RD Sharma reading material is one of the best course books for class 12 explicitly for students getting ready for severe tests. Arithmetic is the subject of training. To have great practice, you need the nature of inquiries, and RD Sharma Class 12 meets an excellent prerequisite of questions.
Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 7 Solution of Simultaneous Linear Equation - Other Exercise This Story also Contains
RD Sharma Class 12 Solutions Chapter 7 Solution of Simultaneous Linear Equation - Other Exercise Solution of simultaneous linear equations Excercise: 7.1 RD Sharma Chapter-wise Solutions Solution of simultaneous linear equations Excercise: 7.1 Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (i)
Answer: $x=-1\: \: and\: \: y=4$ Given: $\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A| then will find the co-factor of matrix
A , take it’s transpose, and that will be Adj
A Solution: $\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]$ $A X=B\\ |A|=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right]=10-6=4 \neq 0\\ This\; has\; a\; unique\; sol\! ution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! factor\; o\! f\; the\; elements\; a_{i j}\; in\; A=\left[a_{i j}\right]. \; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}(2)=2 , \quad C_{12}=(-1)^{1+2}(3)=-3 \\ &C_{21}=(-1)^{2+1}(2)=-2 , \quad C_{22}=(-1)^{2+2}(5)=5 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 2 & -3 \\ -2 & 5 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right] \\ \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{4}\left[\begin{array}{c} 6-10 \\ -9+25 \end{array}\right]=\left[\begin{array}{c} -\frac{4}{4} \\ \frac{16}{4} \end{array}\right]} \\ &\therefore x=-1 \quad, \quad \mathrm{y}=4 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (ii)
Answer: $x=\frac{9}{2},\; \; y=-\frac{7}{2}$ Given: $\left[\begin{array}{ll} 5 & 7 \\ 4 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} -2 \\ -3 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix
A , take it’s transpose, and that will be Adj
A .
Solution: $\left[\begin{array}{ll} 5 & 7 \\ 4 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} -2 \\ -3 \end{array}\right]$ $A X=B\\ |A|=\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right]=30-28=2 \neq 0\\ This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i i} \; be\; the\; co-\! factor\; o\! f\; the\; elements\; a_{i j}\; in\; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}(6)=2 \quad, \quad C_{12}=(-1)^{1+2}(4)=-4 \\ &C_{21}=(-1)^{2+1}(7)=-7 \quad, \quad C_{22}=(-1)^{2+2}(5)=5 \\ &A=\left[\begin{array}{cc} 6 & -4 \\ -7 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{cc} 6 & -4 \\ -7 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right]\left[\begin{array}{l} -2 \\ -3 \end{array}\right] \\ &=\frac{1}{2}\left[\begin{array}{c} -12+21 \\ 8-15 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{9}{2} \\ -\frac{7}{2} \end{array}\right]} \\ &\therefore x=\frac{9}{2} \quad, \quad \mathrm{y}=-\frac{7}{2} \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (iii)
Answer: $x=-1\; \; ,\; \; y=2$ Given: $\left[\begin{array}{ll} 3& 4 \\ 1 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 5 \\ -3 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix
A , take it’s transpose, and that will be Adj
A .
Solution: $\left[\begin{array}{ll} 3& 4 \\ 1 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 5 \\ -3 \end{array}\right]$ $\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 4 \\ 1 & -1 \end{array}\right]=-3-4=-7 \neq 0 \end{aligned}$ $This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co\! -\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}(-1)=-1 \quad, \quad C_{12}=(-1)^{1+2}(1)=-1 \\ &C_{21}=(-1)^{2+1}(4)=-4 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} -1 & -1 \\ -4 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-7}\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{-7}\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right]\left[\begin{array}{c} 5 \\ -3 \end{array}\right] \\ &=\frac{1}{-7}\left[\begin{array}{c} -5+12 \\ -5-9 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{7}{-7} \\ \frac{-14}{-7} \end{array}\right]} \\ &\therefore x=-1 \quad, \quad \mathrm{y}=2 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (iv)
Answer: $x=7\; \; and\; \; y=-2$ Given: $\left[\begin{array}{ll} 3 & 1 \\ 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 19 \\ 23 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e
|A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $\left[\begin{array}{ll} 3 & 1 \\ 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 19 \\ 23 \end{array}\right]$ $\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 1 \\ 3 & -1 \end{array}\right]=-3-3=-6 \neq 0 \end{aligned}$ $This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i j} \; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{array}{ll} C_{11}=(-1)^{1+1}(-1)=-1 & , \quad C_{12}=(-1)^{1+2}(3)=-3 \\ C_{21}=(-1)^{2+1}(1)=-1 & , \quad C_{22}=(-1)^{2+2}(3)=3 \end{array}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{cc} -1 & -3 \\ -1 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-6}\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-6}\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right]\left[\begin{array}{l} 19 \\ 23 \end{array}\right] \\ &=\frac{1}{-6}\left[\begin{array}{l} -19-23 \\ -57-69 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{-6}\left[\begin{array}{l} -19-23 \\ -57-69 \end{array}\right]=\left[\begin{array}{c} \frac{-42}{-6} \\ \frac{12}{-6} \end{array}\right]} \\ &\therefore x=7 \quad, \quad \mathrm{y}=-2 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (v)
Answer: $x=-15\; \; ,\; \; y=7$ Given: $\left[\begin{array}{ll} 3 & 7 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4 \\ -1 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $\left[\begin{array}{ll} 3 & 7 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4 \\ -1 \end{array}\right]$ $\begin{aligned} &A X=B \\ &A=\left[\begin{array}{cc} 3 & 7 \\ 1 & 2 \end{array}\right]\\ &|A|=\left[\begin{array}{cc} 3 & 7 \\ 1 & 2 \end{array}\right]=6-7=-1 \neq 0 \end{aligned}$ $This\; has\; a\; unique \; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}(2)=2 \quad, \quad C_{12}=(-1)^{1+2}(1)=-1 \\ &C_{21}=(-1)^{2+1}(7)=-7 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 2 & -1 \\ -7 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 2 & -7 \\ -1 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-1}\left[\begin{array}{cc} 2 & -7 \\ -1 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\left[\begin{array}{cc} -2 & 7 \\ 1 & -3 \end{array}\right]\left[\begin{array}{c} 4 \\ -1 \end{array}\right] \\ &=\left[\begin{array}{c} -8-7 \\ 4+3 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -15 \\ 7 \end{array}\right]} \\ &\therefore x=-15 \quad, \quad \mathrm{y}=7 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (vi) Answer:
$x=\frac{9}{4}\; \; ,\; \; y=\frac{1}{4}$ Given: $\left[\begin{array}{ll} 3 & 1 \\ 5 & 3 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 7 \\ 12 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $\left[\begin{array}{ll} 3 & 1 \\ 5 & 3 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 7 \\ 12 \end{array}\right]$ $\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 1 \\ 5 & 3 \end{array}\right]=9-5=4 \neq 0 \end{aligned}$ $This\; has\; a\; unique \; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}(3)=3 \quad, \quad C_{12}=(-1)^{1+2}(5)=-5 \\ &C_{21}=(-1)^{2+1}(1)=-1 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 3 & -5 \\ -1 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-1}\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} X =A^{-1} B \\ =\frac{1}{4}\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right]\left[\begin{array}{c} 7 \\ 12 \end{array}\right] \\ =\frac{1}{4}\left[\begin{array}{c} 21-12 \\ -35+36 \end{array}\right] \\ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{9}{4} \\ \frac{1}{4} \end{array}\right] \\ \therefore x =\frac{9}{4} \quad, \quad \mathrm{y}=\frac{1}{4} \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (i)
Answer: $x=3\; \; ,\; \; y=1\; \; ,\; \; z=1$ Given: $\begin{aligned} &x+y-z=3 \\ &2 x+3 y+z=10 \\ &3 x-y-7 z=1 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right] \\ &\begin{array}{rc} |A|=\left|\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right| &=1(-2+1)-1(-14-3)-1(-2-9) \\ =-20+17+11 \\ =8 \neq 0 \end{array} \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 3 & 1 \\ -1 & -7 \end{array}\right|=-20 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 3 & -7 \end{array}\right|=17 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & 3 \\ 3 & -1 \end{array}\right|=-11 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & -1 \\ -1 & -7 \end{array}\right|=8 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & -1 \\ 3 & -7 \end{array}\right|=-4 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=4 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & -1 \\ 3 & 1 \end{array}\right|=4 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & -7 \\ 2 & 1 \end{array}\right|=-3 \end{aligned}$ $\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right|=1 \\ \operatorname{adj} A &=\left[\begin{array}{ccc} -20 & 17 & -11 \\ 8 & -4 & 4 \\ 4 & -3 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{8}\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right] \\ X &=A^{-1} B \end{aligned}$ $\begin{aligned} &=\frac{1}{8}\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right]\left[\begin{array}{c} 3 \\ 10 \\ 1 \end{array}\right] \\ &=\frac{1}{8}\left[\begin{array}{c} -60+80+4 \\ 51-40-3 \\ -33+40+1 \end{array}\right] \\ &=\frac{1}{8}\left[\begin{array}{c} 24 \\ 8 \\ 8 \end{array}\right] \end{aligned}$ $\begin{aligned} &x=\frac{24}{8} \quad, \quad \mathrm{y}=\frac{8}{8} \quad, \quad z=\frac{8}{8} \\ &\therefore x=3 \quad, \quad \mathrm{y}=1 \quad, \quad z=1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (ii)
Answer: $x=-\frac{8}{7}\; \; ,\; \; y=\frac{10}{7}\; \; ,\; \; z=\frac{19}{7}$ Given: $\begin{aligned} &x+y+z=3 \\ &2 x-y+z=-1 \\ &2 x+y-3 z=-9 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $\begin{aligned} &{\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 3 \\ -1 \\ -9 \end{array}\right]} \\ &A X=B \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3 \end{array}\right| &=1(3-1)-1(6-2)+1(2+2) \\ &=2+8+4 \\ &=14 \neq 0 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -1 & 1 \\ 1 & -3 \end{array}\right|=2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 2 & -3 \end{array}\right|=8 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & -1 \\ 2 & 1 \end{array}\right|=4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 1 & 1 \\ 1 & -3 \end{array}\right|=4 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ 2 & -3 \end{array}\right|=-5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=-1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right|=2 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right|=-3 \\ &\operatorname{adj} A=\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right]^{T} \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}$ $\begin{aligned} &=\frac{1}{14}\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right] \\ X=& A^{-1} B \end{aligned}$ $\begin{aligned} &=\frac{1}{14}\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right]\left[\begin{array}{c} 3 \\ -1 \\ 9 \end{array}\right] \\ &=\frac{1}{14}\left[\begin{array}{c} 6-4-18 \\ 24+5-9 \\ 12-1+27 \end{array}\right] \\ &=\frac{1}{14}\left[\begin{array}{c} -16 \\ 20 \\ 38 \end{array}\right] \end{aligned}$ $x=-\frac{16}{14}\; \; ,\; \; y=\frac{20}{14}\; \; ,\; \; z=\frac{38}{14} \\ x=-\frac{8}{7}\; \; ,\; \; y=\frac{10}{7}\; \; ,\; \; z=\frac{19}{7}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (iii)
Answer: $x=\frac{1}{2}\; \; ,\; \; y=\frac{1}{3}\; \; ,\; \; z=\frac{1}{5}$ Given: $\begin{aligned} &6x-12y+25z=4 \\ &4 x+15 y-20z=3 \\ &2 x+18y+15 z=10 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be Adj
A .
Solution: $A=\left[\begin{array}{ccc} 6 & -12 & 25 \\ -12 & 15 & -20 \\ 2 & 18 & 15 \end{array}\right]$ $\begin{gathered} |A|=\left|\begin{array}{ccc} 6 & -12 & 25 \\ -12 & 15 & -20 \\ 2 & 18 & 15 \end{array}\right|=6(225+360)+12(60+40)+25(72-30) \\ = 3510+1200+1050 \\ =5760 \end{gathered}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 15 & -20 \\ 18 & 15 \end{array}\right|=585 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & -20 \\ 2 & 15 \end{array}\right|=-100 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 4 & 15 \\ 2 & 18 \end{array}\right|=42 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 12 & 25 \\ 18 & 15 \end{array}\right|=630 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 6 & 25 \\ 2 & 15 \end{array}\right|=40 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 6 & -12 \\ 2 & 8 \end{array}\right|=-132 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -12 & 25 \\ 15 & -20 \end{array}\right|=-135 \quad , \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 6 & 25 \\ 4 & -20 \end{array}\right|=220 \end{aligned}$ $\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 6 & -12 \\ 4 & 15 \end{array}\right|=138 \\ \operatorname{adjA} &=\left[\begin{array}{ccc} 585 & -100 & 42 \\ 630 & 40 & -132 \\ -135 & 220 & 138 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{5760}\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{5760}\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right]\left[\begin{array}{c} 3 \\ -1 \\ 9 \end{array}\right] \\ &=\frac{1}{5760}\left[\begin{array}{c} 6-4-18 \\ 24+5-9 \\ 12-1+27 \end{array}\right] \\ &=\frac{1}{5760}\left[\begin{array}{c} -16 \\ 20 \\ 38 \end{array}\right] \end{aligned}$ $\begin{aligned} &x=\frac{2880}{5760} \quad, \quad y=\frac{1920}{5760} \quad, \quad z=\frac{1152}{5760} \\ &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (iv)
Answer: $\begin{aligned} &x=1 \quad, \quad y=1 \quad, \quad z=1 \end{aligned}$ Given: $\begin{aligned} &3 x+2 y+7 z=14 \\ &2 x-y+3 z=4 \\ &x+2 y-3 z=0 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &A=\left[\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right] \\ &{\left[\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right]} \end{aligned}$ $A\; X\; =B\\ \begin{aligned} |A|=\left|\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right| &=3(3-6)-4(-6-3)+7(4+1) \\ &=-9+36+35 \\ &=62 \neq 0 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{array}{ll} C_{11}=(-1)^{1+1}(3-6)=-3 & , \quad C_{12}=(-1)^{1+2}(-6-3)=9 \\ C_{13}=(-1)^{1+3}(4+1)=5 & , \quad C_{21}=(-1)^{2+1}(-12-14)=26 \end{array}$ $\begin{array}{ll} C_{22}=(-1)^{2+2}(-3-7)=-10 \quad, & C_{23}=(-1)^{2+3}(6-4)=-2 \\ C_{31}=(-1)^{3+1}(12+7)=19 & , \quad C_{32}=(-1)^{3+2}(9-14)=5 \end{array}$ $\begin{aligned} C_{33}=(-1)^{3+3}(-3-8)=-11 \\ \operatorname{adjA} =\left[\begin{array}{ccc} -3 & 9 & 5 \\ 26 & -5 & -2 \\ 19 & 5 & -11 \end{array}\right]^{T} \\ =\left[\begin{array}{ccc} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{62}\left[\begin{array}{ccc} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{array}\right]\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right] \\ &=\frac{1}{62}\left[\begin{array}{c} -42+104+0 \\ 126-64+0 \\ 70-8+0 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{62}\left[\begin{array}{l} 62 \\ 62 \\ 62 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (v)
Answer: $\begin{aligned} &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}$ Given: $\begin{aligned} &\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\ &\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\ &\frac{3}{x}-\frac{1}{y}+\frac{3}{z}=13 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\text { Let } \frac{1}{x} \text { be } a, \frac{1}{y} \text { be } b, \frac{1}{z} \text { be } c$ $\begin{aligned} &A=\left[\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right] \\ &{\left[\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right]} \end{aligned}$ $A\; X=B\\ \begin{aligned} |A|=\left|\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right| &=2(2+1)+3(2-3)+3(-1-3) \\ &=6-3-12 \\ &=-9 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 1 & 1 \\ -1 & 2 \end{array}\right|=3 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 1 \\ 3 & 2 \end{array}\right|=1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=-4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} -3 & 3 \\ -1 & 2 \end{array}\right|=3 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 2 & 3 \\ 3 & 2 \end{array}\right|=-5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & -3 \\ 3 & -1 \end{array}\right|=-7 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -3 & 3 \\ 1 & 1 \end{array}\right|=-6 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 3 \\ 1 & 1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right|=5 \\ \operatorname{adjA} &=\left[\begin{array}{ccc} 3 & 1 & -4 \\ 3 & -5 & -7 \\ -6 & 1 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right] \\ X=& A^{-1} B \end{aligned}$ $\begin{aligned} &=-\frac{1}{9}\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 10 \\ 13 \end{array}\right] \\ &=-\frac{1}{9}\left[\begin{array}{c} 30+30-78 \\ 10-50+13 \\ -40-70+65 \end{array}\right] \\ &=-\frac{1}{9}\left[\begin{array}{r} -18 \\ -27 \\ -45 \end{array}\right] \end{aligned}$ $\begin{aligned} &\frac{1}{x}=a=\frac{-9}{-18}, \frac{1}{y}=b=\frac{-9}{-27}, \frac{1}{z}=c=\frac{-9}{-45} \\ &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (vi)
Answer: $\begin{aligned} &x=1 \quad, \quad y=2 \quad, \quad z=5 \end{aligned}$ Given: $\begin{aligned} &5 x+3 y+z=16 \\ &2 x+y+3 z=19 \\ &x+2 y+4 z=25 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &A=\left[\begin{array}{lll} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{array}\right] \\ &\begin{aligned} |A|=\left|\begin{array}{lll} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{array}\right|=5(4-6)-3(8-3)+1(4-1) \\ \end{aligned} \end{aligned}$ $=-10-15+3 \\ =-22$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right|=-2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 2 & 3 \\ 1 & 4 \end{array}\right|=-5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right|=3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 3 & 1 \\ 2 & 4 \end{array}\right|=-10 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 5 & 1 \\ 1 & 4 \end{array}\right|=19 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 5 & 3 \\ 1 & 2 \end{array}\right|=-7 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 3 & 1 \\ 1 & 3 \end{array}\right|=8 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 5 & 1 \\ 2 & 3 \end{array}\right|=-13 \end{aligned}$ $\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 5 & 3 \\ 2 & 1 \end{array}\right|=-1 \\ \operatorname{adj} A &=\left[\begin{array}{ccc} -2 & -5 & 3 \\ -10 & 19 & -7 \\ 8 & -13 & -1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{-22}\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{22}\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right]\left[\begin{array}{l} 16 \\ 19 \\ 25 \end{array}\right] \\ &=-\frac{1}{22}\left[\begin{array}{c} -32-190+200 \\ -80+361-325 \\ 48-133-25 \end{array}\right] \end{aligned}$ $\begin{aligned} &=-\frac{1}{22}\left[\begin{array}{c} -22 \\ -44 \\ -110 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 5 \end{array}\right]} \\ &x=1, \quad y=2 \quad, \quad z=5 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (vii)
Answer: $\begin{aligned} &\ x=-2 \quad, \quad \mathrm{y}=3 \quad, \quad z=1 \end{aligned}$ Given: $\begin{aligned} &3 x+4 y+2 z=8 \\ &2 y-3 z=3 \\ &x-2 y+6 z=-2 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} & A=\left[\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right] \\ &{\left[\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 8 \\ 3 \\ -2 \end{array}\right]} \end{aligned}\\ A\: \: X=B$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right| &=3(12-6)-4(0+3)+2(0-2) \\ &=18-12-4 \\ &=2 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 2 & -3 \\ -2 & 6 \end{array}\right|=6 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 0 & -3 \\ 1 & 6 \end{array}\right|=-3 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 0 & 2 \\ 1 & -2 \end{array}\right|=-2 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 4 & 2 \\ -2 & 6 \end{array}\right|=-28 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 3 & 2 \\ 1 & 6 \end{array}\right|=16 \quad, \quad \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 3 & 4 \\ 1 & -2 \end{array}\right|=10 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 4 & 2 \\ 2 & -3 \end{array}\right|=-16 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 3 & 2 \\ 0 & -3 \end{array}\right|=9 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 3 & 4 \\ 0 & 2 \end{array}\right|=6 \end{aligned}$ $\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} 6 & -3 & -2 \\ -28 & 16 & 10 \\ -16 & 9 & 6 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{2}\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{2}\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right]\left[\begin{array}{c} 8 \\ 3 \\ -2 \end{array}\right] \\ &=\frac{1}{2}\left[\begin{array}{c} 48-84+32 \\ -24+48-18 \\ -16+30-12 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{2}\left[\begin{array}{c} -4 \\ 6 \\ 2 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} -2 \\ 3 \\ 1 \end{array}\right]} \\ &x=-2, \quad y=3 \quad, \quad z=1 \end{aligned}$ Answer: $\begin{aligned} & x=1 \quad, \quad \mathrm{y}=1 \quad, \quad z=-1 \end{aligned}$ Given: $\begin{aligned} &2 x+y+z=2 \\ &x+3 y-z=5 \\ &3 x+y-2 z=6 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 . Solution: $\begin{aligned} &{\left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & -2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 2 \\ 5 \\ 6 \end{array}\right]} \\ &A X=B \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & -2 \end{array}\right|=& 2(-6+1)-1(-2+3)+1(1-9) \\ &=10-1-8 \\ &=-19 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 3 & -1 \\ 1 & -2 \end{array}\right|=-5 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 1 & -1 \\ 3 & -2 \end{array}\right|=-1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 3 \\ 3 & 1 \end{array}\right|=-8 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}\right|=3 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & -1 \\ 3 & -2 \end{array}\right|=-7 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & 1 \\ 3 & 1 \end{array}\right|=1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=-4 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array}\right|=3 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 3 \end{array}\right|=5 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -5 & -1 & -8 \\ 3 & -7 & 1 \\ -4 & 3 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{-19}\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-19}\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right]\left[\begin{array}{l} 2 \\ 5 \\ 6 \end{array}\right] \\ &=\frac{1}{-19}\left[\begin{array}{c} -10+15-24 \\ -2-35+18 \\ -16+5+30 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{-19}\left[\begin{array}{c} -19 \\ -19 \\ 19 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=-1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (ix)
Answer: $\begin{aligned} & x=-2 \quad, \quad \mathrm{y}=1 \quad, \quad z=2 \end{aligned}$ Given: $\begin{aligned} &2 x+6 y=2 \\ &3 x-z=-8 \\ &2 x-y+z=-3 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &{\left[\begin{array}{ccc} 2 & 6 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 2 \\ -8 \\ -3 \end{array}\right]} \\ &A X=B \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 2 & 6 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 1 \end{array}\right| &=2(0-1)-6(3+2)+0(-3+0) \\ &=-2-30 \\ &=-32 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 0 & -1 \\ -1 & 1 \end{array}\right|=-1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array}\right|=-5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 0 \\ 2 & -1 \end{array}\right|=-3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 6 & 0 \\ -1 & 1 \end{array}\right|=-6 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 2 & 0 \\ 2 & 1 \end{array}\right|=2 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & 6 \\ 2 & -1 \end{array}\right|=14 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 6 & 0 \\ 0 & -1 \end{array}\right|=-6 \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 0 \\ 3 & -1 \end{array}\right|=2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 6 \\ 3 & 0 \end{array}\right|=-18 \end{aligned}$ $\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} -1 & -5 & -3 \\ -1 & 2 & 14 \\ -6 & 2 & -18 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=-\frac{1}{32}\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{32}\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right]\left[\begin{array}{c} 2 \\ -8 \\ -3 \end{array}\right] \\ &=-\frac{1}{32}\left[\begin{array}{c} -2+48+18 \\ -10-16-6 \\ -6-112+54 \end{array}\right] \end{aligned}$ $\begin{aligned} &=-\frac{1}{32}\left[\begin{array}{c} 64 \\ -32 \\ -64 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} -2 \\ 1 \\ 2 \end{array}\right]} \\ &x=-2, \quad y=1 \quad, \quad z=2 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (x)
Answer: $\begin{aligned} & x=1 \quad, \quad \mathrm{y}=2 \quad, \quad z=3 \end{aligned}$ Given: $\begin{aligned} &x-y+z=2 \\ &2 x-y=0 \\ &2 y-z=1 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{array}{r} {\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 2 \\ 0 \\ 1 \end{array}\right]} \end{array}\\ \ A\; X=B$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{array}\right| &=1(1-0)+1(-2-0)+1(4-0) \\ &=1-2+4 \\ &=3 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right]$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -1 & 0 \\ 2 & -1 \end{array}\right|=1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array}\right|=2 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & -1 \\ 0 & 2 \end{array}\right|=4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right|=-1 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right|=-2 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 2 & 0 \end{array}\right|=2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & -1 \\ 2 & -1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 1 & -1 & -2 \\ 1 & 2 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right]\left[\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right] \\ &=\frac{1}{3}\left[\begin{array}{l} 2+1 \\ 4+2 \\ 8+1 \end{array}\right] \end{aligned}$ $\begin{aligned} =\frac{1}{3}\left[\begin{array}{l} 3 \\ 6 \\ 9 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &x=1 \quad, \quad y=2 \quad, \quad z=3 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xi)
Answer: $\begin{aligned} &x=1 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}$ Given: $\begin{aligned} &8 x+4 y+3 z=18 \\ &2 x+y+z=5 \\ &x+2 y+z=5 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &{\left[\begin{array}{lll} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 18 \\ 5 \\ 5 \end{array}\right]} \\ &A X=B \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{lll} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right|=& 8(1-2)-4(2-1)+3(4-1) \\ &=-8-4+9 \\ &=-3 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=-1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right|=-1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right|=3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 4 & 3 \\ 2 & 1 \end{array}\right|=2 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 8 & 3 \\ 1 & 1 \end{array}\right|=5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 8 & 4 \\ 1 & 2 \end{array}\right|=-12 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 4 & 3 \\ 1 & 1 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 8 & 3 \\ 2 & 1 \end{array}\right|=-2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 8 & 4 \\ 2 & 1 \end{array}\right|=0 \end{aligned}$ $\begin{aligned} \text { adjA } &=\left[\begin{array}{ccc} -1 & -1 & 3 \\ 2 & 5 & -12 \\ -1 & -2 & 0 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=-\frac{1}{3}\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{3}\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right]\left[\begin{array}{c} 18 \\ 5 \\ 5 \end{array}\right] \\ &=-\frac{1}{3}\left[\begin{array}{c} -18+10+5 \\ -18+25-10 \\ 54-60 \end{array}\right] \end{aligned}$ $\begin{aligned} &=-\frac{1}{3}\left[\begin{array}{r} -3 \\ -3 \\ -6 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xii)
Answer: $\begin{aligned} &x=3 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}$ Given: $\begin{aligned} &x+y+z=6 \\ &x+2 z=7 \\ &3 x+y+z=12 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &{\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 6 \\ 7 \\ 12 \end{array}\right]} \\ &A X=B \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{array}\right|=& 1(0-2)-1(1-6)+1(1-0) \\ &=-2+5+1 \\ &=4 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 0 & 2 \\ 1 & 1 \end{array}\right|=-2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 2 \\ 3 & 1 \end{array}\right|=5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 0 \\ 3 & 1 \end{array}\right|=1 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right|=0 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 1 \\ 3 & 1 \end{array}\right|=-2 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & 1 \end{array}\right|=2 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 1 & 1 \\ 0 & 2 \end{array}\right|=2 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right|=-1 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 0 \end{array}\right|=-1 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -2 & 5 & 1 \\ 0 & -2 & 2 \\ 2 & -1 & -1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{4}\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right]\left[\begin{array}{c} 6 \\ 7 \\ 12 \end{array}\right] \\ &=\frac{1}{4}\left[\begin{array}{c} -12+0+24 \\ 30-14-12 \\ 6+14-12 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{4}\left[\begin{array}{c} 12 \\ 4 \\ 8 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 3 \\ 1 \\ 2 \end{array}\right]} \\ &x=3, \quad y=1 \quad, \quad z=2 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xiii)
Answer: $\begin{aligned} &x=2 \quad, \quad y=3 \quad, \quad z=5 \end{aligned}$ Given: $\begin{aligned} &\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 \\ &\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 \\ &\frac{6}{x}+\frac{9}{y}-\frac{-20}{z}=2 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &\text { Let } \frac{1}{x}=a, \frac{1}{y}=b, \frac{1}{z}=c\\ &\left[\begin{array}{ccc} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right]\\ &\mathrm{A} \mathrm{X}=\mathrm{B} \end{aligned}$ $\begin{aligned} |A|=\left | \begin{array}{ccc} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{array} \right | &=2(120-45)-3(-80-30)+10(36+36) \\ &=150+330+720 \\ &=1200 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -6 & 5 \\ 9 & -20 \end{array}\right|=75 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & 5 \\ 6 & -20 \end{array}\right|=110 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 4 & -6 \\ 6 & 9 \end{array}\right|=72 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 3 & 10 \\ 9 & -20 \end{array}\right|=150 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & 10 \\ 6 & -20 \end{array}\right|=-100 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right|=0 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 3 & 10 \\ -6 & 5 \end{array}\right|=75 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 10 \\ 4 & 5 \end{array}\right|=30 \end{aligned}$ $\begin{aligned} C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 2 & 3 \\ 4 & -6 \end{array}\right|=-24 \\ \operatorname{adjA} =\left[\begin{array}{ccc} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{array}\right]^{T} \\ =\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{1200}\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{1200}\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right]\left[\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right] \\ &=\frac{1}{1200}\left[\begin{array}{c} 300+150+150 \\ 440-100+60 \\ 288-48 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{1200}\left[\begin{array}{l} 600 \\ 400 \\ 240 \end{array}\right] \\ &\frac{1}{x}=a=\frac{1200}{600}, \frac{1}{y}=b=\frac{1200}{400}, \frac{1}{z}=c=\frac{1200}{240} \\ &x=2, \quad y=3 \quad, \quad z=5 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xiv)
Answer: $\begin{aligned} &x=2 \quad, \quad y=1 \quad, \quad z=3 \end{aligned}$ Given: $\begin{aligned} &x-y+2 z=7 \\ &3 x+4 y-5 z=-5 \\ &2 x-y+3 z=12 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant of matrix
A i.e |
A | then will find the co-factor of matrix A, take it’s transpose, and that will be A
dj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{array}\right] \\ \end{aligned}$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{array}\right| &=1(12-5)+1(9+10)+2(-3-8) \\ &=7+19-22 \\ &=4 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 4 & -5 \\ -1 & 3 \end{array}\right|=7 & \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & -5 \\ 2 & 3 \end{array}\right|=-19 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 4 \\ 2 & -1 \end{array}\right|=-11 & , \quad C_{21}=(-1)^{2+1}\left|\begin{array}{rr} -1 & 2 \\ -1 & 3 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}\right|=-1 \quad \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 2 & -1 \end{array}\right|=-1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 2 \\ 4 & -5 \end{array}\right|=-3 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 2 \\ 3 & -5 \end{array}\right|=11 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 3 & 4 \end{array}\right|=7 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]\left[\begin{array}{c} 7 \\ -5 \\ 12 \end{array}\right] \\ &=\frac{1}{4}\left[\begin{array}{c} 49-5-36 \\ -133+5+132 \\ -77+5+84 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\frac{1}{4}\left[\begin{array}{c} 8 \\ 4 \\ 12 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 3 \end{array}\right]} \\ &x=2, \quad y=1 \quad, \quad z=3 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (i)
Answer: $\begin{aligned} x=\frac{1-2 k}{3}, y=k \\ \end{aligned}$ Given: $\begin{aligned} 6 x+4 y=2,\: \: 9 x+6 y=3 \end{aligned}$ Hint: A system of two linear equations can have one solution, an infinite number of solution, if a system has no solution it’s called inconsistent
Solution: $\begin{aligned} &6 x+4 y=2 \; \; \; \; \; \; \;....(i) \\ &9 x+6 y=3\; \; \; \; \; \; \;....(ii) \end{aligned}$ $\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \end{array}\right] \text { and } B=\left[\begin{array}{l} 2 \\ 3 \end{array}\right]\\ &\left[\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 2 \\ 3 \end{array}\right] \end{aligned}$ $\begin{aligned} |A| &=\left|\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right| \\ &=36-36 \\ |A| &=0 \end{aligned}$ So,
A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0$ $Let\; C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=6, C_{12}=-9, C_{21}=-4, C_{22}=6 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 6 & -9 \\ -4 & 6 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 6 & -4 \\ -9 & 6 \end{array}\right] \end{aligned}$ $\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{cc} 6 & -4 \\ -9 & 6 \end{array}\right]\left[\begin{array}{l} 2 \\ 3 \end{array}\right] \\ &=\left[\begin{array}{c} 12-12 \\ -18+18 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] \end{aligned}$ If |
A| = 0 and (
adjA )
B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
y = k in eqn (i), We get
$\begin{aligned} &6 x+4 k=2 \\ &6 x=2-4 k \\ &x=\frac{2-4 k}{6} \\ &x=\frac{1-2 k}{3} \\ &x=\frac{1-2 k}{3} \text { and } y=k \end{aligned}$ The values of
x and y satisfy the third equation.
$\begin{aligned} Thus\; x=\frac{1-2 k}{3} \text { and } y=k \end{aligned}$ Where ‘
$k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (ii)
Answer: $\begin{aligned} x=\frac{5-3 k}{2} \text { and } y=k\\ \end{aligned}$ Given: $\begin{aligned} &2 x+3 y=5\\ &6 x+9 y=15 \end{aligned}$ Hint: Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
$\begin{aligned} &2 x+3 y=5\; \; \; \; \; \; ......(i)\\ &6 x+9 y=15\; \; \; \; \; ......(ii) \end{aligned} \\ AX=B \\ Where$ $\begin{aligned} &A=\left[\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right], X=\left[\begin{array}{l} x \\ y \end{array}\right] \text { and } B=\left[\begin{array}{c} 5 \\ 15 \end{array}\right] \\ &{\left[\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 5 \\ 15 \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right| \\ &=18-18 \\ |A| &=0 \end{aligned} \end{aligned}$ So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=9, C_{12}=-6, C_{21}=-3, C_{22}=2 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 9 & -6 \\ -3 & 2 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right] \end{aligned}$ $\begin{aligned} (\operatorname{adjA}) B &=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 5 \\ 15 \end{array}\right] \\ &=\left[\begin{array}{c} 45-45 \\ -30+30 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] \end{aligned}$ If |
A| = 0 and (
adjA )B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
y = k in eqn (i), We get
$\begin{aligned} &2 x+3 k=5 \\ &2 x=5-3 k \\ &x=\frac{5-3 k}{2} \\ &\text { And } y=k \end{aligned}$ The values of
x and
y satisfy the third equation.
$Thus\; \; \begin{aligned} x=\frac{5-3 k}{2} \text { and } y=k\\ \end{aligned}$ Where ‘
$k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (iii)
Answer: $x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k$ Given: $\begin{aligned} &5 x+3 y+7 z=4 \\ &3 x+26 y+2 z=9 \\ &7 x+2 y+10 z=5 \end{aligned}$ Hint: Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
$\begin{aligned} 5 x+3 y+7 z=4 \; \; \; \; \; ......(i)\\ 3 x+26 y+2 z=9 \; \; \; \; \; ......(ii)\\ 7 x+2 y+10 z=5 \; \; \; \; \; ......(iii) \end{aligned} \\ \\ AX=B \\ \\ Where$ $\begin{aligned} &A=\left[\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right], X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right] \\ &{\left[\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right]} \end{aligned}$ $\begin{aligned} |A| &=\left|\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right| \\ &=5(260-4)-3(30-14)+7(6-182) \\ &=1280-48-1232=0 \\ |A| &=0 \end{aligned}$ So,
A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 26 & 2 \\ 2 & 10 \end{array}\right|=256 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & 2 \\ 7 & 10 \end{array}\right|=-16 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 26 \\ 7 & 2 \end{array}\right|=-176 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 3 & 7 \\ 2 & 10 \end{array}\right|=-16 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 5 & 7 \\ 7 & 10 \end{array}\right|=1 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 5 & 3 \\ 7 & 2 \end{array}\right|=11 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 3 & 7 \\ 26 & 2 \end{array}\right|=-176 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 5 & 7 \\ 3 & 2 \end{array}\right|=11 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right|=121 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right] \end{aligned}$ $\begin{aligned} (\operatorname{adj} A) B &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right]\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right] \\ &=\left[\begin{array}{c} 1024-144-880 \\ -64+9+55 \\ -704+9+605 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}$ If |A| = 0 and (
adjA )
B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
z = k in eqn (i) and eqn (ii), We get
$\begin{aligned} &5 x+3 y=4-7 k \text { and } 3 x+26 y=9-2 k \\ &{\left[\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4-7 k \\ 9-2 k \end{array}\right]} \end{aligned}$ $\begin{aligned} |A| &=\left|\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right| \\ &=130-9 \\ &=121 \neq 0 \\ \operatorname{adj} A &=\left|\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{121}\left[\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} &X=A^{-1} B \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{121}\left[\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 4-7 k \\ 9-2 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{121}\left[\begin{array}{l} 104-182 k-27+6 k \\ -12+21 k+45-10 k \end{array}\right]} \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{77-176 k}{121} \\ \frac{33+11 k}{121} \end{array}\right]} \\ &x=\frac{11(7-16 k)}{121}, y=\frac{11(3+k)}{121} \text { and } z=k \\ &x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k \end{aligned}$ The values of x and y and z satisfy the third equation.
$Thus\; x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k$ Where ‘
$k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (iv)
Answer: $\begin{aligned} x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k\\ \end{aligned}$ Given: $\begin{aligned} &x-y+z=3\\ &2 x+y-z=2\\ &-x-2 y+2 z=1 \end{aligned}$ Hint: Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
$\begin{aligned} &x-y+z=3\; \; \; \; \; ....(i)\\ &2 x+y-z=2\; \; \; \; \; ....(ii)\\ &-x-2 y+2 z=1\; \; \; \; \; ....(iii) \end{aligned}$ $\begin{aligned} &A X=B \\ &\qquad A=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right], X=\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \\ &{\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right| \\ &=1(2-2)+1(4-1)+1(-4+1) \\ &=0+3-3=0 \\ |A| &=0 \end{aligned} \end{aligned}$ So,
A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0 \\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 1 & -1 \\ -2 & 2 \end{array}\right|=0 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right|=-3 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & 1 \\ -1 & -2 \end{array}\right|=-3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 1 \\ 2 & 2 \end{array}\right|=0 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ -1 & 2 \end{array}\right|=3 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ -1 & -2 \end{array}\right|=3 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right|=0 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right|=3 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right|=3 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 0 & -3 & -3 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 0 & 0 & 0 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} (\text { adj } A) B &=\left[\begin{array}{ccc} 0 & 0 & 0 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{array}\right]\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \\ &=\left[\begin{array}{c} 0 \\ -9+6+3 \\ -9+6+3 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}$ If |
A | = 0 and (
adjA )
B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
z = k in eqn (i) and eqn (ii), We get
$\begin{aligned} &x-y=3-k \text { and } 2 x+y=2+k\\ &\left[\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3-k \\ 2+k \end{array}\right]\\ &\text { Now, }\\ &|A|=\left|\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right|\\ &=1+2\\ &=3 \neq 0 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{3}\left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right] \\ X=& A^{-1} B \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{3}\left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right]\left[\begin{array}{l} 3-k \\ 2+k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{3}\left[\begin{array}{c} 3-k+2+k \\ -6+2 k+2+k \end{array}\right]} \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{5}{3} \\ \frac{3 k-4}{3} \end{array}\right]} \\ &x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k \end{aligned}$ The values of x and y and z satisfy the third equation.
$\begin{aligned} Thus,\; x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k \end{aligned}$ Where ‘
$k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (v)
Answer: $x=k-2,\; y=8-2k\; and\; z=k$ Given: $\begin{aligned} &x+y+z=6 \\ &x+2 y+3 z=14 \\ &x+4 y+7 z=30 \end{aligned}$ Hint: Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
$\begin{aligned} &x+y+z=6 \; \; \; \; \; .....(i)\\ &x+2 y+3 z=14 \; \; \; \; \; .....(ii) \\ &x+4 y+7 z=30 \; \; \; \; \; .....(iii) \end{aligned}$ $\begin{aligned} &A X=B\\ &\text { Where }\\ &A=\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right] \end{aligned}$ $\begin{aligned} {\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right]} \\ |A|=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right| \end{aligned}\\ =1(14-12)-1(7-3)+1(4-2) \\ =2-4+2=0 \\ \left | A \right |=0$ So,
A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0 \\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 2 & 3 \\ 4 & 7 \end{array}\right|=2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 3 \\ 1 & 7 \end{array}\right|=-4 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 2 \\ 1 & 4 \end{array}\right|=2 \quad , \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 7 \end{array}\right|=-3 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 1 \\ 1 & 7 \end{array}\right|=6 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 4 \end{array}\right|=-3 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 3 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 1 & 3 \end{array}\right|=-2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 2 & -4 & 2 \\ -3 & 6 & -3 \\ 1 & -2 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{array}\right] \end{aligned}$ $\begin{aligned} (\operatorname{adj} A) B &=\left[\begin{array}{ccc} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{array}\right]\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right] \\ &=\left[\begin{array}{c} 12-42+30 \\ -24+84-60 \\ 12-42+30 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}$ If |
A | = 0 and (
adjA )
B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
z = k in eqn (i) and eqn (ii), We get
$\begin{aligned} &x+y=6-k \text { and } x+2 y=14-3 k\\ &\left[\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 6-k \\ 14-3 k \end{array}\right]\\ &\text { Now, }\\ &|A|=\left|\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right|\\ &=2-1\\ &=1 \neq 0 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{1}\left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right] \\ X=& A^{-1} B \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{c} x \\ y \end{array}\right]=\frac{1}{1}\left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right]\left[\begin{array}{c} 6-k \\ 14-3 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{1}\left[\begin{array}{c} 12-2 k-14+3 k \\ -6+k+14-3 k \end{array}\right]} \\ &{\left[\begin{array}{c} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{k-2}{1} \\ \frac{8-2 k}{1} \end{array}\right]} \end{aligned}$ $x=k-2,\; y=8-2k\; and\; z=k$ The values of x and y and z satisfy the third equation. $Thus\; x=k-2,\; y=8-2k\; and\; z=k$ Where ‘ $k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (vi)
Answer: $\begin{aligned} x=\frac{1-2 k}{2}, y=k \text { and } z=0 \end{aligned}$ Given: $\begin{aligned} &2 x+2 y-2 z=1\\ &4 x+4 y-z=2\\ &6 x+6 y+2 z=3 \end{aligned}$ Hint: Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
$\begin{aligned} &2 x+2 y-2 z=1\; \; \; \; \; .....(i)\\ &4 x+4 y-z=2\; \; \; \; \; .....(ii)\\ &6 x+6 y+2 z=3\; \; \; \; \; .....(iii) \end{aligned}$ $\begin{aligned} &A X=B\\ &\text { Where }\\ &A=\left[\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &|A|=\left|\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right| \\ &= 2(8+6)-2(8+6)-2(24-24) \\ & =28-28=0 \end{aligned}$ So,
A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
$(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 4 & -1 \\ 6 & 2 \end{array}\right|=14 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & -1 \\ 6 & 2 \end{array}\right|=-14 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 4 & 4 \\ 6 & 6 \end{array}\right|=0 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 2 & -2 \\ 6 & 2 \end{array}\right|=-16 \end{aligned}$ $\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & -2 \\ 6 & 2 \end{array}\right|=16 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 2 & 2 \\ 6 & 6 \end{array}\right|=0 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right|=6 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right|=-6 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 2 \\ 4 & 4 \end{array}\right|=0 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -14 & -14 & 0 \\ -16 & 16 & 0 \\ 6 & -6 & 0 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0 \end{array}\right] \end{aligned}$ $\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{ccc} 14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right] \\ &=\left[\begin{array}{c} 14-32+18 \\ -14+32-18 \\ 0 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}$ If |
A | = 0 and (
adjA )
B = 0 then the system is consistent and has infinitely many solutions.
Thus,
AX = B has infinitely many solutions
Substituting
y = k in eqn (i) and eqn (ii), We get
$\begin{aligned} &2 x+2 z=1-2 k \text { and } 4 x+z=2-4 k \\ &{\left[\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 1-2 k \\ 2-4 k \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right| \\ &=-2+8 \\ &=6 \neq 0 \end{aligned} \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{rr} -1 & 2 \\ -4 & 2 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{6}\left[\begin{array}{rr} -1 & 2 \\ -4 & 2 \end{array}\right] \\ X=& A^{-1} B \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{6}\left[\begin{array}{ll} -1 & 2 \\ -4 & 2 \end{array}\right]\left[\begin{array}{l} 1-2 k \\ 2-4 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{6}\left[\begin{array}{l} -1+2 k+4-8 k \\ -4+8 k+4-8 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{3-6 k}{6} \\ 0 \end{array}\right]} \end{aligned}$ $x=\frac{1}{2} -k ,\; y=k\; and\; z=0$ The values of x and y and z satisfy the third equation.
$x=\frac{1}{2} -k ,\; y=k\; and\; z=0$ Where ‘
$k$ ’ is a real number satisfy the given system of equations.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (i)
Answer: Inconsistent
Given: $2x+5y=7 \: \: ,\: \: 6x+15y=13$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$A X=B \\ Here, \\ A=\left[\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right] \quad, \quad X=\left[\begin{array}{l}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{c}7 \\ 13\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right|=|30-30|=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}(15)=15 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(5)=-5 \quad, \quad C_{22}=-1^{2+2}(2)=2 \\ &(a d j A) B=\left[\begin{array}{cc} 15 & -5 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 7 \\ 13 \end{array}\right]=\left[\begin{array}{c} 105-65 \\ -42+26 \end{array}\right]=\left[\begin{array}{c} 40 \\ -16 \end{array}\right] \neq 0 \end{aligned}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (ii)
Answer: Inconsistent
Given: $2x+3y=5 \quad , \quad 6x+9y=10$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$A X=B \\ Here, \\ A=\left[\begin{array}{cc}2 & 3 \\ 6 & 9\end{array}\right] \quad, \quad X=\left[\begin{array}{l}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{c}5 \\ 10\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{cc}2 & 3 \\ 6 & 9\end{array}\right|=|18-18|=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}(9)=9 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(3)=-3 \quad, \quad C_{22}=-1^{2+2}(2)=2 \\ &(a d j A) B=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 5 \\ 10 \end{array}\right]=\left[\begin{array}{c} 45-30 \\ -30+20 \end{array}\right]=\left[\begin{array}{c} 15 \\ -10 \end{array}\right] \neq 0 \end{aligned}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (iii)
Answer: Inconsistent
Given: $4x-2y=3 \quad , \quad 6x-3y=5$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$A X=B \\ Here, \\ A=\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right] \quad, \quad X=\left[\begin{array}{c}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{l}3 \\ 5\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right|=|-12+12|=0$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}(-3)=-3 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(-2)=2 \quad, \quad C_{22}=-1^{2+2}(4)=4 \\ &(\text { adjA }) B=\left[\begin{array}{ll} -3 & 2 \\ -6 & 4 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right]=\left[\begin{array}{c} -9+10 \\ -18+20 \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \end{array}\right] \neq 0 \end{aligned}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (iv)
Answer: Inconsistent
Given: $4 x-5 y-2 z=2 \quad, \quad 5 x-4 y+2 z=-2 \quad, \quad 2 x+2 y+8 z=-1$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$A X=B \\ Here, \\ A=\left[\begin{array}{ccc}4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8\end{array}\right] \quad, \quad X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right] \quad and \quad B=\left[\begin{array}{c}2 \\ -2 \\ -1\end{array}\right] \\ Now,$ $\begin{aligned} |A|=\left|\begin{array}{ccc} 4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8 \end{array}\right| &=4(-32-4)+5(40-4)-2(10+8) \\ &=-144+180-36 \\ &=0 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -4 & 2 \\ 2 & 8 \end{array}\right|=28 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -5 & -2 \\ 2 & 8 \end{array}\right|=36 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 5 & 2 \\ 2 & 8 \end{array}\right|=-36 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 4 & -2 \\ 2 & 8 \end{array}\right|=36 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 5 & -4 \\ 2 & 2 \end{array}\right|=18 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 4 & -5 \\ 2 & 2 \end{array}\right|=-18 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -5 & -2 \\ -4 & 2 \end{array}\right|=-18 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 4 & -2 \\ 5 & 2 \end{array}\right|=-18 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 4 & -5 \\ 5 & -4 \end{array}\right|=9 \end{aligned}$ $\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{ccc} 28 & 36 & -18 \\ -36 & 36 & -18 \\ 18 & -18 & 9 \end{array}\right]\left[\begin{array}{c} 2 \\ -2 \\ -1 \end{array}\right] \\ &=\left[\begin{array}{c} 56-72+18 \\ -72-72+18 \\ 36+36-9 \end{array}\right] \\ &=\left[\begin{array}{c} 2 \\ -126 \\ 63 \end{array}\right] \neq 0 \end{aligned}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (v)
Answer: Inconsistent
Given: $3 x-y-2 z=2 \quad, \quad 2 y-z=-1 \quad, \quad 3 x-5 y=3$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right] \quad, \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right] \end{aligned}$ $\begin{aligned} &\text { Now, }\\ &\begin{aligned} |A|=\left|\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right| &=3(0-5)+1(0+3)-2(0-6) \\ &=-15+3+12 \\ &=0 \end{aligned} \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} 2 & -1 \\ -5 & 0 \end{array}\right|=-5 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 0 & -1 \\ 3 & 0 \end{array}\right|=-3 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} 0 & 2 \\ 3 & -5 \end{array}\right|=-6 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} -1 & -2 \\ -5 & 0 \end{array}\right|=10 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 3 & -2 \\ 3 & 0 \end{array}\right|=6 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{ll} 3 & -1 \\ 3 & -5 \end{array}\right|=12 \\ &C_{31}=-1^{3+1}\left|\begin{array}{ll} -1 & -2 \\ 2 & -1 \end{array}\right|=5 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{ll} 3 & -2 \\ 0 & -1 \end{array}\right|=3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 3 & -1 \\ 0 & 2 \end{array}\right|=6 \end{aligned}$ $\begin{gathered} \operatorname{adjA}=\left[\begin{array}{ccc} -5 & -3 & -6 \\ 10 & 6 & 12 \\ 5 & 3 & 6 \end{array}\right]^{T} \\ (\text { adjA }) B=\left[\begin{array}{ccc} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{array}\right]\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right] \\ =\left[\begin{array}{c} -10-10+15 \\ -6-6+9 \\ -12-12+18 \end{array}\right] \\ =\left[\begin{array}{c} -5 \\ -3 \\ -6 \end{array}\right] \neq 0 \end{gathered}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (vi)
Answer: Inconsistent
Given: $x+y-2 z=5 \quad, \quad x-2 y+z=-2 \quad, \quad-2 x+y+z=4$ Hint: Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution: The given system of equations can be expressed as follows
$\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ccc} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{array}\right] \quad, \quad X=\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c} 5 \\ -2 \\ 4 \end{array}\right] \end{aligned}$ $\begin{aligned} &\text { Now, }\\ &\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{array}\right| &=1(-2-1)-1(1+2)-2(1-4) \\ &=-3-3+6 \\ &=0 \end{aligned} \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -2 & 1 \\ 1 & 1 \end{array}\right|=-3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array}\right|=-3 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} 1 & 1 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & 1 \\ -2 & 1 \end{array}\right|=-3 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array}\right|=-3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}\right|=-3 \end{aligned}$ $\begin{aligned} &\operatorname{adjA}=\left[\begin{array}{rrr} -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \end{array}\right]^{T} \\ &(\operatorname{adj} A) B=\left[\begin{array}{rrr} -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \end{array}\right]\left[\begin{array}{c} 5 \\ -2 \\ 4 \end{array}\right] \\ &=\left[\begin{array}{r} -15+6-12 \\ -15+6-12 \\ -15+6-12 \end{array}\right] \\ &=\left[\begin{array}{r} -21 \\ -21 \\ -21 \end{array}\right] \neq 0 \end{aligned}$ Hence, the given system of equation is inconsistent.
Solution of Simultaneous Linear Equation exercise 7.1 question 5
Answer: $x=2 \quad , \quad y=-1 \quad , \quad z=4$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \backslash \\ &x-y=3, \quad 2 x+3 y+4 z=17 \quad, \quad y+2 z=7 \end{aligned}$ Hint: For matrix multiply matrix
A with matrix
B , Then
X=A-1 B is formula for which is used to solve this problem.
Solution: $\begin{aligned} A B &=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &=\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \\ A B &=6\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=6 I_{3} \end{aligned}$ $\begin{aligned} &\frac{1}{6} A B=I_{3} \\ &\left(\frac{1}{6} B\right) A=I_{3} \quad(\therefore A B=B A) \\ &A^{-1}=\frac{1}{6} B \\ &A^{-1}=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]\left[\begin{array}{c} 3 \\ 17 \\ 7 \end{array}\right] \\ &=\frac{1}{6}\left[\begin{array}{c} 6+34-28 \\ -12+34-28 \\ 6-17+35 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{6}\left[\begin{array}{c} 12 \\ -6 \\ 24 \end{array}\right]} \\ &x=2, y=-1, z=4 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 6
Answer: $\begin{aligned} &x=1, y=2, z=3 \end{aligned}$ Given: $\begin{aligned} &2 x-3 y+5 z=11 \\ &3 x+2 y-4 z=-5 \\ &x+y+2 z=-z \\ &A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right] \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} &A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right] \\ &|A|=\left|\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right| \end{aligned}$ $\begin{aligned} |A| &=2(-4+4)+3(-6+4)+5(3-2) \\ &=0-6+5=-1 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{ll} 2 & -4 \\ 1 & -2 \end{array}\right|=0 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -3 & 5 \\ 1 & -2 \end{array}\right|=-1 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 3 & -4 \\ 1 & -2 \end{array}\right|=2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 2 & 5 \\ 1 & -2 \end{array}\right|=-9 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right|=1 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right|=-5 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -3 & 5 \\ 2 & -4 \end{array}\right|=2 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 2 & 5 \\ 3 & -4 \end{array}\right|=23 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 2 & -3 \\ 3 & 2 \end{array}\right|=13 \end{aligned}$ $\begin{aligned} &\operatorname{adj} A=\left[\begin{array}{ccc} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13 \end{array}\right]^{T}=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right] \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}$ $\begin{gathered} =\frac{1}{-1}\left[\begin{array}{ccc} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right] \\ {\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 11 \\ -5 \\ -3 \end{array}\right]} \end{gathered}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 0+5-6 \\ 22+45-69 \\ 11+25-39 \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &x=1, \mathrm{y}=2, z=3 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 7
Answer: $\begin{aligned} &x=-1, \mathrm{y}=-2, z=3 \end{aligned}$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right] \\ &x+2 y+5 z=10 \\ &x-y-z=-2 \\ &2 x+3 y-z=-11 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A &=\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right] \\ |A| &=\left|\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right| \\ |A| &=1(1+3)-2(-1+2)+5(3+2) \\ &=4-2+25=27 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{array}{ll} C_{11}=-1^{1+1}\left|\begin{array}{cc} -1 & -1 \\ 3 & -1 \end{array}\right|=4 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 2 & 5 \\ 3 & -1 \end{array}\right|=-1 \\ C_{12}=-1^{1+2}\left|\begin{array}{ll} 1 & -1 \\ 2 & -1 \end{array}\right|=-1 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 1 & 5 \\ 2 & -1 \end{array}\right|=17 \end{array}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right|=5 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}\right|=1 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 2 & 5 \\ -1 & -1 \end{array}\right|=3 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 5 \\ 1 & -1 \end{array}\right|=6 \end{aligned}$ $\begin{aligned} &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right|=-3 \\ &\operatorname{adjA}=\left[\begin{array}{ccc} 4 & -1 & 5 \\ 17 & -11 & 1 \\ 3 & 6 & -3 \end{array}\right]^{T}=\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right] \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}$ $\begin{gathered} =\frac{1}{27}\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right] \\ {\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 10 \\ -2 \\ -11 \end{array}\right]} \\ A X=B \end{gathered}$ $\begin{aligned} &X=A^{-1} B \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{27}\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right]\left[\begin{array}{c} 10 \\ -2 \\ -11 \end{array}\right]} \end{aligned}$ $\begin{aligned} &\frac{1}{27}\left[\begin{array}{c} 40-34-33 \\ -10+22-66 \\ 50-2+33 \end{array}\right] \\ &=\frac{1}{27}\left[\begin{array}{c} -27 \\ -54 \\ 81 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} \frac{-27}{27} \\ \frac{-54}{27} \\ \frac{81}{27} \end{array}\right]=\left[\begin{array}{c} -1 \\ -2 \\ 3 \end{array}\right]} \end{aligned}$ $\begin{aligned} &x=-1, \mathrm{y}=-2, z=3 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (i)
Answer: $x=4,\; \; y=-3,\: \: z=1$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \\ &x-2 y=10 \\ &2 x+y+3 y=8 \\ &-2 y+z=7 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A &=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \\ |A| &=1(1+6)+2(2-0)+0(-4-0) \\ &=7+4+0 \\ &=11 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{array}{ll} C_{11}=-1^{1+1}\left|\begin{array}{cc} 1 & 3 \\ -2 & 1 \end{array}\right|=7 \quad , \quad C_{21}=-1^{2+1}\left|\begin{array}{ll} -2 & 0 \\ -2 & 1 \end{array}\right|=2 \\ C_{12}=-1^{1+2}\left|\begin{array}{ll} 2 & 3 \\ 0 & 1 \end{array}\right|=-2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right|=1 \end{array}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 2 & 1 \\ 0 & -2 \end{array}\right|=-4 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & -2 \\ 0 & -2 \end{array}\right|=2 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -2 & 0 \\ 1 & 3 \end{array}\right|=-6 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 0 \\ 2 & 3 \end{array}\right|=3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array}\right|=5 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 7 & -2 & -4 \\ 2 & 1 & 2 \\ -6 & -3 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ -1 \end{array}\right] \\ &=\frac{1}{11}\left[\begin{array}{c} 70+16-42 \\ -20+8-21 \\ -40+16+35 \end{array}\right]=\frac{1}{11}\left[\begin{array}{c} 44 \\ -33 \\ 11 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 4 \\ -3 \\ 1 \end{array}\right]} \\ &x=4, y=-3, z=1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (ii)
Answer: $\begin{aligned} &x=3, y=2, z=-1 \end{aligned}$ Given: $A=\left[\begin{array}{ccc} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{array}\right]$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A &=\left[\begin{array}{ccc} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{array}\right] \\ |A| &=3(3-0)+4(2-5)+2(0-3) \\ &=9-12-6 \\ &=-9 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{ll} 3 & 5 \\ 0 & 1 \end{array}\right|=3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -4 & 2 \\ 0 & 1 \end{array}\right|=4 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 2 & 5 \\ 1 & 1 \end{array}\right|=3 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{ll} 2 & 3 \\ 1 & 0 \end{array}\right|=-3 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 3 & -4 \\ 1 & 0 \end{array}\right|=-4 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -4 & 2 \\ 3 & 5 \end{array}\right|=-26 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{ll} 3 & 2 \\ 2 & 5 \end{array}\right|=-11 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 3 & -4 \\ 2 & 3 \end{array}\right|=17 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right]\left[\begin{array}{c} -1 \\ 7 \\ 2 \end{array}\right] \\ &=\frac{1}{-9}\left[\begin{array}{c} -3+28-52 \\ -3+7-22 \\ 3-28+34 \end{array}\right]=\frac{1}{-9}\left[\begin{array}{c} -27 \\ -18 \\ 9 \end{array}\right] \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 3 \\ 2 \\ -1 \end{array}\right]} \\ &x=3, y=2, z=-1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (iii)
Answer: $\begin{aligned} &x=4, y=-3, z=1 \end{aligned}$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \\ &x-2 y=10 \\ &2 x+y+3 y=8 \\ &-2 y+z=7 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A B &=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right]\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 7+4+0 & 2-2+0 & -6+6+0 \\ 14-2-12 & 4+1+6 & -12-3+15 \\ 0+4-4 & 0-1+2 & 0+6+5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{array}\right] \\ A B &=11\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$ $\begin{aligned} &A B=11 I_{3} \\ &{\left[\frac{1}{11}\right] A B=I_{3}} \\ &{\left[\frac{1}{11} B\right] A=I_{3}} \\ &A^{-1}=\frac{1}{11} B \\ &\quad=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \end{aligned}$ $\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right] \\ &=\frac{1}{11}\left[\begin{array}{c} 70+16-42 \\ -20+8-21 \\ -40+16+35 \end{array}\right]=\frac{1}{11}\left[\begin{array}{c} 44 \\ -33 \\ 11 \end{array}\right] \end{aligned}$ $\begin{aligned} &x=4, y=-3, z=1 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (iv)
Answer: $x=0,\: \: y=-5,\: \: z=-3$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right] \\ &x-2 y=10 \\ &2 x-y-z=8 \\ &-2 y+z=7 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A &=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right] \\ |A| &=1(-1-2)+2(2) \\ &=-3+4 \\ &=1 \end{aligned}$ $C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,$ $\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -1 & -2 \\ -1 & 1 \end{array}\right|=-3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 2 & 0 \\ -1 & 1 \end{array}\right|=-2 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} -2 & -2 \\ 0 & 1 \end{array}\right|=2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right|=1 \end{aligned}$ $\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} -2 & -1 \\ 0 & -1 \end{array}\right|=2 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array}\right|=1 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 2 & 0 \\ -1 & -2 \end{array}\right|=-4 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 0 \\ -2 & -2 \end{array}\right|=2 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 2 \\ -2 & -1 \end{array}\right|=3 \end{aligned}$ $\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{rcc} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{array}\right] \end{aligned}$ $\begin{aligned} &\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \\ &\text { i.e } C=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{array}\right] \\ &C^{-1}=\left[\begin{array}{rrr} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right] \end{aligned}$ $\begin{gathered} {\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right]} \\ C X=B \\ X=C^{-1} B \end{gathered}$ $\begin{aligned} =\left[\begin{array}{ccc} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right] \\ =\left[\begin{array}{c} -30+16+14 \\ -20+8+7 \\ -40+16+21 \end{array}\right] \\ x=0, y=-5, z=-3 \end{aligned}$ Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (v)
Answer: $\begin{aligned} x=2, y=-1, z=4 \end{aligned}$ Given: $\begin{aligned} &A=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \\ &y+2 z=7 \\ &x-y=3 \\ &2 x+3 y+11 z=17 \end{aligned}$ Hint: X=A-1 B is used to solve this problem. First we find the determinant and co-factor of matrix
A , take it’s transpose, and that will be
Adj A using
Adj A calculate
A-1 .
Solution: $\begin{aligned} A &=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right], B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \\ B A &=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 2+4+0 & 2-2+0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{array}\right] \end{aligned}$ $\begin{aligned} &=\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \\ &B A=6\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &B A=6 I_{3} \\ &B\left[\frac{1}{6} A\right]=I_{3} \end{aligned}$ $\begin{aligned} &{\left[\frac{1}{11} B\right] A=I_{3}} \\ &B^{-1}=\frac{1}{6} A \\ &\quad=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &B X=C \\ &X=B^{-1} C \end{aligned}$ $\begin{gathered} =\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]\left[\begin{array}{c} 3 \\ 17 \\ 7 \end{array}\right] \\ =\frac{1}{6}\left[\begin{array}{c} 6+34-28 \\ -12+34-28 \\ 6-17+35 \end{array}\right] \end{gathered}$ $\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{6}\left[\begin{array}{l} 12 \\ -6 \\ 24 \end{array}\right]} \\ &x=2, y=-1, z=4 \end{aligned}$ Class 12 RD Sharma chapter 7 exercise 7.1 solution is an achievement for each understudy. Students concentrate on every day of the week to score excellent grades and further join the surge of their inclination. Students can't get their ideal outcomes without thorough practice.
The numerical ideas, issues, and solutions are referenced exhaustively in the book.
RD Sharma Class 12th Exercise 7.1 Chapter 7 – Solution of Simultaneous Linear Equations rehearsing these solutions can get their questions cleared immediately. RD Sharma Solutions are fundamental reference books to score high in Mathematics board tests as in serious difficulties.
Rd Sharma class 12th exercise 7.1 answers that are straightforward and recall. Further assists students with grasping formulae and addressing methods. RD Sharma class 12th exercise 7.1 solution has around 57 questions, including its subparts, and it incorporates themes like: -
Definition and which means of the reliable matrix.
Solving the given arrangement of straight conditions when the coefficient network is consistent
Solving the given arrangement of conditions when the coefficient grid is inconsistent
Advantages of picking RD Sharma Class 12 Solution of Simultaneous Linear Equation Exercise 7.1 from Career360 include:
Easy to fathom the idea
At one place i.e. Career360, you will be able to get all the solutions so no need to go anywhere else
You can also benchmark your performance basis these solutions
Since RD Sharma is a widely used book, there are chances that some of these questions might appear in your final exams
These solutions are free of cost
Unique yet coordinated show of the themes
Detailed clarification of ideas and formulae
Helps students to rehearse without any problem
One book covers all chapters and is adequate for scoring great imprints
Class 12 students will be happy to realize that now they can get this maths book of scriptures at the simplicity of their seats. So presently, you can download RD Sharma class 12 solutions chapter 7 ex 7.1 in PDF format from Us at Career360. You might store the PDFs on their telephone, tablet, or PC and approach these at whatever point they need.
As Mathematics is a complex subject for Class 12 students, these solutions will change each understudy's method towards Mathematics.
RD Sharma Chapter-wise Solutions NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book