The RD Sharma Class 12th Exercise 11.1 have become an indispensable part of the class 12 students’ exam preparation routine. They use these books to complete their homework, assignments and study for the exams. These books are available for all the subjects and chapters.
Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 11 Higher Order Derivatives - Other Exercise This Story also Contains
RD Sharma Class 12 Solutions Chapter 11 Higher Order Derivatives - Other Exercise Higher Order Derivatives Excercise:11.1 RD Sharma Chapter-wise Solutions Higher Order Derivatives Excercise:11.1 Higher Order Derivatives exercise 11.1 question 1(i)
Answer: 6 x + 2 s e c 2 x t a n x Hint: You must know about derivative of tan x
Given: x 3 + t a n x Solution: L e t y = x 3 + t a n x d y d x = 3 x 2 + sec 2 x [ d ( tan x ) d x = sec 2 x and d x 3 d x = 3 x 2 ] d 2 y d x 2 = 6 x + 2 sec x ⋅ sec x tan x d sec x d x = sec x tan x d 2 y d x 2 = 6 x + 2 sec 2 x tan x Higher Order Derivatives exercise 11.1 question 1(ii)
Answer: − [ sin ( log x ) + cos ( log x ) ] x 2 Hint: You must know about derivative of sin x & log x
Given: s i n ( l o g x ) Solution: L e t y = s i n ( l o g x ) d y d x = cos ( log x ) × d d x log x ( d sin x d x = cos x ) d y d x = cos ( log x ) × 1 x ( d log x d x = 1 x ) d y d x = cos ( log x ) x Use quotient rule
A s u v = u ′ v − v ′ u v 2 W h e r e v = x a n d u = c o s ( l o g x ) d 2 y d x 2 = x d d x ( cos ( log x ) ) − cos ( log x ) ) d d x ( x ) x 2 d 2 y d x 2 = − x sin ( log x ) ⋅ d ( log x ) d x − 1 ⋅ cos ( log x ) x 2 ( d d x x = 1 ) d 2 y d x 2 = − sin ( log x ) ⋅ 1 x x − cos ( log x ) x 2 ( d log x d x = 1 x ) d 2 y d x 2 = − sin ( log x ) − cos ( log x ) x 2 d 2 y d x 2 = − [ sin ( log x ) + cos ( log x ) ] x 2 Higher Order Derivatives exercise 11.1 question 1(iii)
Answer: − c o s e c 2 x Hint: You must know about derivative of sin x & log x
Given: l o g ( s i n x ) Solution: L e t y = l o g ( s i n x ) d y d x = 1 sin x d sin x d x ( d log x d x = 1 x ) d y d x = 1 sin x cos x ( d sin x d x = cos x ) d y d x = cot x ( cos x sin x = cot x ) d 2 y d x 2 = cot x d 2 y d x 2 = − c o s e c 2 x ( d d x cot x = − c o s e c 2 x ) Higher Order Derivatives exercise 11.1 question 1(iv)
Answer: − 24 e x s i n 5 x + 10 e x c o s 5 x Hint: You must know about derivative of sin x & e
x Given: e x s i n 5 x Solution: L e t y = e x s i n 5 x Use multiplicative rule
A s U V = U V 1 + U 1 V Where U=e
x & V=sin 5x
d y d x = e x d d x sin 5 x + d d x e x ⋅ sin 5 x d y d x = e x ⋅ cos 5 x d d x 5 x + e x ⋅ sin 5 x ( d d x e x = e x ) ( d sin 5 x d x = cos 5 x ) d y d x = e x ⋅ cos 5 x ⋅ 5 + e x ⋅ sin 5 x ( d d x 5 x = 5 ) d y d x = 5 e x cos 5 x + e x sin 5 x d d x ( d y d x ) = d d x ( 5 e x cos 5 x + e x sin 5 x ) Again use multiplication rule
A s U V = U V 1 + U 1 V Where U=e
x & V=sin 5x
U=e
x & V=cos 5x
d 2 y d x 2 = 5 [ e x d d x cos 5 x + d d x e x ⋅ cos 5 x ] + [ e x d d x sin 5 x + d d x e x ⋅ sin 5 x ] d 2 y d x 2 = 5 [ e x ⋅ ( − sin 5 x ) d d x 5 x + e x ⋅ cos 5 x ] + [ e x cos 5 x d d x 5 x + e x ⋅ sin 5 x ] ( d sin x d x = cos x , d cos x d x = − sin x , d 5 x d x = 5 ) d 2 y d x 2 = 5 [ e x ⋅ ( − sin 5 x ) 5 + e x ⋅ cos 5 x ] + [ e x cos 5 x .5 + e x ⋅ sin 5 x ] d 2 y d x 2 = [ 25 e x sin 5 x + 5 e x ⋅ cos 5 x ] + [ 5 e x cos 5 x + e x ⋅ sin 5 x ] d 2 y d x 2 = − 24 e x sin 5 x + 10 e x ⋅ cos 5 x Higher Order Derivatives exercise 11.1 question 1(v)
Answer: 27 e 6 x c o s 3 x − 36 e 6 x s i n 3 x Hint: You must know about derivative of cos3x & e
6x Given: e 6 x c o s 3 x Solution: L e t y = e 6 x c o s 3 x Use multiplicative rule
A s U V = U V 1 + U 1 V Where U=e
6x and V=cos3x
d y d x = e 6 x d d x cos 3 x + d d x e 6 x ⋅ cos 3 x d y d x = e 6 x − sin 3 x d d x 3 x + 6 e 6 x cos 3 x ( d cos x d x = − sin x , d d x e 6 x = e 6 x .6 ) d y d x = − 3 e 6 x sin 3 x + 6 e 6 x cos 3 x d 2 y d x 2 = − 3 e 6 x sin 3 x + 6 e 6 x cos 3 x A s U V = U V 1 + U 1 V Where U=e
6x and V=sin3x
d 2 y d x 2 = − 3 [ e 6 x cos 3 x ( 3 ) + e 6 x ⋅ sin 3 x .6 ] + 6 [ e 6 x cos 3 x ⋅ 6 + e 6 x ⋅ ( − sin 3 x ) ] ( d sin 3 x d x = 3 cos 3 x , d cos 3 x d x = 3 ( − sin 3 x ) , d e 6 x d x = 6 e 6 x ) d 2 y d x 2 = − 3 [ 3 e 6 x cos 3 x + 6 e 6 x ⋅ sin 3 x ] + 6 [ e 6 x cos 3 x ⋅ 6 − 3 e 6 x ⋅ sin 3 x ] d 2 y d x 2 = 27 e 6 x cos 3 x − 36 e 6 x sin 3 x Higher Order Derivatives exercise 11.1 question 1(vi)
Answer: 5 x + 6 x l o g x HInt: You must know about derivative of log x & x
3 Given: x 3 l o g x Solution: L e t y = x 3 l o g x Use multiplicative rule
As UV=UV
1 +U
1 V
Where U=x
3 & V=log x
d y d x = x 3 d d x log x + d d x x 3 log x d y d x = x 3 1 x + 3 x 2 log x ( d d x log x = 1 x , d d x x 3 = 3 x 2 ) Use multiplicative rule
As UV=UV
1 +U
1 V
Where U=x
2 & V=log x
d 2 y d x 2 = d d x x 2 + 3 [ x 2 d d x log x + d d x x 2 ⋅ log x ] d 2 y d x 2 = 2 x + 3 [ x + 2 x ⋅ log x ] ( d d x x 2 = 2 x , d d x log x = 1 x ) d 2 y d x 2 = 2 x + 3 x + 6 x ⋅ log x d 2 y d x 2 = 5 x + 6 x log x Higher Order Derivatives exercise 11.1 question 1(vii)
Answer: − 2 x ( 1 + x 2 ) 2 Hint: You must know about derivative of tan
-1 x
Given: tan
-1 x
Solution: L e t y = t a n − 1 x d y d x = 1 1 + x 2 ( d tan − 1 x d x = 1 1 + x 2 ) Use Quotient rule
As u v = u 1 v − v 1 u v 2 Where v = 1 + x 2 & u = 1 d 2 y d x 2 = ( 1 + x 2 ) d d x 1 − 1 ⋅ d d x ( 1 + x 2 ) ( 1 + x 2 ) 2 d 2 y d x 2 = 0 ( 1 + x 2 ) − 1.2 x ( 1 + x 2 ) 2 ( d d x 1 = 0 , d d x ( 1 + x 2 ) = 2 x ) d 2 y d x 2 = 0 − 2 x ( 1 + x 2 ) 2 d 2 y d x 2 = − 2 x ( 1 + x 2 ) 2 Higher Order Derivatives exercise 11.1 question 1(viii) maths
Answer: − x c o s x − 2 s i n x Hint: You must know about derivative of x cos x
Given: x cos x
Solution: L e t x c o s x Use multiplicative rule
As UV=UV
1 +U
1 V
Where U=x & V=cos x
d y d x = x d d x cos x + d d x x cos x ( d d x x = 1 , d d x cos x = − sin x ) d y d x = − x sin x + cos x Use multiplicative rule
As UV=UV
1 +U
1 V
Where U=x & V=sin x
d 2 y d x 2 = − ( x d d x sin x + d d x x ⋅ sin x ) + d cos x d x d 2 y d x 2 = − ( x cos x + sin x ) − sin x ( d d x cos x = − sin x ) d 2 y d x 2 = − x cos x − sin x − sin x d 2 y d x 2 = − x cos x − 2 sin x Higher Order Derivatives exercise 11.1 question 1(ix)
Answer: − ( 1 + l o g x ) x 2 ( l o g x ) 2 Hint: You must know about derivative of log(log x)
Given: l o g ( l o g x ) Solution: L e t y = l o g ( l o g x ) d y d x = d d x log ( log x ) ( d log x d x = 1 x ) d y d x = 1 log x d d x ( log x ) d y d x = 1 log x ⋅ 1 x d y d x = 1 x log x Use Quotient rule
As u v = u 1 v − v 1 u v 2 Where u = 1 & v = x log x Use multiplicative rule As U V = U V 1 + U 1 V Where U = 1 & V = log x d 2 y d x 2 = d d x 1 x log x − 1 d d x x log x ( x log x ) 2 d 2 y d x 2 = 0 . x log x − x log x x 2 ( log x ) 2 ( d d x log x = 1 x , d d x 1 = 0 , d d x x = 1 ) d 2 y d x 2 = − log x − 1 x 2 ( log x ) 2 d 2 y d x 2 = − ( 1 + log x ) x 2 ( log x ) 2 Higher Order Derivatives exercise 11.1 question 2
Answer: 2 e − x s i n x Hint: You have to show
d 2 y d x 2 = 2 e − x s i n x Given: If y=e
-x cos x, show that
d 2 y d x 2 = 2 e − x s i n x Solution: Let y=e
-x cos x
Use multiplicative rule
As U V = U V 1 + U 1 V Where U = e − x & V = cos x d y d x = e − x d d x cos x + cos x d d x e − x d y d x = − e − x sin x − cos x e − x ( d cos x d x = − sin x , d e − x d x = − 1 e − x ) Again differentiating w.r.t.x we get
Use multiplicative rule
As U V = U V 1 + U 1 V Where U = cos x & V = e − x d 2 y d x 2 = − [ sin x ⋅ d d x e − x + e − x ⋅ d d x sin x + cos x d d x e − x + e − x d d x cos x ] d 2 y d x 2 = − [ sin x ⋅ ( − e − x ) + e − x cos x + cos x ( − e − x ) + e − x ( − sin x ) ] d 2 y d x 2 = − [ − e − x sin x + e − x cos x − e − x cos x − e − x sin x ] ( d d x sin x = cos x , d d x cos x = − sin x , d d x e − x = − 1 e − x ) d 2 y d x 2 = − [ − 2 sin x e − x ] d 2 y d x 2 = 2 e − x sin x Hence proved
Higher Order Derivatives exercise 11.1 question 3
Answer: cos 2 x d 2 y d x 2 − 2 y + 2 x = 0 Hint: You have to show
cos 2 x d 2 y d x 2 − 2 y + 2 x = 0 Given: If y=x+tan x show that
cos 2 x d 2 y d x 2 − 2 y + 2 x = 0 Solution: Let y=x+tan x
y = x + t a n x ( d t a n x d x = s e c 2 x , d d x x = 1 ) d y d x = 1 + sec 2 x d 2 y d x 2 = 2 sec x ( sec x tan x ) ( d d x sec 2 x = 2 sec x ( sec x tan x ) d 2 y d x 2 = 2 sec 2 x tan x ( sec 2 x = 1 cos 2 x , tan x = sin x cos x ) d 2 y d x 2 = 2 sin x cos 3 x According to question
cos 2 x d 2 y d x 2 − 2 y + 2 x = 0 substituting these values we get
( 2 sin x cos x ) − 2 ( x + tan x ) + 2 x 2 sin x cos x − 2 x − 2 tan x + 2 x 2 tan x − 2 x − 2 tan x + 2 x = 0 Hence proved
Higher Order Derivatives exercise 11.1 question 4 maths
Answer: 6 x HInt: You must know about derivative of x
3 & log x
Given: If y=x
3 log x, Prove that
d 4 y d x 4 = 6 x Solution: Let y=x
3 log x
Use multiplicative rule
A s U V = U V 1 + U 1 V Where U = x 3 & V = log x d y d x = x 3 d d x log x + d d x x 3 log x d y d x = x 3 1 x + 3 x 2 log x ( d log x d x = 1 x , d d x x 3 = 3 x 2 ) d y d x = x 2 + 3 x 2 log x Use multiplicative rule
A s U V = U V 1 + U 1 V Where U = x 2 & V = log x d 2 y d x 2 = 3 ( x 2 d d x log x + d d x x 2 log x ) + d d x x 2 d 2 y d x 2 = 3 ( x 2 1 x + 2 x log x ) + 2 x ( d log x d x = 1 x , d d x x 2 = 2 x ) d 2 y d x 2 = 3 x + 6 x log x + 2 x d 2 y d x 2 = 5 x + 6 x log x Use multiplicative rule
A s U V = U V 1 + U 1 V Where U = x & V = log x d 3 y d x 3 = d d x 5 x + 6 ( x d d x log x + d d x x log x ) d 3 y d x 3 = 5 + 6 ( x 1 x + log x ) ( d log x d x = 1 x , d d x 5 x = 5 ) d 3 y d x 3 = 5 + 6 + 6 log x d 3 y d x 3 = 11 + 6 log x d 4 y d x 4 = 0 + 6 x ( d log x d x = 1 x , d d x 11 = 0 ) d 4 y d x 4 = 6 x Hence proved
Higher Order Derivatives exercise 11.1 question 5
Answer: 2 c o s x c o s e c 3 x Hint: You must know about how third derivatives be find
Given: If
y=log x(sin x). Prove that
d 3 y d x 3 = 2 c o s x c o s e c 3 x Solution: L e t y = l o g ( s i n x ) ( d l o g x d x = 1 x ) d y d x = 1 sin x d d x sin x d y d x = 1 sin x cos x d y d x = cot x again differentiating we get
d 2 y d x 2 = − c o s e c 2 x ( d c o t x d x = − c o s e c 2 x ) Again differentiating w.r.t. x we get
d 3 y d x 3 = − 2 cosec x ⋅ ( − cos e c x ⋅ cot x ) ( d cosec 2 x d x = − c o s e c x cot x ) d 3 y d x 3 = − 2 cos x cosec 3 x Higher Order Derivatives exercise 11.1 question 6
Answer: d 2 y d x 2 + y = 0 Hint: You have to know about how to find derivative of second order
Given: If y=2sin x+3cos x,show that
d 2 y d x 2 + y = 0 Solution: Let y=2sin x+3cos x
d y d x = 2 cos x − 3 sin x ( d cos x d x = − sin x , d sin x d x = cos x ) d 2 y d x 2 = − 2 sin x − 3 cos x d 2 y d x 2 = − y d 2 y d x 2 + y = 0 Hence proved
Higher Order Derivatives exercise 11.1 question 7
Answer: d 2 y d x 2 = 2 log x − 3 x 3 Hint: You have to know about derivative of
log x x Given: I f y = log x x , s h o w t h a t d 2 y d x 2 = 2 log x − 3 x 3 Solution: L e t y = log x x Use quotient rule
u v = u 1 v − v 1 u v 2 u = log x & v = x d y d x = log x x d y d x = x d d x log x − log x d d x x x 2 ( d log x d x = 1 x ) d y d x = x 1 x − log x ⋅ 1 x 2 d y d x = 1 − log x x 2 Use Quotient rule again
u v = u 1 v − v 1 u v 2 u = 1 − log x & v = x 2 d 2 y d x 2 = x 2 d d x ( 1 − log x ) − d d x x 2 ( 1 − log x ) ( x 2 ) 2 d 2 y d x 2 = x 2 ( − 1 x ) − ( 1 − log x ) 2 x x 4 ( d − log x d x = − 1 x , d d x x 2 = 2 x ) d 2 y d x 2 = − x − 2 x + 2 x log x x 4 d 2 y d x 2 = 2 x log x − 3 x x 4 d 2 y d x 2 = 2 x log x − 3 x 3 Hence proved
Higher Order Derivatives exercise 11.1 question 8 maths
Answer: − b 4 a 2 y 3 Hint: You must know about derivative of
t a n θ a n d s e c θ Given: I f x = a s e c θ , y = b t a n θ Prove that
d 2 y d x 2 = − b 4 a 2 y 3 Solution: L e t x = a s e c θ y = b t a n θ d y d x = d y d θ d x d θ d 2 y d x 2 = d d x ( d y d x ) x = a sec θ , y = b tan θ d x d θ = a sec θ tan θ ( d tan θ d x = sec 2 x , d sec θ d x = sec θ tan θ ) d y d θ = b sec 2 θ d y d x = b a sec θ tan θ = b a sin θ d d θ ( d y d x ) = − b a cosec θ cot θ = − b a cosec θ cot θ a sec θ tan θ d 2 y d x 2 = − b a 2 tan 3 θ y = b tan θ d 2 y d x 2 = − b a 2 ( y b ) 3 θ y = − b 4 a 2 y 3 Higher Order Derivatives exercise 11.1 question 9
Answer: s e c 3 θ a θ Hint: You must know about derivative of
c o s θ a n d s i n θ Given: If x = a ( cos θ + θ sin θ ) , y = a ( sin θ − θ cos θ ) Prove that d 2 x d θ 2 = a ( cos θ − θ sin θ ) , d 2 y d θ 2 = a ( sin θ − θ cos θ ) , d 2 y d x 2 = sec 3 θ a θ Solution: Let x = a ( cos θ + θ sin θ ) , y = a ( sin θ − θ cos θ ) Use multiplicative rule
As U V = U V 1 + U 1 V Where U = θ & V = sin θ d x d θ = a [ − sin θ + θ cos θ + sin θ ] [ d sin θ d x = cos θ , d cos θ d x = − sin θ ] d x d θ = a θ cos θ again
Use multiplicative rule
As U V = U V 1 + U 1 V Where U = θ & V = cos θ d y d θ = a [ cos θ + θ sin θ − cos θ ] d y d θ = a θ sin θ Again Use multiplicative rule
As U V = U V 1 + U 1 V Where U = θ & V = cos θ d 2 x d θ 2 = a [ − θ sin θ + cos θ ] d 2 x d θ 2 = a [ cos θ − θ sin θ ] Again Use multiplicative rule
As U V = U V 1 + U 1 V Where U = θ & V = sin θ d 2 y d θ 2 = a { θ cos θ + sin θ } d 2 x d θ 2 = a ( cos θ − θ sin θ ) d 2 y d θ 2 = a ( θ cos θ + sin θ ) d y d x = a θ sin θ a θ cos θ = tan θ d 2 y d x 2 = d d x ( d y d x ) = d d θ ( d y d x ) d θ d x d d θ ( tan θ ) × 1 a θ cos θ sec 2 θ a θ cos θ d 2 y d x 2 = sec 3 θ a θ Higher Order Derivatives exercise 11.1 question 10
Answer: 2 e x c o s ( x + π 2 ) Hint: You must know about derivative of e
x cos x
Given: If y = e
x cos x, prove that
d 2 y d x 2 = 2 e x c o s ( x + π 2 ) Solution: Let y = e
x cos x
Use multiplicative rule
As U V = U V 1 + U 1 V Where U = e x & V = cos x d y d x = e x ( − sin x ) + e x cos x ( d d x cos x = sin x ) Again Use multiplicative rule
Differentiating again
d 2 y d x 2 = − [ e x cos x + sin x e x ] + [ − e x sin x + e x cos x ] d 2 y d x 2 = − 2 sin x e x d 2 y d x 2 = 2 e x cos ( x + π 2 ) Higher Order Derivatives exercise 11.1 question 11
Answer: − b a 2 y 3 Hint: You must know about derivative of second order
Given: If x = a cos θ , y = b sin θ Show that d 2 y d x 2 = − b a 2 y 3 Solution: Let x = a cos θ , y = b sin θ d y d x = d y d θ d x d θ d 2 y d x 2 = d d θ ( d y d x ) d x d θ x = a cos θ , y = b sin θ d x d θ = − a sin θ d y d θ = b cos θ d y d x = − b a cot θ d d θ ( d y d x ) d x d θ = b a cos e c 2 θ − a sin θ ( d d θ cot θ = cos e c 2 θ ) − b × b 3 a 2 sin 3 θ × b 3 d 2 y d x 2 = − b a 2 y 3 Hence proved
Higher Order Derivatives exercise 11.1 question 12 maths
Answer: 32 27 a Hint: You must know about derivative of
c o s 3 θ s i n 3 θ Given: If x = a ( 1 − cos 3 θ ) , y = a sin 3 θ Prove that d 2 y d x 2 = 32 27 a a t θ = π 6 Solution: Let x = a ( 1 − cos 3 θ ) , y = a sin 3 θ d y d θ = 3 a sin 2 θ cos θ ( d d θ sin 3 θ = 3 a sin 2 θ cos θ ) d y d θ = 3 cos 2 θ sin θ ( d d θ cos 3 θ = 3 cos 2 θ sin θ ) d y d x = tan θ ( d d θ tan θ = sec 2 θ ) d d θ ( d y d x ) d x d θ = sec 2 θ 3 a cos 2 θ sin θ d 2 y d x 2 = sec 4 θ 3 a sin θ ( θ = π 6 ) d 2 y d x 2 = sec 4 ( π 6 ) 3 a sin ( π 6 ) = 32 27 a Hence proved
Higher Order Derivatives exercise 11.1 question 13
Answer: − a y 2 HInt: You must know about derivative of second order
Given: If x = a ( θ + sin θ ) , y = a ( 1 + cos θ ) Prove that d 2 y d x 2 = − a y 2 Solution: Let x = a ( θ + sin θ ) , y = a ( 1 + cos θ ) d x d θ = a [ 1 + cos θ ] ( d d θ θ = 1 , d d θ sin θ = cos θ ) d y d θ = a ( − sin θ ) d y d x = d y d θ d x d θ = − sin θ ( 1 + cos θ ) sin 2 θ = 2 sin θ cos θ cos 2 θ = 2 cos 2 θ − 1 d y d x = − 2 sin θ 2 cos θ 2 2 cos 2 θ 2 d y d x = − tan θ 2 d 2 y d x 2 = d d x ( d y d x ) = d d θ ( d y d x ) d θ d x d d θ ( − tan θ 2 ) ⋅ 1 a ( 1 + cos θ ) d 2 y d x 2 = − 1 2 sec 2 θ 2 ⋅ 1 a ( 1 + cos θ ) = − sec 2 θ 2 2 a ( 1 + cos θ ) − a y 2 = − a a ( 1 + cos θ ) 2 = − a a 2 ( 1 + cos θ ) ( 1 + cos θ ) − 1 a ( 1 + 2 cos 2 θ 2 − 1 ) ( 1 − cos θ ) = − 1 2 a cos 2 θ 2 ( 1 + cos θ ) = − sec 2 θ 2 2 a ( 1 + cos θ ) R H L : − − a y 2 = − a a ( 1 + cos θ ) 2 = − 1 a ( 1 + 2 cos 2 θ 2 − 1 ) ( 1 − cos θ ) d 2 y d x 2 = − sec 2 θ 2 2 a ( 1 + cos θ ) = − a y 2 d 2 y d x 2 = − a y 2 Hence proved
Higher Order Derivatives exercise 11.1 question 14
Answer: − c o s e c x 4 θ 2 4 a Hint: You must know about derivative of
c o s θ a n d s i n θ Given: If x = a ( θ − sin θ ) , y = a ( 1 + cos θ ) Find d 2 y d x 2 Solution: Let x = a ( θ − sin θ ) , y = a ( 1 + cos θ ) d x d θ = a [ 1 − cos θ ] . . . . . . ( 1 ) d y d θ = a ( − sin θ ) . . . . . . ( 2 ) Now d y d x = d y d θ d x d θ = sin θ ( 1 − cos θ ) Using identity
sin 2 θ = 2 sin θ 2 cos θ 2 2 sin 2 θ 2 = 1 − cos θ cos 2 θ = 1 − 2 sin 2 θ 2 sin 2 θ = 1 − cos 2 θ d y d x = 2 sin θ 2 cos θ 2 2 sin 2 θ 2 d y d x = cot θ 2 Now diff on both sides
d 2 y d x 2 = d d x ( d y d x ) = d d θ ( d y d x ) d θ d x d 2 y d x 2 = − cosec 2 θ ⋅ 1 2 ∙ 1 a ( 1 − cos θ ) d 2 y d x 2 = cosec 2 θ 2 ∙ 1 2 ∙ 1 a 2 sin 2 θ 2 = − cos e c 2 θ 2 × cos e c 2 θ 2 4 a d 2 y d x 2 = cos e c 4 θ 2 4 a Hence proved
Higher Order Derivatives exercise 11.1 question 15
Answer: − 1 a Hint: You must know about derivative of cos θ & sin θ Given: If x = a ( 1 − cos θ ) , y = a ( θ + sin θ ) Prove that d 2 y d x 2 = − 1 a a n d θ = π 4 Solution: Let x = a ( 1 − cos θ ) , y = a ( θ + sin θ ) d x d θ = a sin θ d y d θ = a ( 1 + cos θ ) d y d x = d y d θ d x d θ = 1 + cos θ sin θ Use Quotient rule
As u v = u 1 v − v 1 u v 2 Where u = 1 + cos θ & v = sin θ d d θ ( d y d x ) = sin θ ( − sin θ ) − ( 1 + cos θ ) cos θ sin 2 θ d d θ ( d y d x ) = − 1 + cos θ ( 1 − cos θ ) ( 1 + cos θ ) d 2 y d x 2 = − 1 1 − cos θ a sin 2 θ d 2 y d x 2 = − 1 a sin θ ( 1 − cos θ ) ( θ = π 2 ) d 2 y d x 2 = − 1 a sin π 2 ( 1 − cos π 2 ) d 2 y d x 2 = − 1 a Hence proved
Higher Order Derivatives exercise 11.1 question 16 maths
Answer: − 1 a Hint: You must know about derivative of cos θ & sin θ Given: If x = a ( 1 + cos θ ) , y = a ( θ + sin θ ) Prove that d 2 y d x 2 = − 1 a a n d θ = π 4 Solution: Let x = a ( 1 + cos θ ) , y = a ( θ + sin θ ) d x d θ = − a sin θ d y d θ = a ( 1 + cos θ ) d y d x = d y d θ d x d θ = 1 + cos θ − sin θ Use Quotient rule
As u v = u 1 v − v 1 u v 2 Where u = 1 + cos θ & v = sin θ d d θ ( d y d x ) = − sin θ ( − sin θ ) + ( 1 + cos θ ) cos θ sin 2 θ d 2 y d x 2 = 1 + cos θ sin 2 θ ⋅ − 1 a sin θ d 2 y d x 2 = − ( 1 + cos θ ) a sin 2 θ d 2 y d x 2 = − ( 1 + cos π 2 ) a sin 2 π 2 ( θ = π 2 ) d 2 y d x 2 = − 1 a Hence proved
Higher Order Derivatives exercise 11.1 question 17
Answer: 3 sin 2 θ [ 5 cos 2 θ − 1 ] Hint: You must know about derivative of cos θ & sin θ Given: If x = cos θ , y = sin 3 θ Prove that y d 2 y d x 2 + ( d y d x ) 2 = 3 sin 2 θ [ 5 cos 2 θ − 1 ] Solution: Let x = cos θ , y = sin 3 θ d x d θ = − sin θ d y d θ = 3 sin 2 θ cos θ d y d x = d y d θ d x d θ = 3 sin 2 θ cos θ − sin θ = 3 sin θ cos θ d 2 y d x 2 = d ( d y d x d x ) = d ( d y d θ ) d θ d x d θ = − cos 2 θ ⋅ 3 + 3 sin 2 θ − sin θ y d 2 y d x 2 + ( d y d x ) 2 = sin 3 θ ( 3 cos 2 θ − 3 sin 2 θ ) sin θ y d 2 y d x 2 + ( d y d x ) 2 = 3 sin 2 θ [ 5 cos 2 θ − 1 ] Hence proved
Higher Order Derivatives exercise 11.1 question 18
Answer: 0
Hint: You must know about derivative of
c o s θ a n d t a n θ Given: I f y = s i n ( s i n x ) P r o v e t h a t d 2 y d x 2 + tan x d y d x + y cos 2 x = 0 Solution: L e t y = s i n ( s i n x ) d y d x = cos ( sin x ) ⋅ cos x d 2 y d x 2 = − cos ( sin x ) ( sin x ) + cos x ( − sin ( sin x ) cos x ) d 2 y d x 2 = − sin x cos ( sin x ) − cos 2 x ( sin ( sin x ) ) L H S : − d 2 y d x 2 + tan x d y d x + y cos 2 x − sin x cos ( sin x ) − cos 2 x ( sin ( sin x ) ) + tan x cos x cos ( sin x ) + sin ( sin x ) cos 2 x − sin x ( cos ( sin x ) ) + sin x cos x ⋅ cos x ⋅ cos ( sin x ) − sin x cos x sin x + sin x cos x sin x Hence proved
Higher Order Derivatives exercise 11.1 question 19
Answer: 0
HInt: You must know about derivative of sin pt
Given: I f x = s i n t , y = s i n p t Prove that ( 1 − x 2 ) d 2 y d x 2 − x d y d x + p 2 y = 0 Solution: L e t x = s i n t , y = s i n p t d x d t = cos t and d y d t = p cos p t Now d y d x = p cos p t cos t d y d x cos t = p cos p t ( d y d x ) 2 ( 1 − sin 2 t ) = p 2 ( 1 − sin 2 p t ) ( d y d x ) 2 ( 1 − x 2 ) = p 2 ( 1 − y 2 ) Differentiating with x
( 1 − x 2 ) 2 d y d x × d 2 y d x 2 + ( d y d x ) 2 ( − 2 x ) = − p 2 × 2 y d y d x 2 d y d x [ ( 1 − x 2 ) d 2 y d x 2 − x d y d x ] = p 2 y 2 d y d x ( 1 − x 2 ) d 2 y d x 2 − x d y d x + p 2 y = 0 Hence proved
Higher Order Derivatives exercise 11.1 question 20 maths
Answer: 0
Hint: You must know about derivative of sin
-1 x
Given: I f y = ( s i n − 1 x ) 2 P r o v e t h a t ( 1 − x 2 ) y 2 − x y 1 − 2 = 0 Solution: L e t y = ( s i n − 1 x ) 2 d y d x = 2 sin − 1 x ( 1 1 − x 2 ) ( d d x sin − 1 x = ( 1 1 − x 2 ) ) d 2 y d x 2 = 2 1 − x 2 ( 1 1 − x 2 ) − sin − 1 x × 1 2 ( − 2 x 1 − x 2 ) 1 − x 2 d 2 y d x 2 = 2 ( 1 + x sin − 1 x 1 − x 2 ) 1 − x 2 ( 1 − x 2 ) y 2 = 2 + 2 x sin − 1 x 1 − x 2 ( 1 − x 2 ) y 2 − y 1 x − 2 = 0 Hence proved
Higher Order Derivatives exercise 11.1 question 21
Answer: Proved
Hint: You must know about the derivative of exponential function and tangent inverse
x Given: y = e t a n − 1 x , P r o v e ( 1 + x 2 ) y 2 + ( 2 x − 1 ) y 1 = 0 Solution: L e t y = e t a n − 1 x d y d x = e tan − 1 x × 1 ( 1 + x 2 ) ( x 2 + 1 ) d y d x = e tan − 1 x ( x 2 + 1 ) d 2 y d x 2 + 2 x d y d x = e tan − 1 x × 1 ( 1 + x 2 ) ( x 2 + 1 ) d 2 y d x 2 + 2 x d y d x = d y d x ( x 2 + 1 ) d 2 y d x 2 + ( 2 x − 1 ) d y d x = 0 or ( x 2 + 1 ) y 2 + ( 2 x − 1 ) y 1 = 0 Higher Order Derivatives exercise 11.1 question 22
Answer: Proved
Hint: You must know about the derivative of logarithm function and cos x and sin x
Given: y = 3 c o s ( l o g x ) + 4 s i n ( l o g x ) Solution: L e t y = 3 c o s ( l o g x ) + 4 s i n ( l o g x ) Differentiating both sides w.r.t x d y d x = − 3 sin ( log x ) d ( log x ) d x + 4 cos ( log x ) d ( log x ) d x By using product rule of derivation d y d x = − 3 sin ( log x ) x + 4 cos ( log x ) x x d y d x = − 3 sin ( log x ) + 4 cos ( log x ) Again differentiating both sides w.r.t x , x d d x ( d y d x ) + d y d x d d x ( x ) = d d x [ − 3 sin ( log x ) + 4 cos ( log x ) ] By using product rule of derivation, x d 2 y d x 2 + d y d x ( 1 ) = − 3 cos ( log x ) d d x ( log x ) − 4 sin ( log x ) d d x ( log x ) x d 2 y d x 2 + d y d x ( 1 ) = − 3 cos ( log x ) x − 4 sin ( log x ) x x d 2 y d x 2 + d y d x = − [ 3 cos ( log x ) + 4 sin ( log x ) ] x x 2 d 2 y d x 2 + x d y d x = − [ 3 cos ( log x ) + 4 sin ( log x ) ] x 2 d 2 y d x 2 + x d y d x = − y ∴ x 2 d 2 y d x 2 + x d y d x + y = 0 or x 2 y 2 + x y 1 + y = 0 Higher Order Derivatives exercise 11.1 question 23
Answer: Proved
Hint: You must know about the derivative of exponential function
Given: y = e 2 x ( a x + b ) , s h o w t h a t y 2 − 4 y 1 + 4 y = 0 Solution: y = e 2 x ( a x + b ) . . . . . . ( 1 ) By using product rule of derivation d y d x = e 2 x d y d x ( a x + b ) + ( a x + b ) d d x e 2 x d y d x = a e 2 x + 2 ( a x + b ) e 2 x d y d x = e 2 x ( a + 2 a x + 2 b ) . . . . . ( 2 ) Again differentiating both sides w.r.t x , using product rule d 2 y d x 2 = e 2 x d y d x ( a + 2 a x + 2 b ) + ( a + 2 a x + 2 b ) d d x e 2 x d 2 y d x 2 = 2 e 2 x + 2 ( a + 2 a x + 2 b ) e 2 x … . ( 3 ) I n o r d e r t o p r o v e t h e e x p r e s s i o n t r y t o g e t t h e r e q u i r e d f o r m S u b t r a c t i n g 4 × e q u a t i o n ( 2 ) f r o m e q u a t i o n ( 3 ) d 2 y d x 2 − 4 d y d x = 2 e 2 x + 2 ( a + 2 a x + 2 b ) e 2 x − 4 e 2 x ( a + 2 a x + 2 b ) d 2 y d x 2 − 4 d y d x = 2 a e 2 x − 2 e 2 x ( a + 2 a x + 2 b ) d 2 y d x 2 − 4 d y d x = − 4 e 2 x ( a x + b ) Using equation ( 1 ) d 2 y d x 2 − 4 d y d x = − 4 y d 2 y d x 2 − 4 d y d x + 4 y = 0 y 2 − 4 y 1 + 4 y = 0 Higher Order Derivatives exercise 11.1 question 24 maths
Answer: Proved
Hint: You must know about the derivative of sin function and logarithm function
Given: x = sin ( 1 a log y ) show that ( 1 − x 2 ) y 2 − x y 1 − a 2 y = 0 Solution: x = sin ( 1 a log y ) log y = a sin − 1 x y = e a sin − 1 x . . . . . ( 1 ) Let t = a sin − 1 x d t d x = a 1 − x 2 [ d d x sin − 1 x = 1 1 − x 2 ] and y = e t d y d x = d y d t × d t d x d y d x = e t a 1 − x 2 = a e a sin − 1 x 1 − x 2 . . . . . . . ( 2 ) Again differentiating both sides d 2 y d x 2 = a e a sin − 1 x d d x ( 1 1 − x 2 ) + a 1 − x 2 d d x e a sin − 1 x Using chain rule and equation d 2 y d x 2 = − a e a sin − 1 x 2 ( 1 − x 2 ) 1 − x 2 ( − 2 x ) + a 2 e a sin − 1 x ( 1 − x 2 ) d 2 y d x 2 = x a e a sin − 1 x ( 1 − x 2 ) 1 − x 2 + a 2 e a sin − 1 x ( 1 − x 2 ) ( 1 − x 2 ) d 2 y d x 2 = a 2 e a sin − 1 x + x a e a sin − 1 x 1 − x 2 Using equation ( 1 ) and ( 2 ) ( 1 − x 2 ) d 2 y d x 2 = a 2 y + x d y d x ( 1 − x 2 ) d 2 y d x 2 − a 2 y − x d y d x = 0 ( 1 − x 2 ) y 2 − x y 1 − a 2 y = 0 Higher Order Derivatives exercise 11.1 question 25
Answer: Proved
HInt: You must know the derivative of logarithm and tangent inverse
x Given: log y = tan − 1 x , show ( 1 + x 2 ) y 2 + ( 2 x − 1 ) y 1 = 0 Solution: log y = tan − 1 x Differentiate the equation w.r.t x 1 y d y d x = 1 1 + x 2 1 + x 2 d y d x = y D i f f e r e n t i a t e a g a i n ( 1 + x 2 ) d 2 y d x 2 + d y d x ( 2 x ) = d y d x ( 1 + x 2 ) d 2 y d x 2 + ( 2 x − 1 ) d y d x = 0 o r ( 1 + x 2 ) y 2 + ( 2 x − 1 ) y 1 = 0 Higher Order Derivatives exercise 11.1 question 26
Answer: Proved
Hint: You must know the derivative of logarithm and tangent inverse
x Given: y = tan − 1 x , show ( 1 + x 2 ) d 2 y d x 2 + ( 2 x ) d y d x = d y d x Solution: y = tan − 1 x D i f f e r e n t i a t e t h e e q u a t i o n w . r . t x d y d x = 1 1 + x 2 ( 1 + x 2 ) d y d x = 1 D i f f e r e n t i a t e a g a i n ( 1 + x 2 ) d 2 y d x 2 + ( 2 x ) d y d x = 0 o r ( 1 + x 2 ) y 2 + ( 2 x ) y 1 = 0 Higher Order Derivatives exercise 11.1 question 27
Answer: Proved
Hint: You must know the derivative of logarithm and tangent inverse
x Given: y = { log ( x + x 2 + 1 ) } 2 , show ( 1 + x 2 ) d 2 y d x 2 + x d y d x = 2 Solution: y = { log ( x + x 2 + 1 ) } 2 Differentiate the equation w.r.t x d y d x = 2 log ( x + x 2 + 1 ) ⋅ 1 x + x 2 + 1 × ( 1 + 2 x 2 x 2 + 1 ) = 2 log ( x + x 2 + 1 ) x + x 2 + 1 × x + x 2 + 1 x 2 + 1 = x 2 + 1 ⋅ d y d x = 2 log ( x + x 2 + 1 ) Differentiate again d 2 y d x 2 1 + x 2 + 2 x 2 1 + x 2 d y d x = 2 x + x 2 + 1 × ( 1 + 2 x 2 x 2 + 1 ) ( x 2 + 1 ) d 2 y d x 2 + x d y d x x 2 + 1 = 2 x + x 2 + 1 × x + x 2 + 1 x 2 + 1 ( 1 + x 2 ) d 2 y d x 2 + x d y d x = 2 Higher Order Derivatives exercise 11.1 question 28 maths
Answer: Proved
Hint: You must know the derivative of logarithm and tangent inverse
x Given: y = ( tan − 1 x ) 2 , show ( 1 + x 2 ) 2 y 2 + 2 x ( 1 + x 2 ) y 1 = 2 Solution: y = ( tan − 1 x ) 2 Differentiate the equation w.r.t x d y d x = 2 tan − 1 x ⋅ 1 1 + x 2 ( 1 + x 2 ) d y d x = 2 tan − 1 x Differentiate again ( 1 + x 2 ) d 2 y d x 2 + ( 2 x ) d y d x = 2 1 + x 2 ( 1 + x 2 ) 2 d 2 y d x 2 + d y d x ( 1 + x 2 ) ( 2 x ) = 2 o r ( 1 + x 2 ) 2 y 2 + 2 x ( 1 + x 2 ) y 1 = 2 Higher Order Derivatives exercise 11.1 question 29
Answer: Proved
Hint: You must know the derivative of cot x function
Given: y = cot x , show d 2 y d x 2 + ( 2 y ) d y d x = 0 Solution: L e t y = cot x Differentiate the equation w.r.t x d y d x = d ( cot x ) d x d y d x = − cosec 2 x Differentiate again d 2 y d x 2 = − [ 2 c o s e c x ( − c o s e c x cot x ) ] d 2 y d x 2 = − 2 cosec 2 x cot x d 2 y d x 2 = − 2 d y d x y d 2 y d x 2 + ( 2 y ) d y d x = 0 Higher Order Derivatives exercise 11.1 question 30
Answer: − 2 x 2 Hint: You must know the derivative of logarithm function
Given: y = log ( x 2 e 2 ) , find d 2 y d x 2 Solution: L e t y = log ( x 2 e 2 ) D i f f e r e n t i a t e t h e e q u a t i o n w . r . t x d y d x = 1 x 2 e 2 ⋅ 1 e 2 ⋅ 2 x = 2 x D i f f e r e n t i a t e a g a i n d 2 y d x 2 = − 2 [ 1 x 2 ] = − 2 x 2 H e n c e , d 2 y d x 2 = − 2 x 2
Higher Order Derivatives exercise 11.1 question 31
Answer: Proved
Hint: You must know the derivative of exponential function
Given: y = a e 2 x + b e − x , show d 2 y d x 2 − d y d x − 2 y = 0 Solution: y = a e 2 x + b e − x Differentiate the equation w.r.t x d y d x = 2 a e 2 x + b e − x d 2 y d x 2 = 4 a e 2 x + b e − x LHS = d 2 y d x 2 − d y d x − 2 y = 4 a e 2 x + b e − x − 2 a e 2 x + b e − x = − 2 a e 2 x − 2 b e 2 x = 0 = RHS
Higher Order Derivatives exercise 11.1 question 31
Answer: Proved
Hint: You must know the derivative of exponential function
Given: y = a e 2 x + b e − x , show d 2 y d x 2 − d y d x − 2 y = 0 Solution: y = a e 2 x + b e − x Differentiate the equation w.r.t x d y d x = 2 a e 2 x + b e − x d 2 y d x 2 = 4 a e 2 x + b e − x LHS = d 2 y d x 2 − d y d x − 2 y = 4 a e 2 x + b e − x − 2 a e 2 x + b e − x = − 2 a e 2 x − 2 b e 2 x = 0 = RHS
Higher Order Derivatives exercise 11.1 question 32 maths
Answer: Proved
Hint: You must know the derivative of exponential sin and cos functions
Given: y = e x ( sin x + cos x ) , show d 2 y d x 2 − 2 d y d x + 2 y = 0 Solution: y = e x ( sin x + cos x ) Differentiate the equation w.r.t x d y d x = e x ( cos x − sin x ) + e x ( sin x + cos x ) d y d x = e x ( cos x − sin x ) + y Differentiate again d 2 y d x 2 = e x ( − sin x − cos x ) + e x ( cos x − sin x ) + d y d x d 2 y d x 2 = − y + d y d x − y + d y d x ∴ d 2 y d x 2 − 2 d y d x + 2 y = 0 Higher Order Derivatives exercise 11.1 question 33
Answer: − c o t y . c o s e c 2 y Hint: You must know the derivative of cos inverse function
Given: y = cos − 1 x , find d 2 y d x 2 in terms of y alone Solution: y = cos − 1 x Differentiate the equation w.r.t x d y d x = d ( cos − 1 x ) d x = − 1 1 − x 2 = − ( 1 − x 2 ) − 1 2 d 2 y d x 2 = d [ − ( 1 − x 2 ) − 1 2 ] d x = − ( − 1 2 ) ( 1 − x 2 ) − 3 2 × ( − 2 x ) = 1 2 ( 1 − x 2 ) 3 × ( − 2 x ) d 2 y d x 2 = − x ( 1 − x 2 ) 3 y = cos − 1 x x = cos y Put in above equation d 2 y d x 2 = − cos y ( 1 − cos 2 y ) 3 d 2 y d x 2 = − cos y sin 3 y = − cos y sin 3 y = − cos y sin y × 1 sin 2 y ∴ d 2 y d x 2 = − cot y ⋅ cosec 2 y Higher Order Derivatives exercise 11.1 question 34
Answer: Proved
Hint: You must know the derivative of exponential and cos inverse function
Given: y = e a cos − 1 x , prove ( 1 − x 2 ) d 2 y d x 2 − x d y d x − a 2 y = 0 Solution: y = e a cos − 1 x Taking logarithm both sides log y = a cos − 1 x log c log y = a cos − 1 x 1 y d y d x = a × ( − 1 1 − x 2 ) d y d x = a y 1 − x 2 Squaring both sides, ( d y d x ) 2 = a 2 y 2 ( 1 − x 2 ) ( 1 − x 2 ) ( d y d x ) 2 = a 2 y 2 Again differentiate, ( d y d x ) 2 ( − 2 x ) + ( 1 − x 2 ) × 2 d y d x d 2 y d x 2 = a 2 ⋅ 2 y ⋅ d y d x − x d y d x + ( 1 − x 2 ) d 2 y d x 2 = a 2 y ( 1 − x 2 ) d 2 y d x 2 − x d y d x − a 2 y = 0 Higher Order Derivatives exercise 11.1 question 35
Answer: Proved
HInt: You must know the derivative of exponential function
Given: y = 500 e 7 x + 600 e − 7 x , show d 2 y d x 2 = 49 y Solution: y = 500 e 7 x + 600 e − 7 x d y d x = ( 7 ) ( 500 ) e 7 x + ( − 7 ) ( 600 ) e − 7 x d 2 y d x 2 = ( 7 ) ( 7 ) ( 500 ) e 7 x + ( − 7 ) ( − 7 ) ( 600 ) e − 7 x d 2 y d x 2 = ( 49 ) ( 500 ) e 7 x + ( 49 ) ( 600 ) e − 7 x d 2 y d x 2 = ( 49 ) [ ( 500 ) e 7 x + ( 600 ) e − 7 x ] d 2 y d x 2 = 49 y Higher Order Derivatives exercise 11.1 question 36 maths
Answer: − 3 2 Hint: You must know the derivative of cos and sin function
x = 2 cos t − cos 2 t Given: y = 2 sin t − sin 2 t , find d 2 y d x 2 at t = π 2 Solution: x = 2 cos t − cos 2 t y = 2 sin t − sin 2 t d x d t = − 2 sin t + 2 sin 2 t d y d t = 2 cos t − 2 cos 2 t Now, d y d x = 2 cos t − 2 cos 2 t − 2 sin t + 2 sin 2 t ⇒ cos t − cos 2 t sin 2 t − sin t = 2 sin 3 t 2 sin t 2 2 cos 3 t 2 sin t 2 ⇒ tan 3 t 2 Therefore, d 2 y d x 2 = sec 2 3 t 2 × 3 2 × d t d x = 3 sec 2 3 t 2 ⋅ 1 2 sin 2 t − 2 sin t d 2 y d x 2 ] t = π 2 = − 3 2 Higher Order Derivatives exercise 11.1 question 37
Answer: − 7 64 z 3 Hint: You must know the derivative of x and y Given: x = 4 z 2 + 5 y = 6 z 2 + 7 z + 3 , find d 2 y d x 2 Solution: x = 4 z 2 + 5 y = 6 z 2 + 7 z + 3 d x d z = 8 z + 0 = 8 z d y d z = 12 z + 7 Now, d y d x = 12 z + 7 8 z d y d x = 3 2 + 7 8 z A g a i n d i f f e r e n t i a t i n g w . r . t z d 2 y d x 2 × d x d z = − 7 8 z 2 o r d 2 y d x 2 = − 7 8 z 2 × d z d x = − 7 8 z 2 × 1 8 z d 2 y d x 2 = − 7 64 z 3 Higher Order Derivatives exercise 11.1 question 38
Answer: Proved
Hint: You must know the derivative of logarithm and cos function
Given: y = log ( 1 + cos x ) , prove d 3 y d x 3 + d 2 y d x 2 × d y d x = 0 Solution: y = log ( 1 + cos x ) d y d x = − sin x 1 + cos x d 2 y d x 2 = − cos x − cos 2 x − sin 2 x ( 1 + cos x ) 2 = − ( cos x + 1 ) ( 1 + cos x ) = − 1 1 + cos x Again differentiating d 3 y d x 3 = − sin x ( 1 + cos x ) 2 d 3 y d x 3 + sin x ( 1 + cos x ) 2 = 0 d 3 y d x 3 + ( − 1 1 + cos x ) ( − sin x 1 + cos x ) = 0 d 3 y d x 3 + d 2 y d x 2 × d y d x = 0 Higher Order Derivatives exercise 11.1 question 39
Answer: Proved
Hint: You must know the derivative of sin and logarithm function
Given: y = sin ( log x ) , prove x 2 d 2 y d x 2 + x d y d x + y = 0 Solution: y = sin ( log x ) d y d x = cos ( log x ) × 1 x = cos ( log x ) x Again differentiating d 2 y d x 2 = x [ − sin ( log x ) × 1 x ] − cos ( log x ) x 2 = − cos ( log x ) − sin ( log x ) x 2 Now, LHS = x 2 d 2 y d x 2 + x d y d x + y = x 2 { − cos ( log x ) − sin ( log x ) } x 2 + x cos ( log x ) x + sin ( log x ) = 0 = RHS Higher Order Derivatives exercise 11.1 question 40 maths
Answer: Proved
Hint: You must know the derivative of exponential function
Given: y = 3 e 2 x + 2 e 3 x , prove d 2 y d x 2 − 5 d y d x + 6 y = 0 Solution: y = 3 e 2 x + 2 e 3 x d y d x = ( 2 ) ( 3 ) e 2 x + ( 3 ) ( 2 ) e 3 x = 6 e 2 x + 6 e 3 x d y d x = 6 e 2 x + 6 ( y − 3 e 2 x ) 2 d y d x = 6 e 2 x + 3 y − 9 e 2 x = − 3 e 2 x + 3 y Again differentiating d 2 y d x 2 = 3 d y d x − 6 e 2 x … … … . ( 1 ) d y d x − 3 y = − 3 e 2 x d y d x − 3 y − 3 = e 2 x Put in (1), d 2 y d x 2 = 3 d y d x − 6 ( d y d x − 3 y − 3 ) d 2 y d x 2 = 3 d y d x + 2 d y d x − 6 y d 2 y d x 2 − 5 d y d x + 6 y = 0 Higher Order Derivatives exercise 11.1 question 41
Answer: Proved
Hint: You must know the derivative of cot inverse
x Given: y = ( cot − 1 x ) 2 , prove y 2 ( x 2 + 1 ) 2 + 2 x ( x 2 + 1 ) y 1 = 2 Solution: y = ( cot − 1 x ) 2 d y d x = 2 cot − 1 x ( − 1 1 + x 2 ) ( 1 + x 2 ) d y d x = − 2 cot − 1 x Again differentiating ( 1 + x 2 ) 2 d 2 y d x 2 + 2 x d y d x = − 2 ( − 1 1 + x 2 ) ( 1 + x 2 ) 2 d 2 y d x 2 + 2 x d y d x = ( 2 1 + x 2 ) ( 1 + x 2 ) 2 d 2 y d x 2 + 2 x ( 1 + x 2 ) d y d x = 2 y 2 ( x 2 + 1 ) 2 + 2 x ( x 2 + 1 ) y 1 = 2
Higher Order Derivatives exercise 11.1 question 42
Answer: Proved
Hint: You must know the derivative of cosec
-1 x
Given: y = ( cosec − 1 x ) , x > 1 , prove x ( x 2 − 1 ) d 2 y d x 2 + ( 2 x 2 − 1 ) d y d x = 0 Solution: y = ( cos e c − 1 x ) d y d x = − 1 x x 2 − 1 x x 2 − 1 d y d x = − 1 Again differentiating x x 2 − 1 d 2 y d x 2 + x 2 − 1 d y d x + x ⋅ 2 x 2 x 2 − 1 d y d x = 0 x ( x 2 − 1 ) d 2 y d x 2 + ( 2 x 2 − 1 ) d y d x = 0 Higher Order Derivatives exercise 11.1 question 43
Answer: 2 2 = d 2 y d x 2 and − 1 x = d 2 y d x 2 Hint: You must know the derivative of cos, tan, sin and logarithm function
Given: x = cos t + log tan t 2 y = sin t find d 2 y d x 2 & d 2 y d x 2 at t = π 4 Solution: y = sin t d y d t = cos t d 2 y d t 2 = − sin t d 2 y d t 2 ] t = π 4 = − sin π 4 = − 1 2 Again differentiating x = cos t + log tan t 2 d x d t = − sin t + 1 tan t 2 ⋅ sec 2 t 2 ⋅ 1 2 = − sin t + cos t 2 2 × sin t 2 ⋅ sec 2 t 2 ⋅ 1 2 = − sin t + 1 sin 2 × t 2 = − sin t + cosec t Now , d y d x = d y d t × d t d x = cos t cosec t − sin t = cos t 1 − sin 2 t sin t = sin t cos t cos 2 t d 2 y d x 2 = d ( d y d x ) d x = d d t ( d y d x ) d x d t = sec 2 t cosec t − sin t = sec 2 t ⋅ sin t cos 2 t = sec 2 t tan t d 2 y d x 2 ] − π 4 = 2 2 × 1 = 2 2 Higher Order Derivatives exercise 11.1 question 44 maths
Answer: 1 a sin 2 t cos t Hint: You must know the derivative of sin, cos, tan and logarithm function
Given: x = a sin t y = a ( cos t + log tan t 2 ) find d 2 y d x 2 Solution: x = a sin t d x d t = a cos t y = a ( cos t + log tan t 2 ) d y d t = a ( − sin t + cot t 2 × sec 2 t 2 × t 2 ) = a ( − sin t + 1 2 sin ( t 2 ) × cos ( t 2 ) ) d y d t = a ( − sin t + 1 sin t ) = a ( − sin 2 t + 1 sin t ) ⇒ a cos 2 t sin t ∴ d y d x = d y d t × d t d x = a cos 2 t sin t a cos t = cos t sin t = cot t Again d 2 y d x 2 = − c o s e c 2 t d t d x = c o s e c 2 t × 1 a cos t = 1 a sin 2 t cos t Higher Order Derivatives exercise 11.1 question 45
Answer: 8 2 π a Hint: You must know the derivative of cos and sin function
Given: x = a ( cos t + t sin t ) y = a ( sin t − t cos t ) find d 2 y d x 2 at t = π 4 Solution: x = a ( cos t + t sin t ) d x d t = a ( − sin t + t cos t + sin t ) = a t cos t y = a ( sin t − t cos t ) d y d t = a ( cos t + t sin t − cos t ) = a t sin t ∴ d y d x = d y d t × d t d x = a t sin t a t cos t = tan t Again d 2 y d x 2 = sec 2 t d t d x = sec 2 t × 1 a t cos t = sec 2 t a t d 2 y d x 2 ] t = π 4 = sec 2 π 4 a π 4 = 2 2 × 4 a π = 8 2 π a Higher Order Derivatives exercise 11.1 question 46
Answer: 8 3 a Hint: You must know the derivative of cos, sin, tan and logarithm function
Given: x = a ( cos t + log tan t 2 ) y = a sin t find d 2 y d x 2 at t = π 3 Solution: x = a ( cos t + log tan t 2 ) d x d t = a [ − sin t + 1 tan t 2 sec 2 t 2 ⋅ 1 2 ] d x d t = a [ − sin t + cos t 2 2 sin t 2 1 cos 2 t 2 ] d x d t = a [ − sin t + 1 2 sin t 2 cos t 2 ] d x d t = a [ − sin t + 1 sin t ] d x d t = a cos 2 t sin t y = a sin t d y d t = a cos t ∴ d y d x = d y d t × d t d x = a cos t a cos 2 t × sin t = tan t Again d 2 y d x 2 = sec 2 t × sin t a cos 2 t d 2 y d x 2 ] t = π 3 = sec 2 π 3 ⋅ sin π 3 a cos 2 π 4 = ( 2 ) 2 ⋅ ( 3 2 ) a ( 1 2 ) 2 d 2 y d x 2 ] t = π 3 = 8 3 a Higher Order Derivatives exercise 11.1 question 47
Answer: ( sin 2 t + 2 a t cos 2 t ) ( cos 2 t − 2 a t sin 2 t ) Hint: You must know the derivative of cos and sin function
Given: x = a ( cos 2 t + 2 t sin 2 t ) y = a ( sin 2 t − 2 t cos 2 t ) find d 2 y d x 2 Solution: x = a ( cos 2 t + 2 t sin 2 t ) d x d t = a ( − 2 sin 2 t + 2 sin 2 t + 4 t cos 2 t ) = 4 a t cos 2 t d 2 x d t 2 = 4 a cos 2 t − 8 a t sin 2 t y = a ( sin 2 t − 2 t cos 2 t ) d y d t = a ( 2 cos 2 t − 2 cos 2 t + 4 t sin 2 t ) = 4 a t sin 2 t d 2 y d t 2 = 4 a sin 2 t + 8 a t cos 2 t So, d 2 y d x 2 = 4 sin 2 t + 8 a t cos 2 t 4 cos 2 t − 8 a t sin 2 t = 4 ( sin 2 t + 2 a t cos 2 t ) 4 ( cos 2 t − 2 a t sin 2 t ) = ( sin 2 t + 2 a t cos 2 t ) ( cos 2 t − 2 a t sin 2 t ) Higher Order Derivatives exercise 11.1 question 48 maths
Answer: − 1 3 sin 3 t cos 2 t Hint: You must know the derivative of cos t and sin t function Given: x = 3 cos t − 2 cos 3 t y = 3 sin t − 2 sin 3 t find d 2 y d x 2 Solution: x = 3 cos t − 2 cos 3 t d x d t = − 3 sin t + 6 cos 2 t sin t = sin t + ( 6 cos 2 t − 3 ) y = 3 sin t − 2 sin 3 t d y d t = 3 cos t − 6 sin 2 t cos t = cos t ( 3 − 6 sin 2 t ) ∴ d y d x = d y d t × d x d t = cos t ( 3 − 6 sin 2 t ) sin t + ( 6 cos 2 t − 3 ) = cos t ( 1 − 2 sin 2 t ) 3 ( 2 cos 2 t − 1 ) = cot t ( cos 2 t ) cos 2 t = cot t d y d x = cot t d 2 y d x 2 = − c o s e c 2 t Higher Order Derivatives exercise 11.1 question 49
Answer: − ( x 2 + y 2 ) y 3 Hint: You must know the derivative of cos t and sin t function
Given: x = a sin t − b cos t y = a cos t − b sin t Prove d 2 y d x 2 = − ( x 2 + y 2 ) y 3 Solution: d y d x = d y d t × d t d x = a sin t + b cos t a cos t + b sin t Use quotient rule U V = U V ′ − U ′ V V 2 d 2 y d x 2 = d ( d y d x ) d t d x d t = ( − a cos t − b sin t ) ( a cos t + b sin t ) − ( a sin t + b cos t ) ( − a sin t + b cos t ) ( a cos t + b sin t ) 2 ( a cos t + b sin t ) = ( − a cos t + b sin t ) 2 − ( b cos t − a sin t ) 2 y 3 = − y 2 − x 2 y 3 = − ( x 2 + y 2 ) y 3 Higher Order Derivatives exercise 11.1 question 50
Answer: A = 2 3 a n d B = − 1 3 Hint: You must know the derivative of second order
Given: Find A & B so that y = A sin 3 x + B cos 3 x satisfies the equation d 2 y d x 2 + 4 d y d x + 3 y = 10 cos 3 x Solution: Let y = A sin 3 x + B cos 3 x d y d x = d ( A sin 3 x + B cos 3 x ) d x = A cos 3 x − 3 + b ( − sin 3 x .3 ) [ d cos 3 x d x = − 3 sin 3 x d sin 3 x d x = 3 cos 3 x ] d y d x = 3 A cos 3 x − 3 B sin 3 x d 2 y d x 2 = d d x ( 3 A cos 3 x − 3 B sin 3 x ) = 3 A ( − sin 3 x ⋅ 3 ) − 3 B ( cos 3 x .3 ) = − 9 A sin 3 x − 9 B cos 3 x = − 9 ( A sin 3 x + 3 cos 3 x ) = − 9 y d 2 y d x 2 + 4 d y d x + 3 y = 10 cos 3 x − 9 y + 4 ( 3 A cos 3 x − 3 B sin 3 x ) + 3 y = 10 cos 3 x − 6 y + 12 A cos 3 x − 12 B sin 3 x = 10 cos 3 x − 6 ( A sin 3 x + B cos 3 x ) + 12 A cos 3 x − 12 B sin 3 x = 10 cos 3 x sin 3 x ( − 6 A − 12 B ) + cos 3 x ( − 6 B + 12 A ) = 10 cos 3 x − 6 A − 12 B = 0 … … . . ( 1 ) − 6 B + 12 A = 0 … … . . ( 2 ) 6 A = − 12 B A = − 2 B … … ( 3 ) Put (3) in (2) − 6 B + ( − 2 B ) 12 = 10 − 6 B − 24 B = 10 − 30 B = 10 B = − 1 3 A = − 2 ( − 1 3 ) = 2 3 A = 2 3 & B = − 1 3 Higher Order Derivatives exercise 11.1 question 51
Answer: d 2 y d t 2 + 2 k d y d t + n 2 y = 0 Hint: You must know the derivative of
A e − k t cos ( p t + c ) Given: If y = A e k t cos ( p t + c ) prove that d 2 y d t 2 + 2 k d y d t + n 2 y = 0 where n 2 = p 2 + k 2 Solution: Let y = A e − k t cos ( p t + c ) … . . ( 1 ) d y d x = A e − k t ( − k ) cos ( p t + c ) + A e − k t ( − sin ( p t + c ) p ) d y d t = − A k e − k t cos ( p t + c ) − A p e − k t ( sin ( p t + c ) ) … . . ( 2 ) d 2 y d x 2 = A k 2 e − k t cos ( p t + c ) + A p k e − k t sin ( p t + c ) − A p k e − k t sin ( p t + c ) − A p 2 e − k t cos ( p t + c ) d 2 y d t 2 = ( k 2 − p 2 ) A e − k t cos ( p t + c ) + 2 k ( A p e − k t sin ( p t + c ) ) … . . ( 3 ) Using ( 1 ) & ( 2 ) & n 2 = k 2 + p 2 d 2 y d t 2 = ( k 2 − p 2 ) y + 2 k ( − k y − d y d t ) d 2 y d t 2 = ( k 2 − p 2 − 2 k 2 ) y + 2 k ( d y d t ) d 2 y d t 2 = − n 2 y − 2 k d y d t d 2 y d t 2 + 2 k d y d t + n 2 y = 0 Higher Order Derivatives exercise 11.1 question 52 maths
Answer: x 2 d 2 y d x 2 + x ( 1 − 2 n ) d y d x + ( 1 + n 2 ) y = 0 Hint: You must know the derivative of
c o s ( l o g x ) a n d s i n ( l o g x ) Given: If y = x n { acos ( log x ) + b sin ( log x ) } prove that x 2 d 2 y d x 2 + x ( 1 − 2 n ) d y d x + ( 1 + n 2 ) y = 0 Solution: Let y = x n { a cos ( log x ) + b sin ( log x ) } Use multiplicative rule UV = U ′ V + UV ′ U = x n V = a cos ( log x ) + b sin ( log x ) d y d x = n x n − 1 { acos ( log x ) + b sin ( log x ) } + x n { a sin ( log x ) x + b cos ( log x ) x } d y d x = n y x + x n x ( − a sin ( log x ) + b cos ( log x ) ) x d y d x = n y + x n ( − a sin ( log x ) + b cos ( log x ) ) d y d x + x d 2 y d x 2 = n d y d x + n x n − 1 ( − a sin ( log x ) + b cos ( log x ) ) + x n { a sin ( log x ) x + b cos ( log x ) x } d y d x ( 1 − x ) + x d 2 y d x 2 = n x n − 1 ( − a sin ( log x ) + b cos ( log x ) ) + x n { a sin ( log x ) x + b cos ( log x ) x } d y d x ( 1 − n ) + x d 2 y d x 2 = n x n − 1 ( − a sin ( log x ) + b cos ( log x ) ) − 1 x y d y d x ( 1 − n ) + x d 2 y d x 2 = n x ( x d y d x − n y ) − y x d y d x + x ( 1 − n ) d y d x = n x d y d x − n 2 y − y d 2 y d x 2 + d y d x ( x − n x − n x ) − ( 1 + n 2 ) y = 0 x 2 d 2 y d x 2 + x ( 1 − 2 n ) d y d x + ( 1 + n 2 ) y = 0 The RD Sharma Class 12 Solutions Higher Order Derivatives Ex 11.1 is available for the students who find difficulty in this chapter. The 11th chapter of class 12 mathematics consists of only 1 exercise, ex 11.1. Therefore, it is the smallest and one of the easiest chapters that is present in the syllabus.
There are 61 questions in total including the sub headings and the topics included in this chapter are meaning and documentations of higher order derivatives, discovering second order derivatives, establishing relations and various other order derivatives.
The additional questions mock test questions present in the Class 12 RD Sharma Chapter 11 Exercise 11.1 book helps the students to assess themselves before facing the real examinations. This makes them fix a target score easily when they prepare for the next exam.
Most of the teachers also refer to the RD Sharma Class 12th Exercise 11.1 Chapter 11 Higher Order Derivatives solution book to find out various tricks that can be applied. The questions for the class tests and the homework sums are also taken from the RD Sharma Class 12 Chapter 11 Exercise 11.1 book.
Many previous batch students have admitted that the contribution of the RD Sharma Class 12 Chapter 11 Exercise 11.1 book was immense in making them score high marks.
The benefits of referring to the RD Sharma solution books are:
The students gain the access to the best solution book provided by the experts at the Career 360 website.
They can utilize all the resources for free of cost without paying even a single rupee.
Many additional sets of questions are present.
Various tips are given for many sums.
The sums that can be performed in other methods are also solved.
Therefore, the RD Sharma Class 12 Solutions Chapter 11 ex 11.1 can be downloaded in the form of a PDF at the Career 360 website. The students can easily attain their highest targets by practising with the Class 12 RD Sharma Chapter 11 Exercise 11.1 Solution book.
RD Sharma Chapter-wise Solutions