RD Sharma Solutions Class 12 Mathematics Chapter 9 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 9 MCQ

Edited By Kuldeep Maurya | Updated on Jan 20, 2022 03:54 PM IST

The RD Sharma solution books are widely recommended by most of the CBSE schools to their students. The CBSE Mathematics portions are a bit challenging for the students to crack. And not every student is gifted to afford home tuition or extra classes. When it comes to the 9th chapter, Differentiability, it becomes even more difficult to solve. Here is where the RD Sharma Class 12th MCQ solutions will be of great help.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 9 MCQ Differentiability - Other Exercise
  2. Differentiability Excercise:MCQ
  3. RD Sharma Chapter wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 9 MCQ Differentiability - Other Exercise

Differentiability Excercise:MCQ

Differentiability exercise Multiple choice question, question 1

Answer:

(a)
HINTS: Learn the definition of continuity and differentiability
GIVEN: f(x)=|x|, g(x)=\left|x^{3}\right|
SOLUTION:
\begin{aligned} &f(x)=|x|=\left\{\begin{array}{cc} x & x>0 \\ -x & x<0 \end{array}\right. \\ &g(x)=\left|x^{3}\right|=\left\{\begin{array}{cc} x^{3} & x>0 \\ -x^{3} & x<0 \end{array}\right. \end{aligned}
Now for the continuity of f(x),
Check at x=0
\lim _{x \rightarrow 0} f(x)=\lim _{h \rightarrow 0} f(0-h)
\begin{aligned} \lim _{h \rightarrow 0} f(-h) &=\lim _{h \rightarrow 0} f(-(-h)) \\ &=0 \\ \lim _{x \rightarrow 0} f(x) &=\lim _{h \rightarrow 0} f(0+h) \\ &=\lim _{h \rightarrow 0} h \\ &=0 \\ \end{aligned}
As \begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{x \rightarrow 0^{+}} f(x) \end{aligned}
therefore f(x) continuous for x=0
For differentiability of f(x) at x=0
LHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h-0} \\ &=\lim _{h \rightarrow 0} \frac{(-(-h))-0}{-h} \\ &=\lim _{h \rightarrow 0}-1 \\ &=-1 \end{aligned}
RHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{0+h-0} \\ &=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h-0}{a} \\ &=\lim _{h \rightarrow 0} 1 \\ &=1 \end{aligned}
As LHD and RHD at x=0
f(x) is not differentiable at x=0
Now, continuity of g(x)
Check at x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} g(x) &=\lim _{h \rightarrow 0} g(0-h) \\ &=\lim _{h \rightarrow 0}-(-h)^{3} \\ &=0 \\ \end{aligned}
\begin{aligned} \lim _{x \rightarrow 0^{+}} g(x) &=\lim _{h \rightarrow 0} g(0+h) \\ &=\lim _{h \rightarrow 0} h^{3} \\ &=0 \end{aligned}
Differentiability of g(x) at x=0
LHD of x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{g(x)-g(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{g(0-h)-g(0)}{0-h-0} \\ &=\lim _{h \rightarrow 0} \frac{-(-h)^{3}-0}{-h} \\ &=\lim _{h \rightarrow 0}-h^{2} \\ &=0 \end{aligned}
RHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{0+h-0} \\ &=\lim _{h \rightarrow 0} \frac{h^{3}-0}{h} \\ &=\lim _{h \rightarrow 0} h^{2} \\ &=0 \end{aligned}
As LHD and RHD at x=0
g(x) is differentiable at x=0

Differentiability exercise Multiple choice question, question 2

Answer:

(b)
HINTS: Understand the definition of continuity and differentiability
GIVEN: f(x)=\sin ^{-1}(\cos x)
SOLUTION:
Check the continuity at x=0
Let,
\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{h \rightarrow 0} f(0-h) \\ &=\lim _{h \rightarrow 0} \sin ^{-1}(\cos (0-h)\\ &=\lim _{h \rightarrow 0} \sin ^{-1}(\cos h) \\ \end{aligned}
\begin{aligned} &=\sin ^{-1}(\cos 0) \\ &=\sin ^{-1}1 \\ &=\frac{\pi}{2} \\ \end{aligned}
\begin{aligned} \lim _{x \rightarrow 0^{+}} f(x) &=\lim _{h \rightarrow 0} f(0+h) \\ &=\lim _{h \rightarrow 0} \sin ^{-1}(\cos h) \\ \end{aligned}
\begin{aligned} &=\sin ^{-1}(\cos 0) \\ &=\sin ^{-1} 1 \\ &=\frac{\pi}{2} \end{aligned}
As \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)
therefore f(x) is continuous at x=0
check the differentiability at x=0
LHD at x=0

Differentiability exercise Multiple choice question, question 3

Answer:

(a)
HINTS: Understand the definition of differentiability and modulus function/
GIVEN: f(x)=x|x|
SOLUTION:
f(x)=\left\{\begin{matrix} x(-x) & & x<0\\ x(x)& & x\geq 0 \end{matrix}\right.\\
=\left\{\begin{matrix} -x^{2} & & x<0\\ x^{2}& & x\geq 0 \end{matrix}\right.
For x<0 and x>0 function is differentiable as it is a polynomial function.
Now at x=0
LHD=
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h-0} \\ &=\lim _{h \rightarrow 0} \frac{f-(-h)^{2}-0}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-\left(-h^{2}\right)-0}{-h} \\ &=\lim _{h \rightarrow 0}-h \\ &=0 \end{aligned}
RHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{0+h-0} \\ &=\lim _{h \rightarrow 0} \frac{h^{2}-0}{h} \\ &=\lim _{h \rightarrow 0} \mathrm{~h} \\ &=0 \end{aligned}
As LHD at x=0 and RHD at x=0
Hence, f(x) is differentiable at (-\infty ,\infty )

Differentiability exercise Multiple choice question, question 4

Answer:

: (b)
HINTS: Understand the definition of continuity and differentiability
SOLUTION:
f(x)= \begin{cases}\frac{1 x+21}{\tan ^{-1}(x+2)} & x \neq-2 \\ 2 & x=-2\end{cases}
Check the continuity at x=-2
\begin{aligned} \lim _{x \rightarrow-2} f(x) &=\lim _{h \rightarrow 0} f(-2-h) \\ \end{aligned}

\begin{aligned}&=\lim _{h \rightarrow 0} \frac{1}{\frac{\tan^{-1} h}{h}} \\ \end{aligned}
\begin{aligned}&=-1 \quad\left[\operatorname{as}\lim_{h \rightarrow 0} \frac{\tan ^{-1} h}{h}=1\right] \\ \end{aligned}
\begin{aligned} \lim _{x \rightarrow-2^{+}} f(x) &=\lim _{h \rightarrow 0} f(-2+h) \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-2+h+2}{\tan ^{-1}(-2+h+2)} \quad[|x+2|=x+2=x>2] \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{h}{\tan ^{-1} h} \\ &=\lim _{h \rightarrow 0} \frac{1}{\frac{\tan ^{-1} h}{h}} \\ &=1 \end{aligned}
As \lim _{x \rightarrow-2^{-}} f(x) \text { and } \lim _{x \rightarrow-2^{+}} f(x)
f(x) is not continuous at x=-2

Tangents and Normals Exercise Multiple Choice Questions Question 5 .

Answer:
\left ( c \right )\left ( 0,0 \right )
Hint:
Use differentiation
Given:
The curve x=at^{2},y=2at
Solution:
We Have
\begin{aligned} &x=a t^{2}\\ &\frac{d x}{d t}=2 a t\\ &\text { And }\\ &y=2 a t\\ &\frac{d y}{d t}=2 a \end{aligned}
\frac{dy}{dx}=\frac{1}{t}=\infty,For tangent to the curve perpendicular to x-axis
t=0
So, the point of contact is \left ( at^{2},2at \right )=\left ( 0,0 \right )

Differentiability exercise Multiple choice question, question 5

Answer:

(a) ,(c)
HINTS: Understand the definition of continuity and differentiability
GIVEN: f(x)=(x+|x|)(|x|)
SOLUTION:\begin{aligned} f(x) &=(x+|x|)(|x|) \\ f(x) &= \begin{cases}(x+x) x & x>0 \\( x-x)(-x) & x<0\end{cases} \\ &=\left\{\begin{array}{cc} 2 x^{2} & x>0 \\ 0 & x<0 \end{array}\right. \end{aligned}
Check the continuity of f(x) at x<0
\begin{aligned} &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{x \rightarrow 0^{+}} 2 h^{2}=0 \\ \end{aligned}
As
\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \end{aligned}
Hence, f(x) is continuous at x=0
LHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h} \\ &=\lim _{h \rightarrow 0} \frac{0-0}{-h} \\ &=0 \end{aligned}
RHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 h^{2}-0}{h} \\ &=\lim _{h \rightarrow 0} 2 h \\ &=0 \end{aligned}
As LHD at x=0 and RHD at x=0
Hence, f(x) is differentiable.
f^{\prime}(x)= \begin{cases}4 x & x>0 \\ 0 & x<0\end{cases}
At x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} f(x) &=\lim _{h \rightarrow 0} f(0+h) \\ &=\lim _{h \rightarrow 0} 4 h \\ &=0 \\ \end{aligned}
\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{h \rightarrow 0^{+}} f(x) \end{aligned}
Hence f'(x) is continuous
Now,
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h-0} \\ &=\lim _{h \rightarrow 0} \frac{0-0}{-h} \\ &=0 \end{aligned}
RHD=
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{0+h-0} \\ &=\lim _{h \rightarrow 0} \frac{4 h-0}{h} \\ &=\lim _{h \rightarrow 0} \frac{4 h}{h} \\ &=4 \end{aligned}
Hence f'(x) is not differentiable
f'(x) does not exist

Differentiability exercise Multiple choice question, question 6

Answer:

(a)
HINTS: Understand the definition of continuity and differentiability
GIVEN: f(x)=e^{-\left | x \right |}
SOLUTION:
f(x)= \begin{cases}e^{-x} & x>0 \\ e^{x} & x<0\end{cases}
At x=0
\begin{aligned} &\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0^{+}} f(o-h)=\lim _{h \rightarrow 0^{+}} e^{-x} \\ &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{x \rightarrow 0^{+}} e^{-h}=1 \end{aligned}
Hence, f(x) is continuous everywhere
LHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h-0} \\ &=\lim _{h \rightarrow 0} \frac{e^{-h}-1}{-h} \\ &=\lim _{h \rightarrow 0} \frac{e^{-h}}{-h} \quad\left[\frac{0}{0} \text { form }\right] \\ &=-e^{-0} \\ &=-1 \end{aligned}
RHD at x=0
\begin{aligned} \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{0+h-0} \\ &=\lim _{h \rightarrow 0} \frac{e^{-h}-1}{h} \\ &=\lim _{h \rightarrow 0} \frac{-e^{-h}}{1} \quad\left[\frac{0}{0} \text { form }\right] \\ &=-e^{-0} \\ &=-1 \end{aligned}
LHD \neq RHD
Hence, f(x) is differentiable at x=0

Tangents and Normals Exercise Multiple Choice Questions Question 8 .

Answer:

Answer:
\left ( d \right )\left ( 6,36 \right )
Hint:
Use differentiation and slope of tangent is zero
Given:
The curve y=12x-x^{2}
Solution:
Let the point be p\left ( x,y \right )
\begin{aligned} &y=12 x-x^{2} \\ &\frac{d y}{d x}=12-2 x \\ &\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=12-2 x_{1} \end{aligned}
Since slope of tangent is zero

\begin{aligned} &\text { So, }\left(\frac{d y}{d x}\right)_{x_{1}, y_{1}}=0\\ &12-2 x_{1}=0\\ &2 x_{1}=12\\ &x_{1}=6 \end{aligned}
Also curve passing through tangent
\begin{aligned} &y_{1}=12 x_{1}-x_{1}^{2} \\ &y_{1}=12 \times 6-36 \\ &y_{1}=72-36=36 \end{aligned}
The Points are \left ( 6,36 \right )

Differentiability exercise Multiple choice question, question 7

Answer:

: (b)
HINTS: Understand the definition of continuity and differentiability
SOLUTION:
f(x)=|\cos x|
let
\begin{aligned} f(x) &=|x| \\ g(x) &=\cos x \\ h &=\operatorname{fog}(x) \\ &=f(g(x)) \\ &=f(\cos x) \\ &=|\cos x| \end{aligned}
As cosx and \begin{aligned} &|x| \end{aligned} are continuous function.Hence \begin{aligned} &|\cos x| \end{aligned} is also continuous function For differentiability
f(x)= \begin{cases}-\cos x & x<(2 n+1) \frac{\pi}{2} \\ 0 & x=(2 n+1) \frac{\pi}{2} \\ \cos x & x>(2 n+1) \frac{\pi}{2}\end{cases}
At (2 n+1) \frac{\pi}{2}
\begin{aligned} & \lim _{x \rightarrow(2 n+1) \frac{\pi}{2}} \frac{f(x)-f(2 n+1) \frac{\pi}{2}}{x-(2 n+1) \frac{\pi}{2}} \\ \end{aligned}
\begin{aligned} =& \lim _{h \rightarrow 0} \frac{f(2 n+1) \frac{\pi}{2}-h-0}{(2 n+1) \frac{\pi}{2}-h-(2 n+1) \frac{\pi}{2}} \\ \end{aligned}
\begin{aligned} =& \lim _{h \rightarrow 0} \frac{-\cos (2 n+1) \frac{\pi}{2}-h}{-1} \\ \end{aligned}
\begin{aligned}=& \sin (2 n+1) \frac{\pi}{2} \\ & \lim _{x \rightarrow(2 n+1) \frac{\pi^{-1}}{2}^{-1}} \frac{f(x)-f(2 n+1) \frac{\pi}{2}}{x-(2 n+1) \frac{\pi}{2}} \\ \end{aligned}
\begin{aligned} =& \lim _{h \rightarrow 0} \frac{f\left((2 n+1) \frac{\pi}{2}-h\right)-0}{(2 n+1) \frac{\pi}{2}+h-(2 n+1) \frac{\pi}{2}} \\ \end{aligned}
\begin{aligned} =& \lim _{h \rightarrow 0} \frac{\cos (2 n+1) \frac{\pi}{2}+h}{-1} \\ =&-\sin (2 n+1) \frac{\pi}{2} \end{aligned}
As LHD \neq RHD
f(x) is not differentiate at x=(2 n+1) \frac{\pi}{2}

Tangents and Normals Exercise Multiple Choice Question Question 11 .

Answer:
\left ( b \right )x+y-1=x-y-2
Hint:
Use slope of the tangent m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
Given:
y=x^{2}-3x+2
Solution:
y=x^{2}-3x+2
Let the tangent meet the x-axis at point \left ( x,o \right )
\frac{dy}{dx}=2x-3
The tangent passes through point \left ( x,o \right )
\begin{aligned} &0=x^{2}-3 x+2 \\ &(x-2)(x-1)=0 \\ &\Rightarrow x=2, x=1 \end{aligned}
Case 1
When x=2
Slope of tangent \frac{dy}{dx}|\left ( _{2,0} \right )=2\left ( 2 \right )-3=4-3=1
\therefore \left ( x_{1},y_{1} \right )=\left ( 2,0 \right )
Equation of tangent

\begin{aligned} &y-y_{1}=m\left(x-x_{1}\right) \\ &y-0=1(x-2) \\ &x-y-2=0 \end{aligned}
Case 2
When x=1
Slope of tangent
\frac{dy}{dx}|\left ( 2,0 \right )=2-3=-1
\left ( x_{1}-y_{1} \right )=\left ( 1,0 \right )
Equation of tangent

\begin{aligned} &y-y_{1}=m\left(x-x_{1}\right) \\ &y-0=-1(x-1) \\ &\Rightarrow x+y-1=0 \end{aligned}

Tangents and Normals Exercise Multiple Choice Questions Question 12 .

Answer:
\left ( b \right )\frac{6}{7}
Hint:
Use differentiation
Given:
x=t^{2}+3t-8
y=2t^{2}+2t-5
Solution:
Given curve are x=t^{2}+3t-8 (1)
And y=2t^{2}+2t-5 (2)
At \left ( 2,-1 \right )
From (1) t^{2}+3t-10=0
\Rightarrow t=2 \; or\: t=-5
From (2) 2t^{2}-2t-4=0
\Rightarrow t^{2}-t-2=0
\Rightarrow t=2 \: \: or \: \: t=-1
From both the solution, we get t=2
Differentiating both the equation w.r.t t, we get

\frac{dx}{dt}=2t+3 (3)

\frac{dy}{dt}=4t-2 (4)

Now,\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

From (3) and (4) we get

\frac{4t-2}{2t+3}

\therefore \frac{dy}{dx}=\frac{4t-2}{2t+3}Is the slope of the tangent to the given curve.

\left|\frac{d y}{d x}\right|_{(2,-1)}=\left|\frac{4 t-2}{2 t+3}\right|_{t-2}=\frac{8-2}{4+3}=\frac{6}{7}Is the slope of the tangent to the given curve at (2,-1)

Tangents and Normals Exercise Multiple Choice Questions Question 13 .

Answer:
\left ( d \right )\left ( 1,2 \right )And\left ( 1,-2 \right )
Hint:
Use differentiation
Given:
x^{2}+y^{2}-2x-3=0
Solution:
x^{2}+y^{2}-2x-3=0
Differentiate w.r.t x, we get
\begin{aligned} &2 x+2 y \frac{d y}{d x}-2=0 \\ &2 y \frac{d y}{d x}=2-2 x \\ &\frac{d y}{d x}=\frac{2(1-x)}{2 y} \\ &\frac{d y}{d x}=\frac{1-x}{y} \end{aligned} (1)
If line is parallel to x-axis, angle with x-axis =\theta =0
Slope of x-axis =\tan \theta =\tan 0^{o}=0
Slope of tangent =Slope of x-axis
\frac{dy}{dx}=0
\frac{1-x}{y}=0
x=1
Find y When x=1
\begin{aligned} &x^{2}+y^{2}-2 x-3=0 \\ &(1)^{2}+(y)^{2}-2(1)-3=0 \\ &1+y^{2}-2-3=0 \\ &y=\pm 2 \end{aligned}
Hence, the points are \left ( 1,2 \right ) and \left ( 1,-2 \right )

Tangents and Normals Exercise Multiple Choice Questions Question 14 .

Answer:
\left ( c \right )90^{o}
Hint:
Use differentiation
Given:
xy=a^{2} Andx^{2}-y^{2}=2a^{2}
Solution:
\begin{aligned} &x y=a^{2} \text { And } x^{2}-y^{2}=2 a^{2} \\ &x \frac{d y}{d x}+y=0 \text { And } 2 x-2 y \frac{d y}{d x}=0 \\ &\frac{d y}{d x}=-\frac{y}{x} \text { And } \frac{d y}{d x}=\frac{x}{y} \end{aligned}
\begin{aligned} &\left(\frac{d y}{d x}\right)_{1}=-\frac{y}{x} \text { And }\left(\frac{d y}{d x}\right)_{2}=\frac{x}{y} \\ &\left(\frac{d y}{d x}\right)_{1} \times\left(\frac{d y}{d x}\right)_{2}=-\frac{y}{x} \times \frac{x}{y}=-1 \end{aligned}
Hence the intersection angle =\frac{\pi }{2}

Differentiability exercise Multiple choice question, question 8

Answer:

(b)
HINTS: Understand the definition of continuity and differentiability
GIVEN: f(x)=\sqrt{1-\sqrt{1-x^{2}}}
SOLUTION:The function is defined only when
\begin{aligned} &1-x^{2}>0 \\ &1>x^{2} \\ &-1<x<1 \end{aligned}
Now between x \in[-1,1] at x=0
f(x)=0
So we Check the continuity at x=0
LHD =
\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{x \rightarrow 0} \sqrt{1-\sqrt{1-x^{2}}} \\ &=0 \end{aligned}
RHD =
\begin{aligned} \lim _{x \rightarrow 0^{+}} f(x) &=\lim _{x \rightarrow 0} \sqrt{1-\sqrt{1-x^{2}}} \\ &=0 \end{aligned}
As LHD = RHD
M(-1,1)

Differentiability exercise Multiple choice question, question 9

Answer:

(b)
HINTS: Understand the definition of differentiability
GIVEN: f(x)=a|\sin x|+b e^{|x|}+e|x|^{3}
SOLUTION:The f(x) is differntaible
If x=0
LHD=RHD
\begin{aligned} &\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\ \end{aligned}
\begin{aligned} &\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\ \end{aligned}
\begin{aligned} &\lim _{h \rightarrow 0} \frac{a\left(\sin (-4)+b e^{-(-h)}+c\left(-(-h)^{3}\right)-b\right.}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{a \sinh +b e^{h}+c h^{3}-b}{-h}=f^{\prime}(0) \end{aligned}
as
\begin{aligned} &\left | \sin x \right |= \begin{cases}-\sin x & x<0 \\ \sin x & x>0\end{cases} \\ &|x|= \begin{cases}x & x>0 \\ -x & x<0\end{cases} \\ &|x|^{3}= \begin{cases}x^{3} & x>0 \\ -x^{3} & x<0\end{cases} \end{aligned}
\begin{aligned} &\lim _{h \rightarrow 0} \frac{a \sinh +b\left(e^{h}-1\right)+c h^{3}-b}{-h}=\lim _{h \rightarrow 0} \frac{a \sinh +b\left(e^{h}-1\right)+c h^{3}}{-h} \\ \end{aligned}
\begin{aligned} &=a \lim _{h \rightarrow 0} \frac{\sinh }{-h}-b \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}+c \lim _{h \rightarrow 0} \frac{+h^{3}}{-h} \\ \end{aligned}
\begin{aligned} &=a \lim _{h \rightarrow 0} \frac{\sinh }{-h}-b \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}+c \lim _{h \rightarrow 0} \frac{+h^{3}}{-h}-\frac{h^{3}}{h} \\ \end{aligned}\begin{aligned} &-a \times 1-b \times 1+0=a \times 1+b \times 1 \quad\left[\text { as } \lim _{h \rightarrow 0} \frac{\sinh }{-h}=1 \text { and } \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}=1\right] \\\end{aligned}\begin{aligned} &-a=a \quad \&-b=b \\ &\quad a=0 \quad \& \quad b=0 \end{aligned}

Differentiability exercise Multiple choice question, question 10

Answer:

(b)
HINTS: Understand the definition of continuity and differentiability
f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots
GIVEN: then at x=0
SOLUTION:
f(x)=\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}
Now f(x) is G.P with \mathrm{r}=\frac{1}{1+x^{2}}
So,
\begin{aligned} &f(x)=\frac{x^{2}\left(\frac{1}{1+x^{2}}\right)^{n}-1}{\frac{1}{1+x^{2}}-1}\left[a=x^{2} \text { and } s=\frac{a^{n-1}}{n-1}\right] \\ \end{aligned}
\begin{aligned} &f(x)=\frac{\frac{x^{2}-\left(1+x^{2}\right)^{n}}{\left(1+x^{2}\right)^{n}}}{\frac{1-1-x^{2}}{\left(1+x^{2}\right)}} \\ \end{aligned}
\begin{aligned} &f(x)=-1\left(1+x^{2}\right)^{-n+1}+x^{-2}\left(1+x^{2}\right) \\ &x=0 \\ \end{aligned}
\begin{aligned} &\lim _{x \rightarrow 0} f(x)=\lim _{h \rightarrow 0}-\left(1+h^{2}\right)^{-n-1}+h^{-2}\left(1+h^{2}\right)=\infty \end{aligned}
As LHL \neq RHL
Therefore, f(x) is discontinues at x=0

Differentiability exercise Multiple choice question, question 11

ANSWER: (a),(b)
HINTS: Find LHD and RHD at x=1
GIVEN: f(x)=|\log x|
SOLUTION:
f(x)=|\log x|= \begin{cases}\log _{e} x & 0<x<1 \\ \log _{e} x & x \geq 1\end{cases}
LHD at x=1
\begin{aligned} \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} &=\lim _{x \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}-\frac{\log (1-h)-f(1)}{-h} \\ \end{aligned}
\begin{aligned}\lim _{h \rightarrow 0}-\frac{\log (1-h)}{-h} &=\lim _{h \rightarrow 0} \frac{1}{1-h} \times-1 \\ &=-1 \end{aligned}
RHD at x=1
\begin{aligned} \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} &=\lim _{x \rightarrow 1} \frac{\log x-\log 1}{x-1} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}-\frac{\log (1+h)}{h} \\ &=\lim _{h \rightarrow 0} \frac{1}{1+h} \\ &=1 \end{aligned}
As LHD \neq RHD at x=1
f^{\prime}\left(1^{-}\right)=-1 , f^{\prime}\left(1^{+}\right)=1

Differentiability exercise Multiple choice question, question 12

Answer:

(b)
HINTS: Understand the definition of continuity and differentiability
GIVEN: f(x)=\left|\log _{e}\right| x \|
SOLUTION:
\begin{aligned} &f(x)= \begin{cases}|\log x| & x>0 \\ |\log (-x)| & x \geq 1\end{cases} \\ \end{aligned}
\begin{aligned} &f(x)= \begin{cases}\log (-x) & x<-1 \\ -\log (-x) & -1<x<0 \\ -\log x & 0<x<1 \\ \log x & x>1\end{cases} \end{aligned}
As f(x) is an absolute function .So it is continues for all x.
Now for differentiability
X=1
LHD=
\begin{aligned} &=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(1)}{x-1} \\ &=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\ \end{aligned}
\begin{aligned}&=\lim _{h \rightarrow 0}-\frac{\log (1-h)-0}{-h} \\ &=\lim _{h \rightarrow 0}-\frac{\log (1-h)}{-h} \\ &=\lim _{h \rightarrow 0} \frac{-1}{1+h} =-1 \end{aligned}
RHD =
\begin{aligned} &=\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x-(-1)} \\ &=\lim _{h \rightarrow 0}-\frac{f(-1+h)-f(-1)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{x \rightarrow 1} \frac{-\log (-(-1+h))-0}{h} \\ &=\lim _{h \rightarrow 0}-\frac{\log (1-h)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-1}{1-h}(-1) \\ &=\lim _{h \rightarrow 0} \frac{1}{1-h}\\ &=1 \end{aligned}
As LHD \neq RHD at x=-1
Now at x=1
LHD=
\begin{aligned} &=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(1)}{x-1} \\ &=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0}-\frac{\log (1-h)-0}{-h} \\ &=\lim _{h \rightarrow 0}-\frac{\log (1-h)}{-h} \\ &=\lim _{h \rightarrow 0} \frac{1}{1-h} \times(-1)=-1 \end{aligned}
RHD=
\begin{aligned} &=\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(1)}{x-1} \\ &=\lim _{h \rightarrow 0}-\frac{f(1+h)-f(1)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{x \rightarrow 1} \frac{\log (1+h)-0}{h} \\ &=\lim _{h \rightarrow 0}-\frac{\log (1+h)}{h} \\ &=\lim _{h \rightarrow 0} \frac{1}{1+h}=1 \end{aligned}
As LHD \neq RHD
Therefore f(x) is not differentiable at x\pm 1

Differentiability exercise Multiple choice question, question 14

ANSWER: (c)
HINTS: understand the continuity and differentiability of [x]
GIVEN: f(x)=x-[x]
SOLUTION:
f(x)=x-[x]
f(x)=\left\{\begin{array}{cc} x-[x] & x \neq n \text { when } n \in Z \\ 0 & x \in n \end{array}\right.
Now,
LHL at x=n where n \in Z \\
\begin{aligned} \lim _{x \rightarrow n^{-}} f(x) &=\lim _{x \rightarrow n} n-(n-1) \quad\{[n]=n-1\\ &=\lim _{x \rightarrow n} 1 \\ &=1 \end{aligned}
RHL at z=n
\begin{aligned} \lim _{x \rightarrow n^{+}} f(x)=& \lim _{x \rightarrow n} n-n=0 \quad\{[n]=n\\ & \lim _{x \rightarrow n^{-}} f(x) \text { and } \lim _{x \rightarrow n^{+}} 1 f(x) \end{aligned}
This f is not continues at integer points. Hence f is continuous at non interger points only

Differentiability exercise Multiple choice question, question 15

Answer:

(d)
HINTS: As x=1 put LHD=RHD
GIVEN: f(x)=x-[x]
SOLUTION:
f(x)= \begin{cases}a x^{2}+1 & x>1 \\ x+\frac{1}{2} & x \leq 1\end{cases}
As f(x) is derivable at x=1
LHD=RHD at x=1
\begin{aligned} \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} &=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\ \end{aligned}
\begin{aligned} \lim _{h \rightarrow 0} \frac{f(1-h)-f(x)}{-h} &=\lim _{x \rightarrow 0} \frac{a(1+h)^{2}+1-(h)}{h} \\ \end{aligned}
\begin{aligned}\lim _{x \rightarrow 0} \frac{-h}{h} &=\lim _{h \rightarrow 0} \frac{a\left[1+h^{2}+2 h\right]-1-\frac{3}{2}}{h} \\ \end{aligned}
\begin{aligned} &1 =\lim _{h \rightarrow 0} \frac{a\left[1+h^{2}+2 h\right]-\frac{1}{2}}{h} \\ &1-2 =\lim _{h \rightarrow 0} \frac{a-\frac{1}{2}}{h} \\ &-1=\lim _{h \rightarrow 0} \frac{a-\frac{1}{2}}{h} \end{aligned}
\begin{aligned} &\lim _{x \rightarrow 1} \frac{x+\frac{1}{2}-\frac{3}{2}}{x-1}=\lim _{x \rightarrow 1} \frac{a x^{2}+1-\frac{3}{2}}{x-1} \\ \end{aligned}
\begin{aligned}&\lim _{x \rightarrow 1} \frac{x-1}{x-1}=\lim _{x \rightarrow 1} \frac{a x^{2}-\frac{1}{2}}{x-1} \\ \end{aligned}
\begin{aligned} &\pm=\lim _{x \rightarrow 1} \frac{a x^{2}-\frac{1}{2}}{x-1}\end{aligned}
As , at x=1 denominator becomes 0.So f limits exist so it must be \frac{0}{0} form
\begin{aligned} &1=\lim _{x \rightarrow 1} \frac{2 a x}{1} \\ &1=2 a \times 1 \\ &2 a=1 \\ &a=\frac{1}{2} \end{aligned}

Differentiability exercise Multiple choice question, question 16

Answer:

(b)
HINTS: check the continuity and differentiability at x=n\pi
GIVEN: f(x)=\left | \sin x \right |
SOLUTION:
\begin{aligned} &f(x)=|x|, g(x)=\sin x \\ &h(x)=\operatorname{fog}(x) \end{aligned}
as \begin{aligned} |x|\end{aligned} and sin x are continuous. So composition of function , \begin{aligned} |\sin x|\end{aligned} is continuous
x=n\pi
Now , we know f(x)=\left | \sin x \right | is not differentiable where x=0 , x=n\pi
so \begin{aligned} |\sin x|\end{aligned} is every were continuous but not differentiable at x=n\pi

Differentiability exercise Multiple choice question, question 18

Answer:

(b)
HINTS: composition of function is continuous of function
GIVEN: f(x)=1+|\cos x|
SOLUTION:
Let g(x)=1+|x|, h(x)=\cos x as 1+|x| and cos x are continuous function
Therefore, composition of function ,that is is also continuous.
f(x)=g o h(x)=g(h(x))
Now,
cos x is differentiable
g(x)=1+|x|= \begin{cases}1+x & x>1 \\ 1-x & x<1\end{cases}
At, x=1
LHD= \lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{g(1-h)-g(1)}{-h} \\ &=\lim _{h \rightarrow 0} \frac{1-(1-h)-2}{-h} \\ &=\infty \end{aligned}
\begin{aligned} &\lim _{h \rightarrow 0} \frac{g(x)-g(1)}{x-1}=\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{1-(1+h)-2}{h} \\ &=\lim _{h \rightarrow 0} \frac{h}{h} \\ &=1\end{aligned}
As LHD \neq RHD
g(x) is not differentiable at x=1
therefore f(x) is also with differentiation at x=1
at x=1
\begin{aligned} &1+\cos x=1 \\ &\cos x=0 \\ &x=n \pi \end{aligned}
Hence f(x) is continuous everywhere.

Differentiability exercise Multiple choice question, question 19

Answer:

(b)
HINTS: understand the definition of continuity and differentiability
GIVEN: f(x)=|\cos x|
SOLUTION:
As \cos x & \left | x \right | are continuous function .Hence \cos x is also continuous function.
For differentiability ,
\begin{aligned} &f(x)= \begin{cases}-\cos x & x<(2 n+1) \frac{\pi}{2} \\ 0 & x=(2 n+1) \frac{\pi}{2} \\ \cos x & x>(2 n+1) \frac{\pi}{2}\end{cases} \\ \end{aligned}
at \begin{aligned}&(2 n+1) \frac{\pi}{2} & \end{aligned}
\begin{aligned} &\lim _{x \rightarrow(2 n+1) \frac{\pi}{2}} \frac{f(x)-f(2 n+1) \frac{\pi}{2}}{x-(2 n+1) \frac{\pi}{2}} \\ &=\lim _{h \rightarrow 0} \frac{f(2 n+1) \frac{\pi}{2}-h-0}{(2 n+1) \frac{\pi}{2}-h-(2 n+1) \frac{\pi}{2}} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-\cos (2 n+1) \frac{\pi}{2}-h}{-1} \\ &=\sin (2 n+1) \frac{\pi}{2} \end{aligned}
\begin{aligned} &\lim _{x \rightarrow(2 n+1) \frac{\pi^{-1}}{2}^{-1}} \frac{f(x)-f(2 n+1) \frac{\pi}{2}}{x-(2 n+1) \frac{\pi}{2}} \\ &==\lim _{h \rightarrow 0} \frac{f\left((2 n+1) \frac{\pi}{2}-h\right)-0}{(2 n+1) \frac{\pi}{2}+h-(2 n+1) \frac{\pi}{2}} \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\cos (2 n+1) \frac{\pi}{2}+h}{-1} \\ &=\lim _{h \rightarrow 0} \frac{-\sin (2 n+1) \frac{\pi}{2}+h}{1} \\ &=-\sin (2 n+1) \frac{\pi}{2} \end{aligned}
As LHD \neq RHD
f(x) is not differentiate at x=(2 n+1) \frac{\pi}{2}

Differentiability exercise Multiple choice question, question 21

Answer:

(b)
Hint: LHD = RHD at x = 0
Given : f(x)=a+b|x|+c|x|^{4}
Explanation: LHD at x = 0
\begin{aligned} &\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{a+b(-(-h))+c(-h)^{4}-a}{-h} \\ &=\lim _{h \rightarrow 0} \frac{b h+c h^{4}}{-h}=-b\end{aligned}
RHD at x = 0
\begin{aligned} &\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{a+b h+c h^{4}-a}{h} \\ &=\lim _{h \rightarrow 0} \frac{b h+c h^{4}}{h}=b \end{aligned}
Thus f(x) is differentiable at x = 0
LHD = RHD
\begin{aligned} &-b=b \\ &2 b=0 \\ &b=0 \end{aligned}

Differentiability exercise Multiple choice question, question 20

Answer:

(a)
Hint: understand the greatest integer function
Given : f(x)=\frac{\sin (\pi[x-\pi])}{h+[x]^{2}} \cdots(i)
Explanation : \pi[x-\pi]=n \pi
Taking sin on both sides
\begin{aligned} &\sin (\pi[x-\pi])=\sin (n \pi) \\ &\sin (\pi[x-\pi])=0 \end{aligned}
Put in 0
\begin{aligned} f(x) &=\frac{0}{h+[x]^{2}} \quad\left[a s h+[x]^{2} \neq 0\right] \\ &=0 \end{aligned}
As f(x) is constant function so it is continuous as well as differentiable for all x \in R

Differentiability exercise Multiple choice question, question 22

Answer:

(d)
HINTS: check at x=3 LHL & RHL,LHD & RHD
GIVEN: f(x)=|3-x|+(3+x)
SOLUTION:
To check at x=3 we take the interval [2,4]
\begin{aligned} f(x) &= \begin{cases}3-x+(3+3) & 2<x<3 \\ -3+x+3+4 & 3<x<4\end{cases} \\ &= \begin{cases}-x+9 & 2<x<3 \\ x+4 & 3<x<4\end{cases} \end{aligned}
As (x) divides the least integer function.
At x=3
\begin{aligned} &\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0}-x+9=-3+9=6 \\ &\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0}-x+4=3+4=7 \end{aligned}
As LHL \neq RHL
So f(x) is not continuous at x=3
So f(x) is also not differentiable at x=3

Differentiability exercise Multiple choice question, question 23

Answer:

(d)
HINTS: check at x=0 LHD & RMD
GIVEN: f(x)=\left\{\begin{array}{cc} \frac{1}{1+e^{\frac{1}{x}}} & x \neq 0 \\ 0 & x=0 \end{array}\right.
SOLUTION:
At x=0
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{1}{1+e^{\frac{1}{-h}}}=1
RHL=
\begin{aligned} &=\lim _{x \rightarrow \sigma^{+}} f(x)=\lim _{h \rightarrow 0} f(h) \\ &=\lim _{h \rightarrow 0} \frac{1}{1+e^{\frac{1}{-h}}}=\frac{1}{1+e^{\infty}}=0 \end{aligned}
As LHL \neq RHL
f(x) is not continuous, so f(x) is not differentiable

Differentiability exercise Multiple choice question, question 24

Answer:

(a)
HINTS: understand the definition of continuity and differentiability.
GIVEN: f(x)=\left\{\begin{array}{cl} \frac{1-\cos x}{x \sin x} & x \neq 0 \\ \frac{1}{2} & x=0 \end{array}\right.
SOLUTION:
At x=0
\begin{aligned} \lim _{x \rightarrow 0^{-}} f(x) &=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} \frac{1-\cos (-h)}{-n \sin (-h)} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{1-\cos (-h)}{-h \sin (-h)} \\ &=\lim _{h \rightarrow 0} \frac{1-\cos h}{h \sin h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\pm \sinh }{\sin h+h \cosh } \\ &=\lim _{h \rightarrow 0} \frac{\frac{1}{\sinh +h \cosh }}{\sinh } \\ &=\lim _{h \rightarrow 0} \frac{1}{1+h \operatorname{coth}}\\ &=1 \end{aligned}
RHL=
\begin{aligned} \lim _{x \rightarrow 0^{+}} f(x) &=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} \frac{1-\cos -h}{-n \sin -h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{0-\sin h}{\sinh +h \cosh } \\ &=\lim _{h \rightarrow 0} \frac{1}{\frac{\sinh }{\sin h}+\frac{\cosh }{\sinh }} \\ &=1\end{aligned}
As LHL=RHL
f(x) is not continuous, so f(x) is not differentiable
Now,
LHD=
\begin{aligned} & \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h} \\ =& \lim _{h \rightarrow 0} \frac{\frac{1-(\cos (-h)}{-h \sin (-h)}-\frac{1}{2}}{-h} \\ \end{aligned}
\begin{aligned} =& \lim _{h \rightarrow 0} \frac{\frac{1-\cos h}{h \sinh }-\frac{1}{2}}{-h} \\ =& \lim _{h \rightarrow 0} \frac{1-\cos h}{-\sinh }+\lim _{h \rightarrow 0} \frac{1}{2 h}=\infty \end{aligned}
RHD=
\begin{aligned} &\lim _{x \rightarrow 0^{-1}} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{\frac{1-\cos h}{h \sinh }-\frac{1}{2}}{-a} \\ &=\lim _{h \rightarrow 0} \frac{1-\cos h}{-\sinh }-\lim _{h \rightarrow 0} \frac{1}{2 h}=\infty\end{aligned}
F(x) is continuous and differential

Differentiability exercise Multiple choice question, question 25

Answer:

(b)
HINTS: understand the definition of differentiability.
GIVEN: f(x)=|x-3| \cos x
SOLUTION:
f(x)= \begin{cases}-(x-3) \cos x & x<3 \\ (x-3) \cos x & x>3\end{cases}
At x=3
\begin{aligned} &=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(3)}{x-3} \\ &=\lim _{h \rightarrow 0} \frac{f(3-h)-0}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{-(3-h-3) \cos (3-h)}{-h} \\ &=\lim _{h \rightarrow 0} \cos (3-h)=-\cos 3 \end{aligned}
RHD=
\begin{aligned} &=\lim _{x \rightarrow-3^{-}} \frac{f(x)-f(3)}{x-3} \\ &=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{x-3} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{(3+h-3) \cos (3+h)-0}{h} \\ &=\lim _{h \rightarrow 0} \cos (3+h)=\cos 3 \end{aligned}
So f(x) is not differentiable at x=-3.At other point f(x) is a product of two continuous and differential function (x-3 and cos x).So f(x) is differentiable at R-3

Differentiability exercise Multiple choice question, question 26

Answer:

(a)
HINTS: understand the definition of continuity and differentiability.
GIVEN: f(x)=\left\{\begin{array}{cc} 1 & x \leq-1 \\ |x| & -1<x<1 \\ 0 & x \geq 1 \end{array}\right.
SOLUTION:
At x=-1
\begin{aligned} &\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1} 1=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1}|x|=\lim _{x \rightarrow-1}-x=1 \end{aligned}
So f(x) is continuous at x=-1
Now at x=1
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow-1} x=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1} 0=0 \\ \end{aligned}
As,
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \end{aligned}
f(x) is not continuous at x=+1.Hence not differentiable at x=1

Differentiability exercise Multiple choice question, question 26
Edit Q



Question:26

Differentiability exercise Multiple choice question, question 26

Answer:

(a)
HINTS: understand the definition of continuity and differentiability.
GIVEN: f(x)=\left\{\begin{array}{cc} 1 & x \leq-1 \\ |x| & -1<x<1 \\ 0 & x \geq 1 \end{array}\right.
SOLUTION:
At x=-1
\begin{aligned} &\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1} 1=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1}|x|=\lim _{x \rightarrow-1}-x=1 \end{aligned}
So f(x) is continuous at x=-1
Now at x=1
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow-1} x=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1} 0=0 \\ \end{aligned}
As,
\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \end{aligned}
f(x) is not continuous at x=+1.Hence not differentiable at x=1

Differentiability exercise Multiple choice question, question 27

Answer:

(a)
Hint: understand the concept of continuity and differentiability
Given: f(x)=e^{|x|}
Explanation:
f(x)= \begin{cases}e^{x} & x>0 \\ e^{-x} & x<0\end{cases}
\begin{aligned} &L H L=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} e^{-0}=1 \\ &R H L=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} e^{+0}=1 \end{aligned}
as LHL = RHL
\therefore f(x) continuous at x
\begin{aligned} &L H D=\lim _{x \rightarrow 0^{-}}=\frac{f(x)-f(0)}{x-0} \\ \end{aligned}
\begin{aligned}&=\lim _{h \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{e^{-(-h)}-1}{-h} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{e^{h}-1}{-h}=-1 \quad\left[\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right] \end{aligned}
\begin{aligned} &R H D=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \\ \end{aligned}
\begin{aligned} &=\lim _{h \rightarrow 0} \frac{e^{h}}{1}=1 \end{aligned}
As LHD \neq RHD
f(x) is not differentiable

RD Sharma Class 12 Solutions Chapter 9 MCQ Differentiability for Class 12, consists of two exercises, ex 9.1 and ex 9.2. Next comes the MCQ section, with 28 questions to be answered. The concepts like Differentiability functions, continuous function, and discontinuous function are asked. When the MCQs give an idea about the answer from one side, on the other side, they confuse students with similar options. This makes students lose marks in MCQs. Using the RD Sharma Class 12 Chapter 9 MCQ solutions, the students can clear their doubts and score good marks.

The solutions presented in the RD Sharma Class 12th MCQ book are framed by experts with broad knowledge in the particular domain. Students use this material while doing their homework, assignment, and preparing for their exams. It follows the NCERT pattern making it even easier for the CBSE board students to adapt to it.

If you face difficulties in solving the Differentiability concept and finding answers for the MCQs, you can refer to the Class 12 RD Sharma Chapter 9 MCQ Solution book. Sums are solved for every question, and the final answer, along with the right option, is given. Once you stop losing marks in MCQs, you can very well witness crossing the benchmark score easily.

Looking at the benefits, you attain from this RD Sharma book, you might presume that it might cost a lot. But that’s not the case. The RD Sharma Class 12 Solutions Differentiability MCQ is available at the Career 360 website for free of cost. All you must do is, visit the Career 360 site and search for the names of the book you require. Then, you can download the material to your device.

The Class 12 public exams questions are also asked from the practice questions given in the RD Sharma books. And it is obvious that if you practice for your tests and exams with this RD Sharma Class 12th MCQ book, no one can prevent you from scoring high marks. Hence, this set of solution books are used by many students. Therefore, use the RD Sharma Class 12 Solutions Chapter 9 MCQ book to prepare for the multiple-choice questions and the other books for the respective exercises.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Which is the prescribed solution book for the Class 12 students to understand how MCQ is solved in Chapter 9?

The RD Sharma Class 12th MCQ solutions book is the prescribed guide for the Class 12 students to clear their doubts in the Chapter 9 MCQ section.  

2. Who can access the RD Sharma solution book?

Anyone can visit the Career 360 website and access the RD Sharma solution books. There is no restriction made to use this resource material. 

3. What is the cost of the RD Sharma solution book?

The RD Sharma solution books are available free of cost for the welfare of the students. No kind of payment or monetary charge is required to access the books.  

4. Where can I find the best set of best solutions guide that contains detailed answers for every Mathematics MCQ question?

The RD Sharma books contain the solutions for every MCQ question given in the textbook. For instance, you can refer to the RD Sharma Class 12th MCQ book for the Differentiability chapter.  

5. How many questions are solved in the RD Sharma solution books?

You can find answers to every question asked in the textbook. Moreover, practice questions are also given to work out further.   

Articles

Upcoming School Exams

Admit Card Date:13 December,2024 - 31 December,2024

Admit Card Date:13 December,2024 - 06 January,2025

Late Fee Application Date:21 December,2024 - 31 December,2024

Late Fee Application Date:21 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top