2xlogx)+2x(dlogxdx=1x,ddxx2=2x)d2ydx2=3x+6xlogx+2xd2ydx2=5x+6xlogx
Use multiplicative rule
AsUV=UV1+U1V
 Where U=x&V=logx
d3ydx3=ddx5x+6(xddxlogx+ddxxlogx)d3ydx3=5+6(x1x+logx)(dlogxdx=1x,ddx5x=5)d3ydx3=5+6+6logx
d3ydx3=11+6logxd4ydx4=0+6x ( dlogxdx=1x,ddx11=0)d4ydx4=6x
Hence proved

Higher Order Derivatives exercise 11.1 question 5

Answer:
2cosxcosec3x
Hint:
You must know about how third derivatives be find
Given:
If y=log x(sin x). Prove that
d3ydx3=2cosxcosec3x
Solution:
Lety=log(sinx)(dlogxdx=1x)
dydx=1sinxddxsinxdydx=1sinxcosxdydx=cotx
again differentiating we get
d2ydx2=cosec2x (dcotxdx=cosec2x)
Again differentiating w.r.t. x we get
d3ydx3=2cosecx(cosecxcotx)(dcosec2xdx=cosecxcotx)d3ydx3=2cosxcosec3x

Higher Order Derivatives exercise 11.1 question 6

Answer:
d2ydx2+y=0
Hint:
You have to know about how to find derivative of second order
Given:
If y=2sin x+3cos x,show that
d2ydx2+y=0
Solution:
Let y=2sin x+3cos x
dydx=2cosx3sinx(dcosxdx=sinx,dsinxdx=cosx)d2ydx2=2sinx3cosxd2ydx2=yd2ydx2+y=0
Hence proved

Higher Order Derivatives exercise 11.1 question 7

Answer:
d2ydx2=2logx3x3
Hint:
You have to know about derivative of
logxx
Given:
Ify=logxx,showthat
d2ydx2=2logx3x3
Solution:
Lety=logxx
Use quotient rule
uv=u1vv1uv2u=logx&v=xdydx=logxxdydx=xddxlogxlogxddxxx2(dlogxdx=1x)dydx=x1xlogx1x2dydx=1logxx2
Use Quotient rule again
uv=u1vv1uv2u=1logx&v=x2d2ydx2=x2ddx(1logx)ddxx2(1logx)(x2)2d2ydx2=x2(1x)(1logx)2xx4(dlogxdx=1x,ddxx2=2x)
d2ydx2=x2x+2xlogxx4d2ydx2=2xlogx3xx4d2ydx2=2xlogx3x3
Hence proved

Higher Order Derivatives exercise 11.1 question 8 maths

Answer:
b4a2y3
Hint:
You must know about derivative of
tanθandsecθ
Given:
Ifx=asecθ,y=btanθ
Prove that
d2ydx2=b4a2y3
Solution:
Letx=asecθy=btanθ
dydx=dydθdxdθd2ydx2=ddx(dydx)x=asecθ,y=btanθ
dxdθ=asecθtanθ ( dtanθdx=sec2x,dsecθdx=secθtanθ)dydθ=bsec2θdydx=basecθtanθ=basinθddθ(dydx)=bacosecθcotθ
=bacosecθcotθasecθtanθd2ydx2=ba2tan3θy=btanθd2ydx2=ba2(yb)3θy=b4a2y3

Higher Order Derivatives exercise 11.1 question 9

Answer:
sec3θaθ
Hint:
You must know about derivative of
cosθandsinθ
Given:
 If x=a(cosθ+θsinθ),y=a(sinθθcosθ) Prove that d2xdθ2=a(cosθθsinθ),d2ydθ2=a(sinθθcosθ),d2ydx2=sec3θaθ
Solution:
 Let x=a(cosθ+θsinθ),y=a(sinθθcosθ)
Use multiplicative rule
 As UV=UV1+U1V Where U=θ&V=sinθdxdθ=a[sinθ+θcosθ+sinθ][dsinθdx=cosθ,dcosθdx=sinθ]dxdθ=aθcosθ
again
Use multiplicative rule
 As UV=UV1+U1V Where U=θ&V=cosθdydθ=a[cosθ+θsinθcosθ]dydθ=aθsinθ
Again Use multiplicative rule
 As UV=UV1+U1V Where U=θ&V=cosθd2xdθ2=a[θsinθ+cosθ]d2xdθ2=a[cosθθsinθ]
Again Use multiplicative rule
 As UV=UV1+U1V Where U=θ&V=sinθd2ydθ2=a{θcosθ+sinθ}d2xdθ2=a(cosθθsinθ)
d2ydθ2=a(θcosθ+sinθ)dydx=aθsinθaθcosθ=tanθd2ydx2=ddx(dydx)=ddθ(dydx)dθdx
ddθ(tanθ)×1aθcosθsec2θaθcosθd2ydx2=sec3θaθ

Higher Order Derivatives exercise 11.1 question 10

Answer:
2excos(x+π2)
Hint:
You must know about derivative of ex cos x
Given:
If y = ex cos x, prove that
d2ydx2=2excos(x+π2)
Solution:
Let y = ex cos x
Use multiplicative rule
 As UV=UV1+U1V Where U=ex&V=cosxdydx=ex(sinx)+excosx(ddxcosx=sinx)
Again Use multiplicative rule
Differentiating again
d2ydx2=[excosx+sinxex]+[exsinx+excosx]d2ydx2=2sinxexd2ydx2=2excos(x+π2)

Higher Order Derivatives exercise 11.1 question 11

Answer:
ba2y3
Hint:
You must know about derivative of second order
Given:
 If x=acosθ,y=bsinθ Show that d2ydx2=ba2y3
Solution:
Letx=acosθ,y=bsinθ
dydx=dydθdxdθd2ydx2=ddθ(dydx)dxdθx=acosθ,y=bsinθdxdθ=asinθdydθ=bcosθdydx=bacotθ
ddθ(dydx)dxdθ=bacosec2θasinθ(ddθcotθ=cosec2θ)b×b3a2sin3θ×b3d2ydx2=ba2y3
Hence proved

Higher Order Derivatives exercise 11.1 question 12 maths

Answer:
3227a
Hint:
You must know about derivative of
cos3θsin3θ
Given:
 If x=a(1cos3θ),y=asin3θ Prove that d2ydx2=3227aatθ=π6
Solution:
 Let x=a(1cos3θ),y=asin3θ
dydθ=3asin2θcosθ(ddθsin3θ=3asin2θcosθ)dydθ=3cos2θsinθ (ddθcos3θ=3cos2θsinθ)dydx=tanθ(ddθtanθ=sec2θ)
ddθ(dydx)dxdθ=sec2θ3acos2θsinθd2ydx2=sec4θ3asinθ(θ=π6)d2ydx2=sec4(π6)3asin(π6)=3227a
Hence proved

Higher Order Derivatives exercise 11.1 question 13

Answer:
ay2
HInt:
You must know about derivative of second order
Given:
 If x=a(θ+sinθ),y=a(1+cosθ) Prove that d2ydx2=ay2
Solution:
 Let x=a(θ+sinθ),y=a(1+cosθ)
dxdθ=a[1+cosθ] ( ddθθ=1,ddθsinθ=cosθ)dydθ=a(sinθ)dydx=dydθdxdθ=sinθ(1+cosθ)
sin2θ=2sinθcosθcos2θ=2cos2θ1dydx=2sinθ2cosθ22cos2θ2
dydx=tanθ2d2ydx2=ddx(dydx)=ddθ(dydx)dθdxddθ(tanθ2)1a(1+cosθ)
d2ydx2=12sec2θ21a(1+cosθ)=sec2θ22a(1+cosθ)ay2=aa(1+cosθ)2=aa2(1+cosθ)(1+cosθ)
1a(1+2cos2θ21)(1cosθ)=12acos2θ2(1+cosθ)=sec2θ22a(1+cosθ)
RHL:ay2=aa(1+cosθ)2=1a(1+2cos2θ21)(1cosθ)d2ydx2=sec2θ22a(1+cosθ)=ay2d2ydx2=ay2
Hence proved

Higher Order Derivatives exercise 11.1 question 14

Answer:
cosecx4θ24a
Hint:
You must know about derivative of
cosθandsinθ
Given:
 If x=a(θsinθ),y=a(1+cosθ) Find d2ydx2
Solution:
 Let x=a(θsinθ),y=a(1+cosθ)
dxdθ=a[1cosθ]......(1)dydθ=a(sinθ)......(2) Now dydx=dydθdxdθ=sinθ(1cosθ)
Using identity
sin2θ=2sinθ2cosθ22sin2θ2=1cosθcos2θ=12sin2θ2sin2θ=1cos2θ
dydx=2sinθ2cosθ22sin2θ2dydx=cotθ2
Now diff on both sides
d2ydx2=ddx(dydx)=ddθ(dydx)dθdxd2ydx2=cosec2θ121a(1cosθ)d2ydx2=cosec2θ2121a2sin2θ2
=cosec2θ2×cosec2θ24ad2ydx2=cosec4θ24a
Hence proved

Higher Order Derivatives exercise 11.1 question 15

Answer:
1a
Hint:
  You must know about derivative of cosθ&sinθ
Given:
 If x=a(1cosθ),y=a(θ+sinθ) Prove that d2ydx2=1aandθ=π4
Solution:
 Let x=a(1cosθ),y=a(θ+sinθ)
dxdθ=asinθdydθ=a(1+cosθ)dydx=dydθdxdθ=1+cosθsinθ
Use Quotient rule
 As uv=u1vv1uv2 Where u=1+cosθ&v=sinθddθ(dydx)=sinθ(sinθ)(1+cosθ)cosθsin2θ
ddθ(dydx)=1+cosθ(1cosθ)(1+cosθ)d2ydx2=11cosθasin2θd2ydx2=1asinθ(1cosθ)(θ=π2)
d2ydx2=1asinπ2(1cosπ2)d2ydx2=1a
Hence proved

Higher Order Derivatives exercise 11.1 question 16 maths

Answer:
1a
Hint:
  You must know about derivative of cosθ&sinθ
Given:
 If x=a(1+cosθ),y=a(θ+sinθ) Prove that d2ydx2=1aandθ=π4
Solution:
 Let x=a(1+cosθ),y=a(θ+sinθ)
dxdθ=asinθdydθ=a(1+cosθ)dydx=dydθdxdθ=1+cosθsinθ
Use Quotient rule
 As uv=u1vv1uv2 Where u=1+cosθ&v=sinθddθ(dydx)=sinθ(sinθ)+(1+cosθ)cosθsin2θ
d2ydx2=1+cosθsin2θ1asinθd2ydx2=(1+cosθ)asin2θd2ydx2=(1+cosπ2)asin2π2(θ=π2)d2ydx2=1a
Hence proved

Higher Order Derivatives exercise 11.1 question 17

Answer:
 3sin2θ[5cos2θ1]
Hint:
 You must know about derivative of cosθ&sinθ
Given:
 If x=cosθ,y=sin3θ Prove that yd2ydx2+(dydx)2=3sin2θ[5cos2θ1]
Solution:
 Let x=cosθ,y=sin3θ
dxdθ=sinθdydθ=3sin2θcosθdydx=dydθdxdθ=3sin2θcosθsinθ=3sinθcosθ
d2ydx2=d(dydxdx)=d(dydθ)dθdxdθ=cos2θ3+3sin2θsinθ
yd2ydx2+(dydx)2=sin3θ(3cos2θ3sin2θ)sinθyd2ydx2+(dydx)2=3sin2θ[5cos2θ1]
Hence proved

Higher Order Derivatives exercise 11.1 question 18

Answer:
0
Hint:
You must know about derivative of
cosθandtanθ
Given:
Ify=sin(sinx)
Provethatd2ydx2+tanxdydx+ycos2x=0
Solution:
Lety=sin(sinx)
dydx=cos(sinx)cosxd2ydx2=cos(sinx)(sinx)+cosx(sin(sinx)cosx)d2ydx2=sinxcos(sinx)cos2x(sin(sinx))
LHS:d2ydx2+tanxdydx+ycos2xsinxcos(sinx)cos2x(sin(sinx))+tanxcosxcos(sinx)+sin(sinx)cos2xsinx(cos(sinx))+sinxcosxcosxcos(sinx)sinxcosxsinx+sinxcosxsinx
Hence proved

Higher Order Derivatives exercise 11.1 question 19

Answer:
0
HInt:
You must know about derivative of sin pt
Given:
Ifx=sint,y=sinpt
 Prove that (1x2)d2ydx2xdydx+p2y=0
Solution:
Letx=sint,y=sinpt
dxdt=cost and dydt=pcospt Now dydx=pcosptcostdydxcost=pcospt
(dydx)2(1sin2t)=p2(1sin2pt)(dydx)2(1x2)=p2(1y2)
Differentiating with x
(1x2)2dydx×d2ydx2+(dydx)2(2x)=p2×2ydydx2dydx[(1x2)d2ydx2xdydx]=p2y2dydx(1x2)d2ydx2xdydx+p2y=0
Hence proved

Higher Order Derivatives exercise 11.1 question 20 maths

Answer:
0
Hint:
You must know about derivative of sin-1 x
Given:
Ify=(sin1x)2Provethat(1x2)y2xy12=0
Solution:
Lety=(sin1x)2
dydx=2sin1x(11x2)(ddxsin1x=(11x2))d2ydx2=21x2(11x2)sin1x×12(2x1x2)1x2
d2ydx2=2(1+xsin1x1x2)1x2(1x2)y2=2+2xsin1x1x2(1x2)y2y1x2=0
Hence proved

Higher Order Derivatives exercise 11.1 question 21

Answer:
Proved
Hint:
You must know about the derivative of exponential function and tangent inverse x
Given:
y=etan1x,Prove(1+x2)y2+(2x1)y1=0
Solution:
Lety=etan1x
dydx=etan1x×1(1+x2)(x2+1)dydx=etan1x(x2+1)d2ydx2+2xdydx=etan1x×1(1+x2)
(x2+1)d2ydx2+2xdydx=dydx(x2+1)d2ydx2+(2x1)dydx=0 or (x2+1)y2+(2x1)y1=0

Higher Order Derivatives exercise 11.1 question 22

Answer:
Proved
Hint:
You must know about the derivative of logarithm function and cos x and sin x
Given:
y=3cos(logx)+4sin(logx)
Solution:
Lety=3cos(logx)+4sin(logx)
 Differentiating both sides w.r.t xdydx=3sin(logx)d(logx)dx+4cos(logx)d(logx)dx
 By using product rule of derivation dydx=3sin(logx)x+4cos(logx)xxdydx=3sin(logx)+4cos(logx)
 Again differentiating both sides w.r.t x , xddx(dydx)+dydxddx(x)=ddx[3sin(logx)+4cos(logx)]
 By using product rule of derivation, xd2ydx2+dydx(1)=3cos(logx)ddx(logx)4sin(logx)ddx(logx)xd2ydx2+dydx(1)=3cos(logx)x4sin(logx)x
xd2ydx2+dydx=[3cos(logx)+4sin(logx)]xx2d2ydx2+xdydx=[3cos(logx)+4sin(logx)]x2d2ydx2+xdydx=y
x2d2ydx2+xdydx+y=0 or x2y2+xy1+y=0

Higher Order Derivatives exercise 11.1 question 23

Answer:
Proved
Hint:
You must know about the derivative of exponential function
Given:
y=e2x(ax+b),showthaty24y1+4y=0
Solution:
y=e2x(ax+b)......(1)
 By using product rule of derivation dydx=e2xdydx(ax+b)+(ax+b)ddxe2xdydx=ae2x+2(ax+b)e2xdydx=e2x(a+2ax+2b).....(2)
 Again differentiating both sides w.r.t x, using product rule d2ydx2=e2xdydx(a+2ax+2b)+(a+2ax+2b)ddxe2xd2ydx2=2e2x+2(a+2ax+2b)e2x.(3)
InordertoprovetheexpressiontrytogettherequiredformSubtracting4×equation(2)fromequation(3)d2ydx24dydx=2e2x+2(a+2ax+2b)e2x4e2x(a+2ax+2b)d2ydx24dydx=2ae2x2e2x(a+2ax+2b)d2ydx24dydx=4e2x(ax+b)
 Using equation (1)d2ydx24dydx=4yd2ydx24dydx+4y=0y24y1+4y=0

Higher Order Derivatives exercise 11.1 question 24 maths

Answer:
Proved
Hint:
You must know about the derivative of sin function and logarithm function
Given:
x=sin(1alogy) show that (1x2)y2xy1a2y=0
Solution:
x=sin(1alogy)logy=asin1xy=easin1x.....(1)
 Let t=asin1xdtdx=a1x2[ddxsin1x=11x2] and y=etdydx=dydt×dtdxdydx=eta1x2=aeasin1x1x2.......(2)
 Again differentiating both sides d2ydx2=aeasin1xddx(11x2)+a1x2ddxeasin1x
 Using chain rule and equation d2ydx2=aeasin1x2(1x2)1x2(2x)+a2easin1x(1x2)d2ydx2=xaeasin1x(1x2)1x2+a2easin1x(1x2)(1x2)d2ydx2=a2easin1x+xaeasin1x1x2
 Using equation (1) and (2)(1x2)d2ydx2=a2y+xdydx(1x2)d2ydx2a2yxdydx=0(1x2)y2xy1a2y=0

Higher Order Derivatives exercise 11.1 question 25

Answer:
Proved
HInt:
You must know the derivative of logarithm and tangent inverse x
Given:
logy=tan1x, show (1+x2)y2+(2x1)y1=0
Solution:
logy=tan1x Differentiate the equation w.r.t x1ydydx=11+x21+x2dydx=y
Differentiateagain(1+x2)d2ydx2+dydx(2x)=dydx(1+x2)d2ydx2+(2x1)dydx=0or(1+x2)y2+(2x1)y1=0

Higher Order Derivatives exercise 11.1 question 26

Answer:
Proved
Hint:
You must know the derivative of logarithm and tangent inverse x
Given:
y=tan1x, show (1+x2)d2ydx2+(2x)dydx=dydx
Solution:
y=tan1x
Differentiatetheequationw.r.txdydx=11+x2(1+x2)dydx=1Differentiateagain(1+x2)d2ydx2+(2x)dydx=0or(1+x2)y2+(2x)y1=0

Higher Order Derivatives exercise 11.1 question 27

Answer:
Proved
Hint:
You must know the derivative of logarithm and tangent inverse x
Given:
y={log(x+x2+1)}2, show (1+x2)d2ydx2+xdydx=2
Solution:
y={log(x+x2+1)}2
 Differentiate the equation w.r.t xdydx=2log(x+x2+1)1x+x2+1×(1+2x2x2+1)=2log(x+x2+1)x+x2+1×x+x2+1x2+1=x2+1dydx=2log(x+x2+1)
 Differentiate again d2ydx21+x2+2x21+x2dydx=2x+x2+1×(1+2x2x2+1)(x2+1)d2ydx2+xdydxx2+1=2x+x2+1×x+x2+1x2+1(1+x2)d2ydx2+xdydx=2

Higher Order Derivatives exercise 11.1 question 28 maths

Answer:
Proved
Hint:
You must know the derivative of logarithm and tangent inverse x
Given:
y=(tan1x)2, show (1+x2)2y2+2x(1+x2)y1=2
Solution:
y=(tan1x)2 Differentiate the equation w.r.t xdydx=2tan1x11+x2(1+x2)dydx=2tan1x
 Differentiate again (1+x2)d2ydx2+(2x)dydx=21+x2(1+x2)2d2ydx2+dydx(1+x2)(2x)=2or(1+x2)2y2+2x(1+x2)y1=2

Higher Order Derivatives exercise 11.1 question 29

Answer:
Proved
Hint:
You must know the derivative of cot x function
Given:
y=cotx, show d2ydx2+(2y)dydx=0
Solution:
Lety=cotx
 Differentiate the equation w.r.t xdydx=d(cotx)dxdydx=cosec2x
 Differentiate again d2ydx2=[2cosecx(cosecxcotx)]d2ydx2=2cosec2xcotx
d2ydx2=2dydxyd2ydx2+(2y)dydx=0

Higher Order Derivatives exercise 11.1 question 30

Answer:
2x2
Hint:
You must know the derivative of logarithm function
Given:
y=log(x2e2), find d2ydx2
Solution:
Lety=log(x2e2)
Differentiatetheequationw.r.txdydx=1x2e21e22x=2xDifferentiateagaind2ydx2=2[1x2]=2x2Hence,d2ydx2=2x2



Higher Order Derivatives exercise 11.1 question 31

Answer:
Proved
Hint:
You must know the derivative of exponential function
Given:
y=ae2x+bex, show d2ydx2dydx2y=0
Solution:
y=ae2x+bex
 Differentiate the equation w.r.t xdydx=2ae2x+bexd2ydx2=4ae2x+bex
 LHS =d2ydx2dydx2y=4ae2x+bex2ae2x+bex=2ae2x2be2x=0= RHS 



Higher Order Derivatives exercise 11.1 question 31

Answer:
Proved
Hint:
You must know the derivative of exponential function
Given:
y=ae2x+bex, show d2ydx2dydx2y=0
Solution:
y=ae2x+bex
 Differentiate the equation w.r.t xdydx=2ae2x+bexd2ydx2=4ae2x+bex
 LHS =d2ydx2dydx2y=4ae2x+bex2ae2x+bex=2ae2x2be2x=0= RHS 



Higher Order Derivatives exercise 11.1 question 32 maths

Answer:
Proved
Hint:
You must know the derivative of exponential sin and cos functions
Given:
y=ex(sinx+cosx), show d2ydx22dydx+2y=0
Solution:
y=ex(sinx+cosx)
 Differentiate the equation w.r.t xdydx=ex(cosxsinx)+ex(sinx+cosx)dydx=ex(cosxsinx)+y
 Differentiate again d2ydx2=ex(sinxcosx)+ex(cosxsinx)+dydxd2ydx2=y+dydxy+dydxd2ydx22dydx+2y=0

Higher Order Derivatives exercise 11.1 question 33

Answer:
coty.cosec2y
Hint:
You must know the derivative of cos inverse function
Given:
y=cos1x, find d2ydx2 in terms of y alone 
Solution:
y=cos1x
 Differentiate the equation w.r.t xdydx=d(cos1x)dx=11x2=(1x2)12d2ydx2=d[(1x2)12]dx
=(12)(1x2)32×(2x)=12(1x2)3×(2x)d2ydx2=x(1x2)3
y=cos1xx=cosy Put in above equation d2ydx2=cosy(1cos2y)3
d2ydx2=cosysin3y=cosysin3y=cosysiny×1sin2yd2ydx2=cotycosec2y

Higher Order Derivatives exercise 11.1 question 34

Answer:
Proved
Hint:
You must know the derivative of exponential and cos inverse function
Given:
y=eacos1x, prove (1x2)d2ydx2xdydxa2y=0
Solution:
y=eacos1x
 Taking logarithm both sides logy=acos1xlogclogy=acos1x1ydydx=a×(11x2)dydx=ay1x2
 Squaring both sides, (dydx)2=a2y2(1x2)(1x2)(dydx)2=a2y2
 Again differentiate, (dydx)2(2x)+(1x2)×2dydxd2ydx2=a22ydydxxdydx+(1x2)d2ydx2=a2y(1x2)d2ydx2xdydxa2y=0

Higher Order Derivatives exercise 11.1 question 35

Answer:
Proved
HInt:
You must know the derivative of exponential function
Given:
y=500e7x+600e7x, show d2ydx2=49y
Solution:
y=500e7x+600e7x
dydx=(7)(500)e7x+(7)(600)e7xd2ydx2=(7)(7)(500)e7x+(7)(7)(600)e7xd2ydx2=(49)(500)e7x+(49)(600)e7xd2ydx2=(49)[(500)e7x+(600)e7x]d2ydx2=49y

Higher Order Derivatives exercise 11.1 question 36 maths

Answer:
32
Hint:
You must know the derivative of cos and sin function
x=2costcos2t
Given:
y=2sintsin2t, find d2ydx2 at t=π2
Solution:
x=2costcos2ty=2sintsin2tdxdt=2sint+2sin2tdydt=2cost2cos2t
 Now, dydx=2cost2cos2t2sint+2sin2tcostcos2tsin2tsint=2sin3t2sint22cos3t2sint2tan3t2
 Therefore, d2ydx2=sec23t2×32×dtdx=3sec23t212sin2t2sintd2ydx2]t=π2=32

Higher Order Derivatives exercise 11.1 question 37

Answer:
764z3
Hint:
You must know the derivative of x and y
Given:
x=4z2+5y=6z2+7z+3, find d2ydx2
Solution:
x=4z2+5y=6z2+7z+3dxdz=8z+0=8zdydz=12z+7 Now, dydx=12z+78zdydx=32+78z
Againdifferentiatingw.r.tzd2ydx2×dxdz=78z2ord2ydx2=78z2×dzdx=78z2×18zd2ydx2=764z3

Higher Order Derivatives exercise 11.1 question 38

Answer:
Proved
Hint:
You must know the derivative of logarithm and cos function
Given:
y=log(1+cosx), prove d3ydx3+d2ydx2×dydx=0
Solution:
y=log(1+cosx)
dydx=sinx1+cosxd2ydx2=cosxcos2xsin2x(1+cosx)2=(cosx+1)(1+cosx)=11+cosx Again differentiating 
d3ydx3=sinx(1+cosx)2d3ydx3+sinx(1+cosx)2=0d3ydx3+(11+cosx)(sinx1+cosx)=0d3ydx3+d2ydx2×dydx=0

Higher Order Derivatives exercise 11.1 question 39

Answer:
Proved
Hint:
You must know the derivative of sin and logarithm function
Given:
y=sin(logx), prove x2d2ydx2+xdydx+y=0
Solution:
y=sin(logx)
dydx=cos(logx)×1x=cos(logx)x Again differentiating d2ydx2=x[sin(logx)×1x]cos(logx)x2=cos(logx)sin(logx)x2
 Now,  LHS =x2d2ydx2+xdydx+y=x2{cos(logx)sin(logx)}x2+xcos(logx)x+sin(logx)=0=RHS

Higher Order Derivatives exercise 11.1 question 40 maths

Answer:
Proved
Hint:
You must know the derivative of exponential function
Given:
y=3e2x+2e3x, prove d2ydx25dydx+6y=0
Solution:
y=3e2x+2e3x
dydx=(2)(3)e2x+(3)(2)e3x=6e2x+6e3xdydx=6e2x+6(y3e2x)2dydx=6e2x+3y9e2x=3e2x+3y
 Again differentiating d2ydx2=3dydx6e2x.(1)dydx3y=3e2xdydx3y3=e2x
 Put in (1), d2ydx2=3dydx6(dydx3y3)d2ydx2=3dydx+2dydx6yd2ydx25dydx+6y=0

Higher Order Derivatives exercise 11.1 question 41

Answer:
Proved
Hint:
You must know the derivative of cot inverse x
Given:
y=(cot1x)2, prove y2(x2+1)2+2x(x2+1)y1=2
Solution:
y=(cot1x)2
dydx=2cot1x(11+x2)(1+x2)dydx=2cot1x Again differentiating (1+x2)2d2ydx2+2xdydx=2(11+x2)
(1+x2)2d2ydx2+2xdydx=(21+x2)(1+x2)2d2ydx2+2x(1+x2)dydx=2y2(x2+1)2+2x(x2+1)y1=2



Higher Order Derivatives exercise 11.1 question 42

Answer:
Proved
Hint:
You must know the derivative of cosec-1x
Given:
y=(cosec1x),x>1, prove x(x21)d2ydx2+(2x21)dydx=0
Solution:
y=(cosec1x)dydx=1xx21xx21dydx=1
 Again differentiating xx21d2ydx2+x21dydx+x2x2x21dydx=0x(x21)d2ydx2+(2x21)dydx=0

Higher Order Derivatives exercise 11.1 question 43

Answer:
22=d2ydx2 and 1x=d2ydx2
Hint:
You must know the derivative of cos, tan, sin and logarithm function
Given:
x=cost+logtant2y=sint find d2ydx2&d2ydx2 at t=π4
Solution:
y=sintdydt=costd2ydt2=sintd2ydt2]t=π4=sinπ4=12
 Again differentiating x=cost+logtant2dxdt=sint+1tant2sec2t212=sint+cost22×sint2sec2t212=sint+1sin2×t2
=sint+cosect Now ,dydx=dydt×dtdx=costcosectsint=cost1sin2tsint=sintcostcos2td2ydx2=d(dydx)dx
=ddt(dydx)dxdt=sec2tcosectsint=sec2tsintcos2t=sec2ttantd2ydx2]π4=22×1=22

Higher Order Derivatives exercise 11.1 question 44 maths

Answer:
1asin2tcost
Hint:
You must know the derivative of sin, cos, tan and logarithm function
Given:
x=asinty=a(cost+logtant2) find d2ydx2
Solution:
x=asintdxdt=acosty=a(cost+logtant2)dydt=a(sint+cott2×sec2t2×t2)
=a(sint+12sin(t2)×cos(t2))dydt=a(sint+1sint)=a(sin2t+1sint)acos2tsint
dydx=dydt×dtdx=acos2tsintacost=costsint=cott Again d2ydx2=cosec2tdtdx=cosec2t×1acost=1asin2tcost

Higher Order Derivatives exercise 11.1 question 45

Answer:
82πa
Hint:
You must know the derivative of cos and sin function
Given:
x=a(cost+tsint)y=a(sinttcost) find d2ydx2 at t=π4
Solution:
x=a(cost+tsint)dxdt=a(sint+tcost+sint)=atcosty=a(sinttcost)dydt=a(cost+tsintcost)=atsint
dydx=dydt×dtdx=atsintatcost=tant Again d2ydx2=sec2tdtdx=sec2t×1atcost
=sec2tatd2ydx2]t=π4=sec2π4aπ4=22×4aπ=82πa

Higher Order Derivatives exercise 11.1 question 46

Answer:
83a
Hint:
You must know the derivative of cos, sin, tan and logarithm function
Given:
x=a(cost+logtant2)y=asint find d2ydx2 at t=π3
Solution:
x=a(cost+logtant2)dxdt=a[sint+1tant2sec2t212]dxdt=a[sint+cost22sint21cos2t2]
dxdt=a[sint+12sint2cost2]dxdt=a[sint+1sint]dxdt=acos2tsinty=asint
dydt=acostdydx=dydt×dtdx=acostacos2t×sint=tant Again d2ydx2=sec2t×sintacos2t
d2ydx2]t=π3=sec2π3sinπ3acos2π4=(2)2(32)a(12)2d2ydx2]t=π3=83a

Higher Order Derivatives exercise 11.1 question 47

Answer:
(sin2t+2atcos2t)(cos2t2atsin2t)
Hint:
You must know the derivative of cos and sin function
Given:
x=a(cos2t+2tsin2t)y=a(sin2t2tcos2t) find d2ydx2
Solution:
x=a(cos2t+2tsin2t)dxdt=a(2sin2t+2sin2t+4tcos2t)=4atcos2td2xdt2=4acos2t8atsin2t
y=a(sin2t2tcos2t)dydt=a(2cos2t2cos2t+4tsin2t)=4atsin2td2ydt2=4asin2t+8atcos2t
 So, d2ydx2=4sin2t+8atcos2t4cos2t8atsin2t=4(sin2t+2atcos2t)4(cos2t2atsin2t)=(sin2t+2atcos2t)(cos2t2atsin2t)

Higher Order Derivatives exercise 11.1 question 48 maths

Answer:
13sin3tcos2t
Hint:
You must know the derivative of cos t and sin t function
Given:
x=3cost2cos3ty=3sint2sin3t find d2ydx2
Solution:
x=3cost2cos3tdxdt=3sint+6cos2tsint=sint+(6cos2t3)y=3sint2sin3tdydt=3cost6sin2tcost=cost(36sin2t)
dydx=dydt×dxdt=cost(36sin2t)sint+(6cos2t3)=cost(12sin2t)3(2cos2t1)=cott(cos2t)cos2t=cottdydx=cottd2ydx2=cosec2t

Higher Order Derivatives exercise 11.1 question 49

Answer:
(x2+y2)y3
Hint:
You must know the derivative of cos t and sin t function
Given:
x=asintbcosty=acostbsint Prove d2ydx2=(x2+y2)y3
Solution:
dydx=dydt×dtdx=asint+bcostacost+bsint Use quotient rule UV=UVUVV2
d2ydx2=d(dydx)dtdxdt=(acostbsint)(acost+bsint)(asint+bcost)(asint+bcost)(acost+bsint)2(acost+bsint)=(acost+bsint)2(bcostasint)2y3=y2x2y3=(x2+y2)y3

Higher Order Derivatives exercise 11.1 question 50

Answer:
A=23andB=13
Hint:
You must know the derivative of second order
Given:
 Find A&B so that y=Asin3x+Bcos3x satisfies the equation d2ydx2+4dydx+3y=10cos3x
Solution:
 Let y=Asin3x+Bcos3xdydx=d(Asin3x+Bcos3x)dx=Acos3x3+b(sin3x.3)[dcos3xdx=3sin3xdsin3xdx=3cos3x]
dydx=3Acos3x3Bsin3xd2ydx2=ddx(3Acos3x3Bsin3x)=3A(sin3x3)3B(cos3x.3)=9Asin3x9Bcos3x=9(Asin3x+3cos3x)=9y
d2ydx2+4dydx+3y=10cos3x9y+4(3Acos3x3Bsin3x)+3y=10cos3x6y+12Acos3x12Bsin3x=10cos3x6(Asin3x+Bcos3x)+12Acos3x12Bsin3x=10cos3xsin3x(6A12B)+cos3x(6B+12A)=10cos3x6A12B=0..(1)6B+12A=0..(2)6A=12BA=2B(3)
 Put (3) in (2) 6B+(2B)12=106B24B=1030B=10B=13A=2(13)=23A=23&B=13

Higher Order Derivatives exercise 11.1 question 51

Answer:
d2ydt2+2kdydt+n2y=0
Hint:
You must know the derivative of
Aektcos(pt+c)
Given:
 If y=Aektcos(pt+c) prove that d2ydt2+2kdydt+n2y=0 where n2=p2+k2
Solution:
 Let y=Aektcos(pt+c)..(1)dydx=Aekt(k)cos(pt+c)+Aekt(sin(pt+c)p)dydt=Akektcos(pt+c)Apekt(sin(pt+c))..(2)
d2ydx2=Ak2ektcos(pt+c)+Apkektsin(pt+c)Apkektsin(pt+c)Ap2ektcos(pt+c)d2ydt2=(k2p2)Aektcos(pt+c)+2k(Apektsin(pt+c))..(3)
 Using (1)&(2)&n2=k2+p2d2ydt2=(k2p2)y+2k(kydydt)d2ydt2=(k2p22k2)y+2k(dydt)d2ydt2=n2y2kdydtd2ydt2+2kdydt+n2y=0

Higher Order Derivatives exercise 11.1 question 52 maths

Answer:
x2d2ydx2+x(12n)dydx+(1+n2)y=0
Hint:
You must know the derivative of
cos(logx)andsin(logx)
Given:
 If y=xn{acos(logx)+bsin(logx)} prove that x2d2ydx2+x(12n)dydx+(1+n2)y=0
Solution:
 Let y=xn{acos(logx)+bsin(logx)} Use multiplicative rule UV=UV+UVU=xnV=acos(logx)+bsin(logx)
dydx=nxn1{acos(logx)+bsin(logx)}+xn{asin(logx)x+bcos(logx)x}dydx=nyx+xnx(asin(logx)+bcos(logx))xdydx=ny+xn(asin(logx)+bcos(logx))
dydx+xd2ydx2=ndydx+nxn1(asin(logx)+bcos(logx))+xn{asin(logx)x+bcos(logx)x}dydx(1x)+xd2ydx2=nxn1(asin(logx)+bcos(logx))+xn{asin(logx)x+bcos(logx)x}
dydx(1n)+xd2ydx2=nxn1(asin(logx)+bcos(logx))1xydydx(1n)+xd2ydx2=nx(xdydxny)yx
dydx+x(1n)dydx=nxdydxn2yyd2ydx2+dydx(xnxnx)(1+n2)y=0x2d2ydx2+x(12n)dydx+(1+n2)y=0

The RD Sharma Class 12 Solutions Higher Order Derivatives Ex 11.1 is available for the students who find difficulty in this chapter. The 11th chapter of class 12 mathematics consists of only 1 exercise, ex 11.1. Therefore, it is the smallest and one of the easiest chapters that is present in the syllabus.

There are 61 questions in total including the sub headings and the topics included in this chapter are meaning and documentations of higher order derivatives, discovering second order derivatives, establishing relations and various other order derivatives.

The additional questions mock test questions present in the Class 12 RD Sharma Chapter 11 Exercise 11.1 book helps the students to assess themselves before facing the real examinations. This makes them fix a target score easily when they prepare for the next exam.

Most of the teachers also refer to the RD Sharma Class 12th Exercise 11.1 Chapter 11 Higher Order Derivatives solution book to find out various tricks that can be applied. The questions for the class tests and the homework sums are also taken from the RD Sharma Class 12 Chapter 11 Exercise 11.1 book.

Many previous batch students have admitted that the contribution of the RD Sharma Class 12 Chapter 11 Exercise 11.1 book was immense in making them score high marks.

The benefits of referring to the RD Sharma solution books are:

  • The students gain the access to the best solution book provided by the experts at the Career 360 website.

  • They can utilize all the resources for free of cost without paying even a single rupee.

  • Many additional sets of questions are present.

  • Various tips are given for many sums.

  • The sums that can be performed in other methods are also solved.

Background wave

Therefore, the RD Sharma Class 12 Solutions Chapter 11 ex 11.1 can be downloaded in the form of a PDF at the Career 360 website. The students can easily attain their highest targets by practising with the Class 12 RD Sharma Chapter 11 Exercise 11.1 Solution book.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. How can the class 12 students clarify their doubts in the Higher Order Derivatives chapter?

The students can use the RD Sharma Class 12th Exercise 11.1 reference book to clear their nagging doubts regarding this chapter. 

2. Where can the RD Sharma solution books be easily found?

The entire collection of the RD Sharna Solution books along with the RD Sharma Class 12 Chapter 11 Exercise 11.1 material are available at the Career 360 website. Everyone can access these reference books. 

3. How will the students be able to use the RD Sharma books when they do not have the access to the internet?

As the RD Sharma books provide the access for everyone to download it, these books can be used when there is no access to the internet too. 

4. What is the price quoted for the RD Sharma books at the Career 360 website?

The Class 12 RD Sharma Chapter 11 Exercise 11.1 is available for free of cost at the top educational website, Career 360. 

5. How many sums are solved in exercise 11.1 at the Class 12 RD Sharma Chapter 11 Exercise 11.1 reference book?

There are 61 questions given in the textbook for the exercise 11.1. All the answers for these questions are available at the Class 12 RD Sharma Chapter 11 Exercise 11.1 reference book.

Articles

Back to top