The majority of the CBSE Board students use the RD Sharma Solution books to clear their doubts in their homework and score good marks in tests and public examinations. Class 12 mathematics has many portions that the students face challenges in solving. Shortcut methods, tricks, and formulas play a prominent role when it comes to the Very Short Answers (VSA) part. Here is where the RD Sharma Solution books come to help. The RD Sharma Class 12th VSA solution material can be used for clarifying doubts.
Differentiability Excercise: VSA
Differentiability exercise Very short answer type question 1
Answer:
Differentiability of a function at a point:
let
$f(x)$ be a real valued function defined on an open interval (a,b) and
$c \in(a, b)$then f(x) is said to be differentiable at a point if
$\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$exists finitely.
Differentiability exercise Very short answer type question 2
Answer: Yes
Hint: With the help of definition of differentiability we will form the condition of continuity.
Given: Function is differentiable
Explanation: Let a function is differentiable at
$x=c$, then
$f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ ............(i)
To prove a function is continuous, we have to show
$\begin{aligned} &\lim _{x \rightarrow c} f(x)=f(c) \\\\ &\text { Now, } \lim _{x \rightarrow c}[f(x)-f(c)]=\lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{x-c}(x-c)\right] \end{aligned}$[Divide and multiply by
$(x-c)$]
$\lim _{x \rightarrow c}[f(x)-f(c)]=\lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{x-c}\right] \lim _{x \rightarrow c}(x-c)$$\lim _{x \rightarrow c}[f(x)-f(c)]=f^{\prime}(c) \lim _{x \rightarrow c}(x-c)$ [From equation (i)]
$\begin{aligned} &\lim _{x \rightarrow c}[f(x)-f(c)]=f^{\prime}(c) \times 0 \\\\ &\lim _{x \rightarrow c}[f(x)-f(c)]=0 \\\\ &\lim _{x \rightarrow c} f(x)=f(c) \end{aligned}$Hence the given function is continuous.
So, every differentiable function is continuous.
Differentiability exercise Very short answer type question 3
Answer: No
Explanation: Every continuous function is not differentiable.
For example,
$f(x)=|x|=\left\{\begin{array}{ll} x & x>0 \\ -x & x<0 \end{array}\right\}$is continuous at x=0.
But at x=0,
$\begin{aligned} L H D &=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\\\ &=\lim _{x \rightarrow 0^{-}} \frac{-x-0}{x-0}=\lim _{x \rightarrow 0}-1 \\\\ &=-1 \end{aligned}$$\begin{aligned} R H D &=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\\\ &=\lim _{x \rightarrow 0^{-}} \frac{x-0}{x-0}=\lim _{x \rightarrow 0} 1 \\\\ &=1 \end{aligned}$As
$L H D \neq R H D$Therefore,
$\left | x \right |$ is not differentiable at x=0.
Differentiability exercise Very short answer type question 4
Answer:
$\mathrm{f}(\mathrm{x})=|x| \text { at } \mathrm{x}=0$Explanation
: let $f(x)=|x|=\left\{\begin{array}{ll} x & x>0 \\ -x & x<0 \end{array}\right\}$ Now $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}-x=0 \text { and } \lim _{x \rightarrow 0^{+}} f(x)=0$ Differentiability exercise Very short answer type question 6
Answer: Does not exist
Hint: if
$f(x)$ is differentiable at
$x=2$ then
$\lim _{x \rightarrow c} \frac{f(x)-f(2)}{x-2}=f^{\prime}(2)$Given:
$f(x)=|x-2|$Explanation:
$f(x)=\left(\begin{array}{ll} x-2 & x \geq 2 \\ -(x-2) & x<2 \end{array}\right)$Now, LHD at x=2
$\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{h \rightarrow 0} \frac{-(2-h-2)-0}{-h}$$\begin{aligned} &=-1 \\\\ &\text { RHD at\; x }=2 \\\\ &\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{(2+h-2)-0}{h} \\\\ &\text { As } L H D \neq R H D \end{aligned}$$f(x)$ is not differentiable so
$f^{'}(2)$ does not exist.
Differentiability exercise Very short answer type question 7
Answer: 1
Hint: if
$f(x)$ is not differentiable then
$L H D \neq R H D$Given:
$f(x)=\left|\log _{e} x\right|$ is not differentiable.
Explanation:
$f(x)=\left|\log _{e} x\right|=\left\{\begin{array}{cc} \log _{e} x & x \geq 1 \\ -\log _{e} x & 0<x<1 \end{array}\right\}$as logarithmic function is differentiable in its domain. So we only have to check at x=1
$\begin{aligned} &L H D=\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \\\\ &=\lim _{x \rightarrow 1} \frac{-\log _{e} x-0}{x-1} \\\\ &=\lim _{x \rightarrow 1} \frac{-\log x}{x-1} \end{aligned}$applying L' Hospital rule
$\begin{aligned} &=\lim _{x \rightarrow 1} \frac{-1}{x} \\ &=-1 \end{aligned}$$\begin{aligned} &R H D \text { atx }=1 \\\\ &\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\\\ &\lim _{x \rightarrow 1^{+}} \frac{\log _{e} x-\log 1}{x-1} \end{aligned}$$\begin{aligned} &=\lim _{x \rightarrow 1} \frac{\log _{e} x-0}{x-1} \\\\ &=\lim _{x \rightarrow 1} \frac{\log x}{x-1} \end{aligned}$applying L' Hospital rule
$\begin{aligned} &=\lim _{x \rightarrow 1} \frac{1}{x} \\\\ &=1 \\\\ &\text { As } L H D \neq R H D_{\text {at }} \mathrm{x}=1 \end{aligned}$$\left|\log _{e} x\right|$ is not differentiable at
$x=1$Differentiability exercise Very short answer type question 8
Answer:
$\pm 1$Hint:
$\log x$ is differentiable in its domain.
Given:
$f(x)=|\log | x \|$Explanation:
$|x|= \begin{cases}-x & , \infty<x<-1 \\ -x & ,-1<x<0 \\ x & , 0<x<1 \\ x & , 1<x<\infty\end{cases}$$\log |x|= \begin{cases}\log (-x),-\infty<x<-1 \\ \log (-x),-1<x<0 \\ \log x, & , 0<x<1 \\ \log x \quad, 1<x<\infty\end{cases}$$|\log | x \|=\left\{\begin{array}{c} -\log (-x),-0<x<-1 \\ -\log (-x),-1<x<0 \\ \log x \quad, 0<x<1 \\ \log x, 1<x<\infty \end{array}\right.$We have to check differentiability at
$\pm 1$$\begin{aligned} &\text { LHD at } x=1\\ &\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \end{aligned}$$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\log (1-h)-\log 1}{-h}\\\\ &=\lim _{h \rightarrow 0} \frac{1}{\frac{1-h}{-1}}=-1 \quad \text { [L-Hospital rule] } \end{aligned}$ ......(i)
$=-1$$\begin{aligned} \operatorname{RHD} \text { at } x=1 \\ \lim _{x \rightarrow T^{-}} \frac{f(x)-f(1)}{x-1}=& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\log (1+h)-\log 1}{h} \\ &=\lim _{h \rightarrow 0} \frac{1}{1+h}=1 \quad[\mathrm{~L} \text {-Hospital rule }] \end{aligned}$ ......(ii)
As
$LHD \neq RHD$So the function is not differentiable at
$x=1$$\begin{aligned} &\text { At } x=-1 \\ &\text { LHD at } x=-1 \\ &\begin{aligned} \lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x-(-1)} &=\lim _{h \rightarrow 0} \frac{f(-1-h)-f(-1)}{-1-h-(-1)} \\ &=\lim _{h \rightarrow 0} \frac{-\log \{-(-1-h)\}-[-\log \{-(-1)\}]}{-h} \\ &=\lim _{h \rightarrow 0} \frac{\frac{-1}{1+h}-0}{-1}=1 \quad \text { [L-Hospital rule] } \end{aligned} \end{aligned}$ .......(iii)
$=1$$\begin{aligned} \mathrm{RHD} \text { at } x=-1 \\ \lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x-(-1)} &=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{-1+h+1} \\ &=\lim _{h \rightarrow 0} \frac{-\log \{-(-1+h)\}-[-\log \{-(-1)\}]}{h} \\ &=\lim _{h \rightarrow 0} \frac{-1}{1-h}=-1 \quad[\mathrm{~L}-\mathrm{Hospital} \text { rule }] \end{aligned}$ ......(iv)
As $LHD \neq RHD$
So the function is not differentiable at $x=-1$
Differentiability exercise Very short answer type question 9
Answer 0
Hint : If
$f(x)$ is differentiable at
$x=0$ then
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)$ exists.
Given:
$\mathrm{f}(\mathrm{x})=|\mathrm{x}|^{3}$Explanation:
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc} x^{3} & x \geq 0 \\ -x^{3} & x<0 \end{array}\right.$$\begin{aligned} &\text { LHD of } \mathrm{x}=0\\ &\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{-x^{3}-0}{x}=0\\\\ &R H D \text { at } x=0\\\\ &\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3}-0}{x}=0 \end{aligned}$$\begin{aligned} &\text { As } R H D=L H D\\\\ &f(x) \text { is differentiable at } x=0\\\\ &f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0 \end{aligned}$Differentiability exercise Very short answer type question 10
Answer:
$x=0,1$Hint:
$|x|= \begin{cases}x & x>0 \\ -x & x<0\end{cases}$Given:
$f(x)=|x|+|x-1|$Explanation:
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc} x+x-1 & x>1 \\ x-(x-1) & 0 \leq x \leq 1 \\ -x-(x-1) & x<0 \end{array}\right.$$=\left\{\begin{array}{lr} 2 x-1 & x>1 \\ 1 & 0 \leq x \leq 1 \\ -2 x+1 & x<0 \end{array}\right.$$f(x)$ is a polynomial function for
$x > 1, 0\leq x\leq 1$ and
$x < 0$ . so,
$f(x)$ is differentiable for all
$x>1, 0\leq x\leq 1$ &
$x < 0$We only have to check at
$x= 0, 1$$LHD\; at\; x = 0$$\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=& \lim _{x \rightarrow 0} \frac{-2 x+1-1}{x-0} \\ &=-2 \end{aligned} \quad \text { [L-Hospital rule ] }$$\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1-1}{x-0}$$=0$
$\text { As } \mathrm{LHD} \neq \mathrm{RHD} \text { at } \mathrm{x}=0$
$f(x)$ is not differentiable at $x=0$
$\begin{aligned} &\text { At } x=1 \\ &\text { LHD at } x=1 \end{aligned}$
$\begin{aligned} &\text { At } x=1 \\ &\text { LHD at } x=1 \\ &\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 0} \frac{1-1}{x-1}=0 \end{aligned}$
$\begin{aligned} &\mathrm{RHD} \text { at } \mathrm{x}=1 \\ &\begin{aligned} \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} &=\lim _{x \rightarrow 0} \frac{2 x-1-1}{x-1} \\ &=2 \end{aligned} \quad \text { [L-Hospital rule] } \\ & \end{aligned}$
$\text { As } \mathrm{LHD} \neq \mathrm{RHD} \text { at } \mathrm{x}=1$
$f(x)$ is not differentiable at $x=1$ so that point of non-differentiability
are $0, 1$
Differentiability exercise Very short answer type question 10
Edit Q
Question:10
Differentiability exercise Very short answer type question 10
Answer:
Answer:
$x=0,1$Hint:
$|x|= \begin{cases}x & x>0 \\ -x & x<0\end{cases}$Given:
$f(x)=|x|+|x-1|$Explanation:
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc} x+x-1 & x>1 \\ x-(x-1) & 0 \leq x \leq 1 \\ -x-(x-1) & x<0 \end{array}\right.$$=\left\{\begin{array}{lr} 2 x-1 & x>1 \\ 1 & 0 \leq x \leq 1 \\ -2 x+1 & x<0 \end{array}\right.$$f(x)$ is a polynomial function for
$x > 1, 0\leq x\leq 1$ and
$x < 0$ . so,
$f(x)$ is differentiable for all
$x>1, 0\leq x\leq 1$ &
$x < 0$We only have to check at
$x= 0, 1$$LHD\; at\; x = 0$$\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=& \lim _{x \rightarrow 0} \frac{-2 x+1-1}{x-0} \\ &=-2 \end{aligned} \quad \text { [L-Hospital rule ] }$$\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1-1}{x-0}$$=0$
$\text { As } \mathrm{LHD} \neq \mathrm{RHD} \text { at } \mathrm{x}=0$
$f(x)$ is not differentiable at $x=0$
$\begin{aligned} &\text { At } x=1 \\ &\text { LHD at } x=1 \end{aligned}$
$\begin{aligned} &\text { At } x=1 \\ &\text { LHD at } x=1 \\ &\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 0} \frac{1-1}{x-1}=0 \end{aligned}$
$\begin{aligned} &\mathrm{RHD} \text { at } \mathrm{x}=1 \\ &\begin{aligned} \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} &=\lim _{x \rightarrow 0} \frac{2 x-1-1}{x-1} \\ &=2 \end{aligned} \quad \text { [L-Hospital rule] } \\ & \end{aligned}$
$\text { As } \mathrm{LHD} \neq \mathrm{RHD} \text { at } \mathrm{x}=1$
$f(x)$ is not differentiable at $x=1$ so that point of non-differentiability
are $0, 1$
Differentiability exercise Very short answer type question 11
Answer:
$f(c)$Hint: If a function is differentiable then it is continuous
Given:
$\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists
Explanation: From above we know if limit exists then it is differentiable and every differentiable function is continuous .
So, from the definition of continuity
$\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{c})$Differentiability exercise Very short answer type question 12
Answer: 0
Hint: If f(x) is differentiable at x=2 then
$\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=f^{\prime}(2)$Given:
$\mathrm{f}(\mathrm{x})=|\mathrm{x}-1|+|\mathrm{x}-3|$Explanation:
$f(x)=\left\{\begin{array}{cc} -(x-1)-(x-3) & x<1 \\ x-1-(x-3) & 1<x<3 \\ (x-1)+(x-3) & x>3 \end{array}\right.$$f(x)=\left\{\begin{array}{lr} -2 x+4 & x<1 \\ 2 & 1<x<3 \\ 2 x-4 & x>3 \end{array}\right.$Now, at x=2 , f(x)=2 so the function is differentiable at x=2 as it is a polynomial Function.
Hence , from the definition of differentiability
$\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} \text { exists. }$So,
$\begin{aligned} &\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=f^{\prime} \\\\ &\lim _{x \rightarrow 2} \frac{2-2}{x-2}=f^{\prime} \\\\ &f^{\prime}(2)=0 \end{aligned}$Differentiability exercise Very short answer type question 13
Answer :
$\frac{4}{5}$Hint: If
$f(x)$ is differentiable at
$x=4$ then
$\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=f^{\prime}(4)$Given:
$\mathrm{f}(\mathrm{x})=\sqrt{x^{2}+9}$Explanation: As
$f(x)$ is differentiable at
$x=4$$\begin{aligned} &\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=f^{\prime}\\\\ &\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-\sqrt{4^{2}+9}}{x-4}=f^{\prime}\\\\ &\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-5}{x-4}=f^{\prime}(4)\\ &\lim _{x \rightarrow 4} \frac{2 x}{2 \sqrt{x^{2}+9}}=f^{\prime} \text { (4) } \quad \text { [L-Hospital Rule] } \end{aligned}$$\begin{aligned} &\frac{4}{\sqrt{16+9}}=f^{\prime} \\\\ &\frac{4}{5}=f^{\prime}(4) \end{aligned}$ The 9th Chapter in mathematics, Differentiability for class 12, The RD Sharma books are not just papers with solutions; they teach new methods and tricks to make the students understand the concepts deeply. RD Sharma Class 12 Solutions Differentiability VSA has thirteen questions. The concepts include defining differentiability, continuous function, differentiable function and finding values of derivatives. The RD Sharma Class 12 Chapter 9 VSA solution book will help you clarify your doubts regarding it.
Educational experts provide the answers in RD Sharma Class 12th VSA books. Each question is solved in every possible method. This gives the freedom for the students to select and adapt the way that they find easy.
As the RD Sharma books follow the NCERT syllabus, the CBSE board students can very well utilize it. The Class 12 RD Sharma Chapter 9 VSA Solution is a must for every student who tries the sums without a teacher's help. This book helps to figure out the various methods for solving a sum in the Differentiability chapter. Soon, you will find yourself crossing your benchmark score.
And as a cherry on the cake, the RD Sharma solution books are available for free of cost on the Career 350 website. So not only will the students access it for free, but they can also download the book to their devices. So, in just a few seconds, you will possess the RD Sharma Class 12 Solutions VSA on your mobile or laptop.
As the RD Sharma books are widely recognized, many teachers prefer to prepare question papers from them. There are even questions asked in the public exams from the RD Sharma books. Moreover, many students who used RD Sharma Class 12th VSA have benefitted due to it. Therefore, no other external force can stop you from doing your exam well if you have good practice with the best guide.
Once you work out the sums in the format given in the RD Sharma Class 12 Solutions Chapter 9 VSA, you will have no doubt. You choose the shortcuts and formulas provided in the book to answer the Very Short Answer questions more straightforwardly.