RD Sharma Class 12 Exercise 7.1 Simultaneous Linear Equation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 7.1 Simultaneous Linear Equation Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 20, 2022 03:20 PM IST

RD Sharma reading material is one of the best course books for class 12 explicitly for students getting ready for severe tests. Arithmetic is the subject of training. To have great practice, you need the nature of inquiries, and RD Sharma Class 12 meets an excellent prerequisite of questions.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 7 Solution of Simultaneous Linear Equation - Other Exercise

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 7 Solution of Simultaneous Linear Equation - Other Exercise
  2. Solution of simultaneous linear equations Excercise: 7.1
  3. RD Sharma Chapter-wise Solutions

Solution of simultaneous linear equations Excercise: 7.1

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (i)

Answer:
x=-1\: \: and\: \: y=4
Given:
\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A
Solution:
\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]
A X=B\\ |A|=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right]=10-6=4 \neq 0\\ This\; has\; a\; unique\; sol\! ution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! factor\; o\! f\; the\; elements\; a_{i j}\; in\; A=\left[a_{i j}\right]. \; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}(2)=2 , \quad C_{12}=(-1)^{1+2}(3)=-3 \\ &C_{21}=(-1)^{2+1}(2)=-2 , \quad C_{22}=(-1)^{2+2}(5)=5 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 2 & -3 \\ -2 & 5 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right] \\ \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{4}\left[\begin{array}{c} 6-10 \\ -9+25 \end{array}\right]=\left[\begin{array}{c} -\frac{4}{4} \\ \frac{16}{4} \end{array}\right]} \\ &\therefore x=-1 \quad, \quad \mathrm{y}=4 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (ii)

Answer:
x=\frac{9}{2},\; \; y=-\frac{7}{2}
Given:
\left[\begin{array}{ll} 5 & 7 \\ 4 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} -2 \\ -3 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\left[\begin{array}{ll} 5 & 7 \\ 4 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} -2 \\ -3 \end{array}\right]
A X=B\\ |A|=\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right]=30-28=2 \neq 0\\ This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i i} \; be\; the\; co-\! factor\; o\! f\; the\; elements\; a_{i j}\; in\; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}(6)=2 \quad, \quad C_{12}=(-1)^{1+2}(4)=-4 \\ &C_{21}=(-1)^{2+1}(7)=-7 \quad, \quad C_{22}=(-1)^{2+2}(5)=5 \\ &A=\left[\begin{array}{cc} 6 & -4 \\ -7 & 5 \end{array}\right] \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{cc} 6 & -4 \\ -7 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{2}\left[\begin{array}{cc} 6 & -7 \\ -4 & 5 \end{array}\right]\left[\begin{array}{l} -2 \\ -3 \end{array}\right] \\ &=\frac{1}{2}\left[\begin{array}{c} -12+21 \\ 8-15 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{9}{2} \\ -\frac{7}{2} \end{array}\right]} \\ &\therefore x=\frac{9}{2} \quad, \quad \mathrm{y}=-\frac{7}{2} \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (iii)

Answer:
x=-1\; \; ,\; \; y=2
Given:
\left[\begin{array}{ll} 3& 4 \\ 1 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 5 \\ -3 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\left[\begin{array}{ll} 3& 4 \\ 1 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 5 \\ -3 \end{array}\right]
\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 4 \\ 1 & -1 \end{array}\right]=-3-4=-7 \neq 0 \end{aligned}
This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co\! -\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}(-1)=-1 \quad, \quad C_{12}=(-1)^{1+2}(1)=-1 \\ &C_{21}=(-1)^{2+1}(4)=-4 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} -1 & -1 \\ -4 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-7}\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right] \\ X &=A^{-1} B \\ &=\frac{1}{-7}\left[\begin{array}{cc} -1 & -4 \\ -1 & 3 \end{array}\right]\left[\begin{array}{c} 5 \\ -3 \end{array}\right] \\ &=\frac{1}{-7}\left[\begin{array}{c} -5+12 \\ -5-9 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{7}{-7} \\ \frac{-14}{-7} \end{array}\right]} \\ &\therefore x=-1 \quad, \quad \mathrm{y}=2 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (iv)

Answer:
x=7\; \; and\; \; y=-2
Given:
\left[\begin{array}{ll} 3 & 1 \\ 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 19 \\ 23 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\left[\begin{array}{ll} 3 & 1 \\ 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 19 \\ 23 \end{array}\right]
\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 1 \\ 3 & -1 \end{array}\right]=-3-3=-6 \neq 0 \end{aligned}
This\; has\; a\; unique\; solution\; given\; by\; X=A^{-1} B.\\ C_{i j} \; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{array}{ll} C_{11}=(-1)^{1+1}(-1)=-1 & , \quad C_{12}=(-1)^{1+2}(3)=-3 \\ C_{21}=(-1)^{2+1}(1)=-1 & , \quad C_{22}=(-1)^{2+2}(3)=3 \end{array}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{cc} -1 & -3 \\ -1 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-6}\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-6}\left[\begin{array}{cc} -1 & -1 \\ -3 & 3 \end{array}\right]\left[\begin{array}{l} 19 \\ 23 \end{array}\right] \\ &=\frac{1}{-6}\left[\begin{array}{l} -19-23 \\ -57-69 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{-6}\left[\begin{array}{l} -19-23 \\ -57-69 \end{array}\right]=\left[\begin{array}{c} \frac{-42}{-6} \\ \frac{12}{-6} \end{array}\right]} \\ &\therefore x=7 \quad, \quad \mathrm{y}=-2 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (v)

Answer:
x=-15\; \; ,\; \; y=7
Given:
\left[\begin{array}{ll} 3 & 7 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4 \\ -1 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\left[\begin{array}{ll} 3 & 7 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4 \\ -1 \end{array}\right]
\begin{aligned} &A X=B \\ &A=\left[\begin{array}{cc} 3 & 7 \\ 1 & 2 \end{array}\right]\\ &|A|=\left[\begin{array}{cc} 3 & 7 \\ 1 & 2 \end{array}\right]=6-7=-1 \neq 0 \end{aligned}
This\; has\; a\; unique \; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}(2)=2 \quad, \quad C_{12}=(-1)^{1+2}(1)=-1 \\ &C_{21}=(-1)^{2+1}(7)=-7 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 2 & -1 \\ -7 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 2 & -7 \\ -1 & 3 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-1}\left[\begin{array}{cc} 2 & -7 \\ -1 & 3 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\left[\begin{array}{cc} -2 & 7 \\ 1 & -3 \end{array}\right]\left[\begin{array}{c} 4 \\ -1 \end{array}\right] \\ &=\left[\begin{array}{c} -8-7 \\ 4+3 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -15 \\ 7 \end{array}\right]} \\ &\therefore x=-15 \quad, \quad \mathrm{y}=7 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 1 subquestion (vi)
Answer:

x=\frac{9}{4}\; \; ,\; \; y=\frac{1}{4}
Given:
\left[\begin{array}{ll} 3 & 1 \\ 5 & 3 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 7 \\ 12 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\left[\begin{array}{ll} 3 & 1 \\ 5 & 3 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 7 \\ 12 \end{array}\right]
\begin{aligned} &A X=B \\ &|A|=\left[\begin{array}{cc} 3 & 1 \\ 5 & 3 \end{array}\right]=9-5=4 \neq 0 \end{aligned}
This\; has\; a\; unique \; solution\; given\; by\; X=A^{-1} B.\\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}(3)=3 \quad, \quad C_{12}=(-1)^{1+2}(5)=-5 \\ &C_{21}=(-1)^{2+1}(1)=-1 \quad, \quad C_{22}=(-1)^{2+2}(3)=3 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 3 & -5 \\ -1 & 3 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-1}\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right] \end{aligned}
\begin{aligned} X =A^{-1} B \\ =\frac{1}{4}\left[\begin{array}{cc} 3 & -1 \\ -5 & 3 \end{array}\right]\left[\begin{array}{c} 7 \\ 12 \end{array}\right] \\ =\frac{1}{4}\left[\begin{array}{c} 21-12 \\ -35+36 \end{array}\right] \\ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{9}{4} \\ \frac{1}{4} \end{array}\right] \\ \therefore x =\frac{9}{4} \quad, \quad \mathrm{y}=\frac{1}{4} \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (i)

Answer:
x=3\; \; ,\; \; y=1\; \; ,\; \; z=1
Given:
\begin{aligned} &x+y-z=3 \\ &2 x+3 y+z=10 \\ &3 x-y-7 z=1 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right] \\ &\begin{array}{rc} |A|=\left|\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right| &=1(-2+1)-1(-14-3)-1(-2-9) \\ =-20+17+11 \\ =8 \neq 0 \end{array} \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 3 & 1 \\ -1 & -7 \end{array}\right|=-20 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 3 & -7 \end{array}\right|=17 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & 3 \\ 3 & -1 \end{array}\right|=-11 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & -1 \\ -1 & -7 \end{array}\right|=8 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & -1 \\ 3 & -7 \end{array}\right|=-4 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=4 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & -1 \\ 3 & 1 \end{array}\right|=4 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & -7 \\ 2 & 1 \end{array}\right|=-3 \end{aligned}
\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right|=1 \\ \operatorname{adj} A &=\left[\begin{array}{ccc} -20 & 17 & -11 \\ 8 & -4 & 4 \\ 4 & -3 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{8}\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right] \\ X &=A^{-1} B \end{aligned}
\begin{aligned} &=\frac{1}{8}\left[\begin{array}{ccc} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{array}\right]\left[\begin{array}{c} 3 \\ 10 \\ 1 \end{array}\right] \\ &=\frac{1}{8}\left[\begin{array}{c} -60+80+4 \\ 51-40-3 \\ -33+40+1 \end{array}\right] \\ &=\frac{1}{8}\left[\begin{array}{c} 24 \\ 8 \\ 8 \end{array}\right] \end{aligned}
\begin{aligned} &x=\frac{24}{8} \quad, \quad \mathrm{y}=\frac{8}{8} \quad, \quad z=\frac{8}{8} \\ &\therefore x=3 \quad, \quad \mathrm{y}=1 \quad, \quad z=1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (ii)

Answer:
x=-\frac{8}{7}\; \; ,\; \; y=\frac{10}{7}\; \; ,\; \; z=\frac{19}{7}
Given:
\begin{aligned} &x+y+z=3 \\ &2 x-y+z=-1 \\ &2 x+y-3 z=-9 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
\begin{aligned} &{\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 3 \\ -1 \\ -9 \end{array}\right]} \\ &A X=B \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3 \end{array}\right| &=1(3-1)-1(6-2)+1(2+2) \\ &=2+8+4 \\ &=14 \neq 0 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -1 & 1 \\ 1 & -3 \end{array}\right|=2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 2 & -3 \end{array}\right|=8 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & -1 \\ 2 & 1 \end{array}\right|=4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 1 & 1 \\ 1 & -3 \end{array}\right|=4 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ 2 & -3 \end{array}\right|=-5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=-1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right|=2 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=1 \end{aligned}
\begin{aligned} &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right|=-3 \\ &\operatorname{adj} A=\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right]^{T} \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}
\begin{aligned} &=\frac{1}{14}\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right] \\ X=& A^{-1} B \end{aligned}
\begin{aligned} &=\frac{1}{14}\left[\begin{array}{ccc} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{array}\right]\left[\begin{array}{c} 3 \\ -1 \\ 9 \end{array}\right] \\ &=\frac{1}{14}\left[\begin{array}{c} 6-4-18 \\ 24+5-9 \\ 12-1+27 \end{array}\right] \\ &=\frac{1}{14}\left[\begin{array}{c} -16 \\ 20 \\ 38 \end{array}\right] \end{aligned}
x=-\frac{16}{14}\; \; ,\; \; y=\frac{20}{14}\; \; ,\; \; z=\frac{38}{14} \\ x=-\frac{8}{7}\; \; ,\; \; y=\frac{10}{7}\; \; ,\; \; z=\frac{19}{7}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (iii)

Answer:
x=\frac{1}{2}\; \; ,\; \; y=\frac{1}{3}\; \; ,\; \; z=\frac{1}{5}
Given:
\begin{aligned} &6x-12y+25z=4 \\ &4 x+15 y-20z=3 \\ &2 x+18y+15 z=10 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A .
Solution:
A=\left[\begin{array}{ccc} 6 & -12 & 25 \\ -12 & 15 & -20 \\ 2 & 18 & 15 \end{array}\right]
\begin{gathered} |A|=\left|\begin{array}{ccc} 6 & -12 & 25 \\ -12 & 15 & -20 \\ 2 & 18 & 15 \end{array}\right|=6(225+360)+12(60+40)+25(72-30) \\ = 3510+1200+1050 \\ =5760 \end{gathered}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 15 & -20 \\ 18 & 15 \end{array}\right|=585 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & -20 \\ 2 & 15 \end{array}\right|=-100 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 4 & 15 \\ 2 & 18 \end{array}\right|=42 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 12 & 25 \\ 18 & 15 \end{array}\right|=630 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 6 & 25 \\ 2 & 15 \end{array}\right|=40 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 6 & -12 \\ 2 & 8 \end{array}\right|=-132 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -12 & 25 \\ 15 & -20 \end{array}\right|=-135 \quad , \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 6 & 25 \\ 4 & -20 \end{array}\right|=220 \end{aligned}
\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 6 & -12 \\ 4 & 15 \end{array}\right|=138 \\ \operatorname{adjA} &=\left[\begin{array}{ccc} 585 & -100 & 42 \\ 630 & 40 & -132 \\ -135 & 220 & 138 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{5760}\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{5760}\left[\begin{array}{ccc} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{array}\right]\left[\begin{array}{c} 3 \\ -1 \\ 9 \end{array}\right] \\ &=\frac{1}{5760}\left[\begin{array}{c} 6-4-18 \\ 24+5-9 \\ 12-1+27 \end{array}\right] \\ &=\frac{1}{5760}\left[\begin{array}{c} -16 \\ 20 \\ 38 \end{array}\right] \end{aligned}
\begin{aligned} &x=\frac{2880}{5760} \quad, \quad y=\frac{1920}{5760} \quad, \quad z=\frac{1152}{5760} \\ &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (iv)

Answer:
\begin{aligned} &x=1 \quad, \quad y=1 \quad, \quad z=1 \end{aligned}
Given:
\begin{aligned} &3 x+2 y+7 z=14 \\ &2 x-y+3 z=4 \\ &x+2 y-3 z=0 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &A=\left[\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right] \\ &{\left[\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right]} \end{aligned}
A\; X\; =B\\ \begin{aligned} |A|=\left|\begin{array}{ccc} 3 & 2 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{array}\right| &=3(3-6)-4(-6-3)+7(4+1) \\ &=-9+36+35 \\ &=62 \neq 0 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{array}{ll} C_{11}=(-1)^{1+1}(3-6)=-3 & , \quad C_{12}=(-1)^{1+2}(-6-3)=9 \\ C_{13}=(-1)^{1+3}(4+1)=5 & , \quad C_{21}=(-1)^{2+1}(-12-14)=26 \end{array}
\begin{array}{ll} C_{22}=(-1)^{2+2}(-3-7)=-10 \quad, & C_{23}=(-1)^{2+3}(6-4)=-2 \\ C_{31}=(-1)^{3+1}(12+7)=19 & , \quad C_{32}=(-1)^{3+2}(9-14)=5 \end{array}
\begin{aligned} C_{33}=(-1)^{3+3}(-3-8)=-11 \\ \operatorname{adjA} =\left[\begin{array}{ccc} -3 & 9 & 5 \\ 26 & -5 & -2 \\ 19 & 5 & -11 \end{array}\right]^{T} \\ =\left[\begin{array}{ccc} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{62}\left[\begin{array}{ccc} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{array}\right]\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right] \\ &=\frac{1}{62}\left[\begin{array}{c} -42+104+0 \\ 126-64+0 \\ 70-8+0 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{62}\left[\begin{array}{l} 62 \\ 62 \\ 62 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (v)

Answer:
\begin{aligned} &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}
Given:
\begin{aligned} &\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\ &\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\ &\frac{3}{x}-\frac{1}{y}+\frac{3}{z}=13 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\text { Let } \frac{1}{x} \text { be } a, \frac{1}{y} \text { be } b, \frac{1}{z} \text { be } c
\begin{aligned} &A=\left[\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right] \\ &{\left[\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 14 \\ 4 \\ 0 \end{array}\right]} \end{aligned}
A\; X=B\\ \begin{aligned} |A|=\left|\begin{array}{ccc} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{array}\right| &=2(2+1)+3(2-3)+3(-1-3) \\ &=6-3-12 \\ &=-9 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 1 & 1 \\ -1 & 2 \end{array}\right|=3 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 1 \\ 3 & 2 \end{array}\right|=1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=-4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} -3 & 3 \\ -1 & 2 \end{array}\right|=3 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 2 & 3 \\ 3 & 2 \end{array}\right|=-5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & -3 \\ 3 & -1 \end{array}\right|=-7 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -3 & 3 \\ 1 & 1 \end{array}\right|=-6 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 3 \\ 1 & 1 \end{array}\right|=1 \end{aligned}
\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right|=5 \\ \operatorname{adjA} &=\left[\begin{array}{ccc} 3 & 1 & -4 \\ 3 & -5 & -7 \\ -6 & 1 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right] \\ X=& A^{-1} B \end{aligned}
\begin{aligned} &=-\frac{1}{9}\left[\begin{array}{ccc} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 10 \\ 13 \end{array}\right] \\ &=-\frac{1}{9}\left[\begin{array}{c} 30+30-78 \\ 10-50+13 \\ -40-70+65 \end{array}\right] \\ &=-\frac{1}{9}\left[\begin{array}{r} -18 \\ -27 \\ -45 \end{array}\right] \end{aligned}
\begin{aligned} &\frac{1}{x}=a=\frac{-9}{-18}, \frac{1}{y}=b=\frac{-9}{-27}, \frac{1}{z}=c=\frac{-9}{-45} \\ &x=\frac{1}{2} \quad, \quad y=\frac{1}{3} \quad, \quad z=\frac{1}{5} \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (vi)

Answer:
\begin{aligned} &x=1 \quad, \quad y=2 \quad, \quad z=5 \end{aligned}
Given:
\begin{aligned} &5 x+3 y+z=16 \\ &2 x+y+3 z=19 \\ &x+2 y+4 z=25 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &A=\left[\begin{array}{lll} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{array}\right] \\ &\begin{aligned} |A|=\left|\begin{array}{lll} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{array}\right|=5(4-6)-3(8-3)+1(4-1) \\ \end{aligned} \end{aligned}
=-10-15+3 \\ =-22
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right|=-2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 2 & 3 \\ 1 & 4 \end{array}\right|=-5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right|=3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 3 & 1 \\ 2 & 4 \end{array}\right|=-10 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 5 & 1 \\ 1 & 4 \end{array}\right|=19 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 5 & 3 \\ 1 & 2 \end{array}\right|=-7 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 3 & 1 \\ 1 & 3 \end{array}\right|=8 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 5 & 1 \\ 2 & 3 \end{array}\right|=-13 \end{aligned}
\begin{aligned} C_{33} &=(-1)^{3+3}\left|\begin{array}{cc} 5 & 3 \\ 2 & 1 \end{array}\right|=-1 \\ \operatorname{adj} A &=\left[\begin{array}{ccc} -2 & -5 & 3 \\ -10 & 19 & -7 \\ 8 & -13 & -1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{-22}\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{22}\left[\begin{array}{ccc} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{array}\right]\left[\begin{array}{l} 16 \\ 19 \\ 25 \end{array}\right] \\ &=-\frac{1}{22}\left[\begin{array}{c} -32-190+200 \\ -80+361-325 \\ 48-133-25 \end{array}\right] \end{aligned}
\begin{aligned} &=-\frac{1}{22}\left[\begin{array}{c} -22 \\ -44 \\ -110 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 5 \end{array}\right]} \\ &x=1, \quad y=2 \quad, \quad z=5 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (vii)

Answer:
\begin{aligned} &\ x=-2 \quad, \quad \mathrm{y}=3 \quad, \quad z=1 \end{aligned}
Given:
\begin{aligned} &3 x+4 y+2 z=8 \\ &2 y-3 z=3 \\ &x-2 y+6 z=-2 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} & A=\left[\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right] \\ &{\left[\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 8 \\ 3 \\ -2 \end{array}\right]} \end{aligned}\\ A\: \: X=B
\begin{aligned} |A|=\left|\begin{array}{ccc} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{array}\right| &=3(12-6)-4(0+3)+2(0-2) \\ &=18-12-4 \\ &=2 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 2 & -3 \\ -2 & 6 \end{array}\right|=6 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 0 & -3 \\ 1 & 6 \end{array}\right|=-3 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 0 & 2 \\ 1 & -2 \end{array}\right|=-2 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 4 & 2 \\ -2 & 6 \end{array}\right|=-28 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 3 & 2 \\ 1 & 6 \end{array}\right|=16 \quad, \quad \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 3 & 4 \\ 1 & -2 \end{array}\right|=10 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 4 & 2 \\ 2 & -3 \end{array}\right|=-16 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 3 & 2 \\ 0 & -3 \end{array}\right|=9 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 3 & 4 \\ 0 & 2 \end{array}\right|=6 \end{aligned}
\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} 6 & -3 & -2 \\ -28 & 16 & 10 \\ -16 & 9 & 6 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{2}\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{2}\left[\begin{array}{ccc} 6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6 \end{array}\right]\left[\begin{array}{c} 8 \\ 3 \\ -2 \end{array}\right] \\ &=\frac{1}{2}\left[\begin{array}{c} 48-84+32 \\ -24+48-18 \\ -16+30-12 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{2}\left[\begin{array}{c} -4 \\ 6 \\ 2 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} -2 \\ 3 \\ 1 \end{array}\right]} \\ &x=-2, \quad y=3 \quad, \quad z=1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (viii)

Answer:
\begin{aligned} & x=1 \quad, \quad \mathrm{y}=1 \quad, \quad z=-1 \end{aligned}
Given:
\begin{aligned} &2 x+y+z=2 \\ &x+3 y-z=5 \\ &3 x+y-2 z=6 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &{\left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & -2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 2 \\ 5 \\ 6 \end{array}\right]} \\ &A X=B \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & -2 \end{array}\right|=& 2(-6+1)-1(-2+3)+1(1-9) \\ &=10-1-8 \\ &=-19 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 3 & -1 \\ 1 & -2 \end{array}\right|=-5 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 1 & -1 \\ 3 & -2 \end{array}\right|=-1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 3 \\ 3 & 1 \end{array}\right|=-8 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}\right|=3 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & -1 \\ 3 & -2 \end{array}\right|=-7 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & 1 \\ 3 & 1 \end{array}\right|=1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right|=-4 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array}\right|=3 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 3 \end{array}\right|=5 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -5 & -1 & -8 \\ 3 & -7 & 1 \\ -4 & 3 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{-19}\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-19}\left[\begin{array}{ccc} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{array}\right]\left[\begin{array}{l} 2 \\ 5 \\ 6 \end{array}\right] \\ &=\frac{1}{-19}\left[\begin{array}{c} -10+15-24 \\ -2-35+18 \\ -16+5+30 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{-19}\left[\begin{array}{c} -19 \\ -19 \\ 19 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=-1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (ix)

Answer:
\begin{aligned} & x=-2 \quad, \quad \mathrm{y}=1 \quad, \quad z=2 \end{aligned}
Given:
\begin{aligned} &2 x+6 y=2 \\ &3 x-z=-8 \\ &2 x-y+z=-3 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &{\left[\begin{array}{ccc} 2 & 6 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 2 \\ -8 \\ -3 \end{array}\right]} \\ &A X=B \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{ccc} 2 & 6 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 1 \end{array}\right| &=2(0-1)-6(3+2)+0(-3+0) \\ &=-2-30 \\ &=-32 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 0 & -1 \\ -1 & 1 \end{array}\right|=-1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array}\right|=-5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 0 \\ 2 & -1 \end{array}\right|=-3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 6 & 0 \\ -1 & 1 \end{array}\right|=-6 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 2 & 0 \\ 2 & 1 \end{array}\right|=2 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 2 & 6 \\ 2 & -1 \end{array}\right|=14 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 6 & 0 \\ 0 & -1 \end{array}\right|=-6 \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 0 \\ 3 & -1 \end{array}\right|=2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 6 \\ 3 & 0 \end{array}\right|=-18 \end{aligned}
\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} -1 & -5 & -3 \\ -1 & 2 & 14 \\ -6 & 2 & -18 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=-\frac{1}{32}\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{32}\left[\begin{array}{ccc} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{array}\right]\left[\begin{array}{c} 2 \\ -8 \\ -3 \end{array}\right] \\ &=-\frac{1}{32}\left[\begin{array}{c} -2+48+18 \\ -10-16-6 \\ -6-112+54 \end{array}\right] \end{aligned}
\begin{aligned} &=-\frac{1}{32}\left[\begin{array}{c} 64 \\ -32 \\ -64 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} -2 \\ 1 \\ 2 \end{array}\right]} \\ &x=-2, \quad y=1 \quad, \quad z=2 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (x)

Answer:
\begin{aligned} & x=1 \quad, \quad \mathrm{y}=2 \quad, \quad z=3 \end{aligned}
Given:
\begin{aligned} &x-y+z=2 \\ &2 x-y=0 \\ &2 y-z=1 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{array}{r} {\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 2 \\ 0 \\ 1 \end{array}\right]} \end{array}\\ \ A\; X=B
\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{array}\right| &=1(1-0)+1(-2-0)+1(4-0) \\ &=1-2+4 \\ &=3 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right]
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -1 & 0 \\ 2 & -1 \end{array}\right|=1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array}\right|=2 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & -1 \\ 0 & 2 \end{array}\right|=4 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array}\right|=1 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right|=-1 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right|=-2 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 2 & 0 \end{array}\right|=2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & -1 \\ 2 & -1 \end{array}\right|=1 \end{aligned}
\begin{aligned} \operatorname{adjA} &=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 1 & -1 & -2 \\ 1 & 2 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{array}\right]\left[\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right] \\ &=\frac{1}{3}\left[\begin{array}{l} 2+1 \\ 4+2 \\ 8+1 \end{array}\right] \end{aligned}
\begin{aligned} =\frac{1}{3}\left[\begin{array}{l} 3 \\ 6 \\ 9 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &x=1 \quad, \quad y=2 \quad, \quad z=3 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xi)

Answer:
\begin{aligned} &x=1 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}
Given:
\begin{aligned} &8 x+4 y+3 z=18 \\ &2 x+y+z=5 \\ &x+2 y+z=5 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &{\left[\begin{array}{lll} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 18 \\ 5 \\ 5 \end{array}\right]} \\ &A X=B \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{lll} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right|=& 8(1-2)-4(2-1)+3(4-1) \\ &=-8-4+9 \\ &=-3 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 1 \end{array}\right|=-1 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right|=-1 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right|=3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 4 & 3 \\ 2 & 1 \end{array}\right|=2 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 8 & 3 \\ 1 & 1 \end{array}\right|=5 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 8 & 4 \\ 1 & 2 \end{array}\right|=-12 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 4 & 3 \\ 1 & 1 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 8 & 3 \\ 2 & 1 \end{array}\right|=-2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 8 & 4 \\ 2 & 1 \end{array}\right|=0 \end{aligned}
\begin{aligned} \text { adjA } &=\left[\begin{array}{ccc} -1 & -1 & 3 \\ 2 & 5 & -12 \\ -1 & -2 & 0 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=-\frac{1}{3}\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=-\frac{1}{3}\left[\begin{array}{ccc} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{array}\right]\left[\begin{array}{c} 18 \\ 5 \\ 5 \end{array}\right] \\ &=-\frac{1}{3}\left[\begin{array}{c} -18+10+5 \\ -18+25-10 \\ 54-60 \end{array}\right] \end{aligned}
\begin{aligned} &=-\frac{1}{3}\left[\begin{array}{r} -3 \\ -3 \\ -6 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right]} \\ &x=1 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xii)

Answer:
\begin{aligned} &x=3 \quad, \quad y=1 \quad, \quad z=2 \end{aligned}
Given:
\begin{aligned} &x+y+z=6 \\ &x+2 z=7 \\ &3 x+y+z=12 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &{\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 6 \\ 7 \\ 12 \end{array}\right]} \\ &A X=B \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{array}\right|=& 1(0-2)-1(1-6)+1(1-0) \\ &=-2+5+1 \\ &=4 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 0 & 2 \\ 1 & 1 \end{array}\right|=-2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 2 \\ 3 & 1 \end{array}\right|=5 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 0 \\ 3 & 1 \end{array}\right|=1 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right|=0 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 1 \\ 3 & 1 \end{array}\right|=-2 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 1 \\ 3 & 1 \end{array}\right|=2 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 1 & 1 \\ 0 & 2 \end{array}\right|=2 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right|=-1 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 0 \end{array}\right|=-1 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -2 & 5 & 1 \\ 0 & -2 & 2 \\ 2 & -1 & -1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{4}\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{ccc} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{array}\right]\left[\begin{array}{c} 6 \\ 7 \\ 12 \end{array}\right] \\ &=\frac{1}{4}\left[\begin{array}{c} -12+0+24 \\ 30-14-12 \\ 6+14-12 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{4}\left[\begin{array}{c} 12 \\ 4 \\ 8 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 3 \\ 1 \\ 2 \end{array}\right]} \\ &x=3, \quad y=1 \quad, \quad z=2 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xiii)

Answer:
\begin{aligned} &x=2 \quad, \quad y=3 \quad, \quad z=5 \end{aligned}
Given:
\begin{aligned} &\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 \\ &\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 \\ &\frac{6}{x}+\frac{9}{y}-\frac{-20}{z}=2 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &\text { Let } \frac{1}{x}=a, \frac{1}{y}=b, \frac{1}{z}=c\\ &\left[\begin{array}{ccc} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right]\\ &\mathrm{A} \mathrm{X}=\mathrm{B} \end{aligned}
\begin{aligned} |A|=\left | \begin{array}{ccc} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{array} \right | &=2(120-45)-3(-80-30)+10(36+36) \\ &=150+330+720 \\ &=1200 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} -6 & 5 \\ 9 & -20 \end{array}\right|=75 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & 5 \\ 6 & -20 \end{array}\right|=110 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 4 & -6 \\ 6 & 9 \end{array}\right|=72 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 3 & 10 \\ 9 & -20 \end{array}\right|=150 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & 10 \\ 6 & -20 \end{array}\right|=-100 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right|=0 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 3 & 10 \\ -6 & 5 \end{array}\right|=75 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 2 & 10 \\ 4 & 5 \end{array}\right|=30 \end{aligned}
\begin{aligned} C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 2 & 3 \\ 4 & -6 \end{array}\right|=-24 \\ \operatorname{adjA} =\left[\begin{array}{ccc} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{array}\right]^{T} \\ =\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{1200}\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{1200}\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right]\left[\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right] \\ &=\frac{1}{1200}\left[\begin{array}{c} 300+150+150 \\ 440-100+60 \\ 288-48 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{1200}\left[\begin{array}{l} 600 \\ 400 \\ 240 \end{array}\right] \\ &\frac{1}{x}=a=\frac{1200}{600}, \frac{1}{y}=b=\frac{1200}{400}, \frac{1}{z}=c=\frac{1200}{240} \\ &x=2, \quad y=3 \quad, \quad z=5 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 2 subquestion (xiv)

Answer:
\begin{aligned} &x=2 \quad, \quad y=1 \quad, \quad z=3 \end{aligned}
Given:
\begin{aligned} &x-y+2 z=7 \\ &3 x+4 y-5 z=-5 \\ &2 x-y+3 z=12 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant of matrix A i.e |A| then will find the co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{array}\right] \\ \end{aligned}
\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{array}\right| &=1(12-5)+1(9+10)+2(-3-8) \\ &=7+19-22 \\ &=4 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 4 & -5 \\ -1 & 3 \end{array}\right|=7 & \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & -5 \\ 2 & 3 \end{array}\right|=-19 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 4 \\ 2 & -1 \end{array}\right|=-11 & , \quad C_{21}=(-1)^{2+1}\left|\begin{array}{rr} -1 & 2 \\ -1 & 3 \end{array}\right|=1 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}\right|=-1 \quad \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 2 & -1 \end{array}\right|=-1 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 2 \\ 4 & -5 \end{array}\right|=-3 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 2 \\ 3 & -5 \end{array}\right|=11 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 3 & 4 \end{array}\right|=7 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]\left[\begin{array}{c} 7 \\ -5 \\ 12 \end{array}\right] \\ &=\frac{1}{4}\left[\begin{array}{c} 49-5-36 \\ -133+5+132 \\ -77+5+84 \end{array}\right] \end{aligned}
\begin{aligned} &=\frac{1}{4}\left[\begin{array}{c} 8 \\ 4 \\ 12 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 3 \end{array}\right]} \\ &x=2, \quad y=1 \quad, \quad z=3 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (i)

Answer:
\begin{aligned} x=\frac{1-2 k}{3}, y=k \\ \end{aligned}
Given:
\begin{aligned} 6 x+4 y=2,\: \: 9 x+6 y=3 \end{aligned}
Hint:
A system of two linear equations can have one solution, an infinite number of solution, if a system has no solution it’s called inconsistent
Solution:
\begin{aligned} &6 x+4 y=2 \; \; \; \; \; \; \;....(i) \\ &9 x+6 y=3\; \; \; \; \; \; \;....(ii) \end{aligned}
\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \end{array}\right] \text { and } B=\left[\begin{array}{l} 2 \\ 3 \end{array}\right]\\ &\left[\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 2 \\ 3 \end{array}\right] \end{aligned}
\begin{aligned} |A| &=\left|\begin{array}{ll} 6 & 4 \\ 9 & 6 \end{array}\right| \\ &=36-36 \\ |A| &=0 \end{aligned}
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0
Let\; C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=6, C_{12}=-9, C_{21}=-4, C_{22}=6 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 6 & -9 \\ -4 & 6 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 6 & -4 \\ -9 & 6 \end{array}\right] \end{aligned}
\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{cc} 6 & -4 \\ -9 & 6 \end{array}\right]\left[\begin{array}{l} 2 \\ 3 \end{array}\right] \\ &=\left[\begin{array}{c} 12-12 \\ -18+18 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] \end{aligned}
If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting y = k in eqn (i), We get
\begin{aligned} &6 x+4 k=2 \\ &6 x=2-4 k \\ &x=\frac{2-4 k}{6} \\ &x=\frac{1-2 k}{3} \\ &x=\frac{1-2 k}{3} \text { and } y=k \end{aligned}
The values of x and y satisfy the third equation.
\begin{aligned} Thus\; x=\frac{1-2 k}{3} \text { and } y=k \end{aligned}
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (ii)

Answer:
\begin{aligned} x=\frac{5-3 k}{2} \text { and } y=k\\ \end{aligned}
Given:
\begin{aligned} &2 x+3 y=5\\ &6 x+9 y=15 \end{aligned}
Hint:
Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution:
Here,
\begin{aligned} &2 x+3 y=5\; \; \; \; \; \; ......(i)\\ &6 x+9 y=15\; \; \; \; \; ......(ii) \end{aligned} \\ AX=B \\ Where
\begin{aligned} &A=\left[\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right], X=\left[\begin{array}{l} x \\ y \end{array}\right] \text { and } B=\left[\begin{array}{c} 5 \\ 15 \end{array}\right] \\ &{\left[\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 5 \\ 15 \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ll} 2 & 3 \\ 6 & 9 \end{array}\right| \\ &=18-18 \\ |A| &=0 \end{aligned} \end{aligned}
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=9, C_{12}=-6, C_{21}=-3, C_{22}=2 \\ &\operatorname{adj} A=\left[\begin{array}{cc} 9 & -6 \\ -3 & 2 \end{array}\right]^{T} \\ &\quad=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right] \end{aligned}
\begin{aligned} (\operatorname{adjA}) B &=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 5 \\ 15 \end{array}\right] \\ &=\left[\begin{array}{c} 45-45 \\ -30+30 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] \end{aligned}
If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting y = k in eqn (i), We get
\begin{aligned} &2 x+3 k=5 \\ &2 x=5-3 k \\ &x=\frac{5-3 k}{2} \\ &\text { And } y=k \end{aligned}
The values of x and y satisfy the third equation.
Thus\; \; \begin{aligned} x=\frac{5-3 k}{2} \text { and } y=k\\ \end{aligned}
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (iii)

Answer:
x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k
Given:
\begin{aligned} &5 x+3 y+7 z=4 \\ &3 x+26 y+2 z=9 \\ &7 x+2 y+10 z=5 \end{aligned}
Hint:
Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
\begin{aligned} 5 x+3 y+7 z=4 \; \; \; \; \; ......(i)\\ 3 x+26 y+2 z=9 \; \; \; \; \; ......(ii)\\ 7 x+2 y+10 z=5 \; \; \; \; \; ......(iii) \end{aligned} \\ \\ AX=B \\ \\ Where
\begin{aligned} &A=\left[\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right], X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right] \\ &{\left[\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right]} \end{aligned}
\begin{aligned} |A| &=\left|\begin{array}{ccc} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{array}\right| \\ &=5(260-4)-3(30-14)+7(6-182) \\ &=1280-48-1232=0 \\ |A| &=0 \end{aligned}
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 26 & 2 \\ 2 & 10 \end{array}\right|=256 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 3 & 2 \\ 7 & 10 \end{array}\right|=-16 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 26 \\ 7 & 2 \end{array}\right|=-176 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 3 & 7 \\ 2 & 10 \end{array}\right|=-16 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 5 & 7 \\ 7 & 10 \end{array}\right|=1 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 5 & 3 \\ 7 & 2 \end{array}\right|=11 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} 3 & 7 \\ 26 & 2 \end{array}\right|=-176 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 5 & 7 \\ 3 & 2 \end{array}\right|=11 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right|=121 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right] \end{aligned}
\begin{aligned} (\operatorname{adj} A) B &=\left[\begin{array}{ccc} 256 & -16 & -176 \\ -16 & 1 & 11 \\ -176 & 11 & 121 \end{array}\right]\left[\begin{array}{l} 4 \\ 9 \\ 5 \end{array}\right] \\ &=\left[\begin{array}{c} 1024-144-880 \\ -64+9+55 \\ -704+9+605 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}
If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting z = k in eqn (i) and eqn (ii), We get
\begin{aligned} &5 x+3 y=4-7 k \text { and } 3 x+26 y=9-2 k \\ &{\left[\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 4-7 k \\ 9-2 k \end{array}\right]} \end{aligned}
\begin{aligned} |A| &=\left|\begin{array}{cc} 5 & 3 \\ 3 & 26 \end{array}\right| \\ &=130-9 \\ &=121 \neq 0 \\ \operatorname{adj} A &=\left|\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{121}\left[\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right] \end{aligned}
\begin{aligned} &X=A^{-1} B \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{121}\left[\begin{array}{cc} 26 & -3 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 4-7 k \\ 9-2 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{121}\left[\begin{array}{l} 104-182 k-27+6 k \\ -12+21 k+45-10 k \end{array}\right]} \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{77-176 k}{121} \\ \frac{33+11 k}{121} \end{array}\right]} \\ &x=\frac{11(7-16 k)}{121}, y=\frac{11(3+k)}{121} \text { and } z=k \\ &x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k \end{aligned}
The values of x and y and z satisfy the third equation.
Thus\; x=\frac{7-16 k}{11}, y=\frac{3+k}{11} \text { and } z=k
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (iv)

Answer:
\begin{aligned} x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k\\ \end{aligned}
Given:
\begin{aligned} &x-y+z=3\\ &2 x+y-z=2\\ &-x-2 y+2 z=1 \end{aligned}
Hint:
Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
\begin{aligned} &x-y+z=3\; \; \; \; \; ....(i)\\ &2 x+y-z=2\; \; \; \; \; ....(ii)\\ &-x-2 y+2 z=1\; \; \; \; \; ....(iii) \end{aligned}
\begin{aligned} &A X=B \\ &\qquad A=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right], X=\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \\ &{\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right| \\ &=1(2-2)+1(4-1)+1(-4+1) \\ &=0+3-3=0 \\ |A| &=0 \end{aligned} \end{aligned}
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0 \\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 1 & -1 \\ -2 & 2 \end{array}\right|=0 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right|=-3 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{cc} 2 & 1 \\ -1 & -2 \end{array}\right|=-3 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 1 \\ 2 & 2 \end{array}\right|=0 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 1 \\ -1 & 2 \end{array}\right|=3 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ -1 & -2 \end{array}\right|=3 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right|=0 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right|=3 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right|=3 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 0 & -3 & -3 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 0 & 0 & 0 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{array}\right] \end{aligned}
\begin{aligned} (\text { adj } A) B &=\left[\begin{array}{ccc} 0 & 0 & 0 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{array}\right]\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \\ &=\left[\begin{array}{c} 0 \\ -9+6+3 \\ -9+6+3 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}

If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting z = k in eqn (i) and eqn (ii), We get
\begin{aligned} &x-y=3-k \text { and } 2 x+y=2+k\\ &\left[\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3-k \\ 2+k \end{array}\right]\\ &\text { Now, }\\ &|A|=\left|\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right|\\ &=1+2\\ &=3 \neq 0 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{3}\left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right] \\ X=& A^{-1} B \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{3}\left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right]\left[\begin{array}{l} 3-k \\ 2+k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{3}\left[\begin{array}{c} 3-k+2+k \\ -6+2 k+2+k \end{array}\right]} \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{5}{3} \\ \frac{3 k-4}{3} \end{array}\right]} \\ &x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k \end{aligned}
The values of x and y and z satisfy the third equation.
\begin{aligned} Thus,\; x=\frac{5}{3}, y=\frac{3 k-4}{3} \text { and } z=k \end{aligned}
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (v)

Answer:
x=k-2,\; y=8-2k\; and\; z=k
Given:
\begin{aligned} &x+y+z=6 \\ &x+2 y+3 z=14 \\ &x+4 y+7 z=30 \end{aligned}
Hint:
Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
\begin{aligned} &x+y+z=6 \; \; \; \; \; .....(i)\\ &x+2 y+3 z=14 \; \; \; \; \; .....(ii) \\ &x+4 y+7 z=30 \; \; \; \; \; .....(iii) \end{aligned}
\begin{aligned} &A X=B\\ &\text { Where }\\ &A=\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right] \end{aligned}
\begin{aligned} {\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right]} \\ |A|=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{array}\right| \end{aligned}\\ =1(14-12)-1(7-3)+1(4-2) \\ =2-4+2=0 \\ \left | A \right |=0
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0 \\ C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{ll} 2 & 3 \\ 4 & 7 \end{array}\right|=2 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{ll} 1 & 3 \\ 1 & 7 \end{array}\right|=-4 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 1 & 2 \\ 1 & 4 \end{array}\right|=2 \quad , \quad C_{21}=(-1)^{2+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 7 \end{array}\right|=-3 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 1 \\ 1 & 7 \end{array}\right|=6 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 4 \end{array}\right|=-3 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 1 & 1 \\ 2 & 3 \end{array}\right|=1 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 1 \\ 1 & 3 \end{array}\right|=-2 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right|=1 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 2 & -4 & 2 \\ -3 & 6 & -3 \\ 1 & -2 & 1 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{array}\right] \end{aligned}
\begin{aligned} (\operatorname{adj} A) B &=\left[\begin{array}{ccc} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{array}\right]\left[\begin{array}{c} 6 \\ 14 \\ 30 \end{array}\right] \\ &=\left[\begin{array}{c} 12-42+30 \\ -24+84-60 \\ 12-42+30 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}
If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting z = k in eqn (i) and eqn (ii), We get
\begin{aligned} &x+y=6-k \text { and } x+2 y=14-3 k\\ &\left[\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 6-k \\ 14-3 k \end{array}\right]\\ &\text { Now, }\\ &|A|=\left|\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right|\\ &=2-1\\ &=1 \neq 0 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{1}\left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right] \\ X=& A^{-1} B \end{aligned}
\begin{aligned} &{\left[\begin{array}{c} x \\ y \end{array}\right]=\frac{1}{1}\left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right]\left[\begin{array}{c} 6-k \\ 14-3 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{1}\left[\begin{array}{c} 12-2 k-14+3 k \\ -6+k+14-3 k \end{array}\right]} \\ &{\left[\begin{array}{c} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{k-2}{1} \\ \frac{8-2 k}{1} \end{array}\right]} \end{aligned}
x=k-2,\; y=8-2k\; and\; z=k

The values of x and y and z satisfy the third equation.
Thus\; x=k-2,\; y=8-2k\; and\; z=k
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 3 subquestion (vi)

Answer:
\begin{aligned} x=\frac{1-2 k}{2}, y=k \text { and } z=0 \end{aligned}
Given:
\begin{aligned} &2 x+2 y-2 z=1\\ &4 x+4 y-z=2\\ &6 x+6 y+2 z=3 \end{aligned}
Hint:
Consistent equation means two or more equations that are possible to solve based on using set of values for the variables.
Solution: Here,
\begin{aligned} &2 x+2 y-2 z=1\; \; \; \; \; .....(i)\\ &4 x+4 y-z=2\; \; \; \; \; .....(ii)\\ &6 x+6 y+2 z=3\; \; \; \; \; .....(iii) \end{aligned}
\begin{aligned} &A X=B\\ &\text { Where }\\ &A=\left[\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &|A|=\left|\begin{array}{ccc} 2 & 2 & -2 \\ 4 & 4 & -1 \\ 6 & 6 & 2 \end{array}\right| \\ &= 2(8+6)-2(8+6)-2(24-24) \\ & =28-28=0 \end{aligned}
So, A is singular. Thus the given system of equation is either inconsistent or it is consistent with indefinitely many solutions because
(\operatorname{adj} A) B \neq 0 \text { or }(a d j A)=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=(-1)^{1+1}\left|\begin{array}{cc} 4 & -1 \\ 6 & 2 \end{array}\right|=14 \quad, \quad C_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & -1 \\ 6 & 2 \end{array}\right|=-14 \\ &C_{13}=(-1)^{1+3}\left|\begin{array}{ll} 4 & 4 \\ 6 & 6 \end{array}\right|=0 \quad, \quad C_{21}=(-1)^{2+1}\left|\begin{array}{cc} 2 & -2 \\ 6 & 2 \end{array}\right|=-16 \end{aligned}
\begin{aligned} &C_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & -2 \\ 6 & 2 \end{array}\right|=16 \quad, \quad C_{23}=(-1)^{2+3}\left|\begin{array}{ll} 2 & 2 \\ 6 & 6 \end{array}\right|=0 \\ &C_{31}=(-1)^{3+1}\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right|=6 \quad, \quad C_{32}=(-1)^{3+2}\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right|=-6 \\ &C_{33}=(-1)^{3+3}\left|\begin{array}{ll} 2 & 2 \\ 4 & 4 \end{array}\right|=0 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} -14 & -14 & 0 \\ -16 & 16 & 0 \\ 6 & -6 & 0 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0 \end{array}\right] \end{aligned}
\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{ccc} 14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right] \\ &=\left[\begin{array}{c} 14-32+18 \\ -14+32-18 \\ 0 \end{array}\right] \\ &=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}

If |A| = 0 and (adjA)B = 0 then the system is consistent and has infinitely many solutions.
Thus, AX = B has infinitely many solutions
Substituting y = k in eqn (i) and eqn (ii), We get
\begin{aligned} &2 x+2 z=1-2 k \text { and } 4 x+z=2-4 k \\ &{\left[\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 1-2 k \\ 2-4 k \end{array}\right]} \\ &\begin{aligned} |A| &=\left|\begin{array}{ll} 2 & -2 \\ 4 & -1 \end{array}\right| \\ &=-2+8 \\ &=6 \neq 0 \end{aligned} \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left|\begin{array}{rr} -1 & 2 \\ -4 & 2 \end{array}\right| \\ A^{-1} &=\frac{1}{|A|} \text { adjA } \\ &=\frac{1}{6}\left[\begin{array}{rr} -1 & 2 \\ -4 & 2 \end{array}\right] \\ X=& A^{-1} B \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{6}\left[\begin{array}{ll} -1 & 2 \\ -4 & 2 \end{array}\right]\left[\begin{array}{l} 1-2 k \\ 2-4 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{6}\left[\begin{array}{l} -1+2 k+4-8 k \\ -4+8 k+4-8 k \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} \frac{3-6 k}{6} \\ 0 \end{array}\right]} \end{aligned}
x=\frac{1}{2} -k ,\; y=k\; and\; z=0
The values of x and y and z satisfy the third equation.
x=\frac{1}{2} -k ,\; y=k\; and\; z=0
Where ‘ k ’ is a real number satisfy the given system of equations.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (i)

Answer:
Inconsistent
Given:
2x+5y=7 \: \: ,\: \: 6x+15y=13
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
A X=B \\ Here, \\ A=\left[\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right] \quad, \quad X=\left[\begin{array}{l}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{c}7 \\ 13\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right|=|30-30|=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}(15)=15 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(5)=-5 \quad, \quad C_{22}=-1^{2+2}(2)=2 \\ &(a d j A) B=\left[\begin{array}{cc} 15 & -5 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 7 \\ 13 \end{array}\right]=\left[\begin{array}{c} 105-65 \\ -42+26 \end{array}\right]=\left[\begin{array}{c} 40 \\ -16 \end{array}\right] \neq 0 \end{aligned}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (ii)

Answer:
Inconsistent
Given:
2x+3y=5 \quad , \quad 6x+9y=10
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
A X=B \\ Here, \\ A=\left[\begin{array}{cc}2 & 3 \\ 6 & 9\end{array}\right] \quad, \quad X=\left[\begin{array}{l}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{c}5 \\ 10\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{cc}2 & 3 \\ 6 & 9\end{array}\right|=|18-18|=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}(9)=9 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(3)=-3 \quad, \quad C_{22}=-1^{2+2}(2)=2 \\ &(a d j A) B=\left[\begin{array}{cc} 9 & -3 \\ -6 & 2 \end{array}\right]\left[\begin{array}{c} 5 \\ 10 \end{array}\right]=\left[\begin{array}{c} 45-30 \\ -30+20 \end{array}\right]=\left[\begin{array}{c} 15 \\ -10 \end{array}\right] \neq 0 \end{aligned}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (iii)

Answer:
Inconsistent
Given:
4x-2y=3 \quad , \quad 6x-3y=5
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
A X=B \\ Here, \\ A=\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right] \quad, \quad X=\left[\begin{array}{c}x \\ y\end{array}\right] \quad and \quad B=\left[\begin{array}{l}3 \\ 5\end{array}\right] \\ Now, \\ |A|=\left|\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right|=|-12+12|=0
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}(-3)=-3 \quad, \quad C_{12}=-1^{1+2}(6)=-6 \\ &C_{21}=-1^{2+1}(-2)=2 \quad, \quad C_{22}=-1^{2+2}(4)=4 \\ &(\text { adjA }) B=\left[\begin{array}{ll} -3 & 2 \\ -6 & 4 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right]=\left[\begin{array}{c} -9+10 \\ -18+20 \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \end{array}\right] \neq 0 \end{aligned}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (iv)

Answer:
Inconsistent
Given:
4 x-5 y-2 z=2 \quad, \quad 5 x-4 y+2 z=-2 \quad, \quad 2 x+2 y+8 z=-1
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
A X=B \\ Here, \\ A=\left[\begin{array}{ccc}4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8\end{array}\right] \quad, \quad X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right] \quad and \quad B=\left[\begin{array}{c}2 \\ -2 \\ -1\end{array}\right] \\ Now,
\begin{aligned} |A|=\left|\begin{array}{ccc} 4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8 \end{array}\right| &=4(-32-4)+5(40-4)-2(10+8) \\ &=-144+180-36 \\ &=0 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -4 & 2 \\ 2 & 8 \end{array}\right|=28 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -5 & -2 \\ 2 & 8 \end{array}\right|=36 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 5 & 2 \\ 2 & 8 \end{array}\right|=-36 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 4 & -2 \\ 2 & 8 \end{array}\right|=36 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 5 & -4 \\ 2 & 2 \end{array}\right|=18 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 4 & -5 \\ 2 & 2 \end{array}\right|=-18 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -5 & -2 \\ -4 & 2 \end{array}\right|=-18 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 4 & -2 \\ 5 & 2 \end{array}\right|=-18 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 4 & -5 \\ 5 & -4 \end{array}\right|=9 \end{aligned}
\begin{aligned} (\text { adjA }) B &=\left[\begin{array}{ccc} 28 & 36 & -18 \\ -36 & 36 & -18 \\ 18 & -18 & 9 \end{array}\right]\left[\begin{array}{c} 2 \\ -2 \\ -1 \end{array}\right] \\ &=\left[\begin{array}{c} 56-72+18 \\ -72-72+18 \\ 36+36-9 \end{array}\right] \\ &=\left[\begin{array}{c} 2 \\ -126 \\ 63 \end{array}\right] \neq 0 \end{aligned}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (v)

Answer:
Inconsistent
Given:
3 x-y-2 z=2 \quad, \quad 2 y-z=-1 \quad, \quad 3 x-5 y=3
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right] \quad, \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right] \end{aligned}
\begin{aligned} &\text { Now, }\\ &\begin{aligned} |A|=\left|\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right| &=3(0-5)+1(0+3)-2(0-6) \\ &=-15+3+12 \\ &=0 \end{aligned} \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} 2 & -1 \\ -5 & 0 \end{array}\right|=-5 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 0 & -1 \\ 3 & 0 \end{array}\right|=-3 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} 0 & 2 \\ 3 & -5 \end{array}\right|=-6 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} -1 & -2 \\ -5 & 0 \end{array}\right|=10 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 3 & -2 \\ 3 & 0 \end{array}\right|=6 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{ll} 3 & -1 \\ 3 & -5 \end{array}\right|=12 \\ &C_{31}=-1^{3+1}\left|\begin{array}{ll} -1 & -2 \\ 2 & -1 \end{array}\right|=5 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{ll} 3 & -2 \\ 0 & -1 \end{array}\right|=3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 3 & -1 \\ 0 & 2 \end{array}\right|=6 \end{aligned}
\begin{gathered} \operatorname{adjA}=\left[\begin{array}{ccc} -5 & -3 & -6 \\ 10 & 6 & 12 \\ 5 & 3 & 6 \end{array}\right]^{T} \\ (\text { adjA }) B=\left[\begin{array}{ccc} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{array}\right]\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right] \\ =\left[\begin{array}{c} -10-10+15 \\ -6-6+9 \\ -12-12+18 \end{array}\right] \\ =\left[\begin{array}{c} -5 \\ -3 \\ -6 \end{array}\right] \neq 0 \end{gathered}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 4 subquestion (vi)

Answer:
Inconsistent
Given:
x+y-2 z=5 \quad, \quad x-2 y+z=-2 \quad, \quad-2 x+y+z=4
Hint:
Inconsistent means two or more equations that are impossible to solve based on using one set of values for variables.
Solution:
The given system of equations can be expressed as follows
\begin{aligned} &A X=B\\ &\text { Here, }\\ &A=\left[\begin{array}{ccc} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{array}\right] \quad, \quad X=\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c} 5 \\ -2 \\ 4 \end{array}\right] \end{aligned}
\begin{aligned} &\text { Now, }\\ &\begin{aligned} |A|=\left|\begin{array}{ccc} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{array}\right| &=1(-2-1)-1(1+2)-2(1-4) \\ &=-3-3+6 \\ &=0 \end{aligned} \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -2 & 1 \\ 1 & 1 \end{array}\right|=-3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array}\right|=-3 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} 1 & 1 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & 1 \\ -2 & 1 \end{array}\right|=-3 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right|=-3 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array}\right|=-3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}\right|=-3 \end{aligned}
\begin{aligned} &\operatorname{adjA}=\left[\begin{array}{rrr} -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \end{array}\right]^{T} \\ &(\operatorname{adj} A) B=\left[\begin{array}{rrr} -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \end{array}\right]\left[\begin{array}{c} 5 \\ -2 \\ 4 \end{array}\right] \\ &=\left[\begin{array}{r} -15+6-12 \\ -15+6-12 \\ -15+6-12 \end{array}\right] \\ &=\left[\begin{array}{r} -21 \\ -21 \\ -21 \end{array}\right] \neq 0 \end{aligned}
Hence, the given system of equation is inconsistent.

Solution of Simultaneous Linear Equation exercise 7.1 question 5

Answer:
x=2 \quad , \quad y=-1 \quad , \quad z=4
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \backslash \\ &x-y=3, \quad 2 x+3 y+4 z=17 \quad, \quad y+2 z=7 \end{aligned}
Hint:
For matrix multiply matrix A with matrix B, Then X=A-1B is formula for which is used to solve this problem.
Solution:
\begin{aligned} A B &=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &=\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \\ A B &=6\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=6 I_{3} \end{aligned}
\begin{aligned} &\frac{1}{6} A B=I_{3} \\ &\left(\frac{1}{6} B\right) A=I_{3} \quad(\therefore A B=B A) \\ &A^{-1}=\frac{1}{6} B \\ &A^{-1}=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]\left[\begin{array}{c} 3 \\ 17 \\ 7 \end{array}\right] \\ &=\frac{1}{6}\left[\begin{array}{c} 6+34-28 \\ -12+34-28 \\ 6-17+35 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{6}\left[\begin{array}{c} 12 \\ -6 \\ 24 \end{array}\right]} \\ &x=2, y=-1, z=4 \end{aligned}


Solution of Simultaneous Linear Equation exercise 7.1 question 6

Answer:
\begin{aligned} &x=1, y=2, z=3 \end{aligned}
Given:
\begin{aligned} &2 x-3 y+5 z=11 \\ &3 x+2 y-4 z=-5 \\ &x+y+2 z=-z \\ &A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right] \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} &A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right] \\ &|A|=\left|\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right| \end{aligned}
\begin{aligned} |A| &=2(-4+4)+3(-6+4)+5(3-2) \\ &=0-6+5=-1 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{ll} 2 & -4 \\ 1 & -2 \end{array}\right|=0 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -3 & 5 \\ 1 & -2 \end{array}\right|=-1 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 3 & -4 \\ 1 & -2 \end{array}\right|=2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 2 & 5 \\ 1 & -2 \end{array}\right|=-9 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right|=1 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right|=-5 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -3 & 5 \\ 2 & -4 \end{array}\right|=2 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 2 & 5 \\ 3 & -4 \end{array}\right|=23 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 2 & -3 \\ 3 & 2 \end{array}\right|=13 \end{aligned}
\begin{aligned} &\operatorname{adj} A=\left[\begin{array}{ccc} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13 \end{array}\right]^{T}=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right] \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}
\begin{gathered} =\frac{1}{-1}\left[\begin{array}{ccc} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right] \\ {\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 11 \\ -5 \\ -3 \end{array}\right]} \end{gathered}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 0+5-6 \\ 22+45-69 \\ 11+25-39 \end{array}\right]} \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]} \\ &x=1, \mathrm{y}=2, z=3 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 7

Answer:
\begin{aligned} &x=-1, \mathrm{y}=-2, z=3 \end{aligned}
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right] \\ &x+2 y+5 z=10 \\ &x-y-z=-2 \\ &2 x+3 y-z=-11 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A &=\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right] \\ |A| &=\left|\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right| \\ |A| &=1(1+3)-2(-1+2)+5(3+2) \\ &=4-2+25=27 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{array}{ll} C_{11}=-1^{1+1}\left|\begin{array}{cc} -1 & -1 \\ 3 & -1 \end{array}\right|=4 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 2 & 5 \\ 3 & -1 \end{array}\right|=-1 \\ C_{12}=-1^{1+2}\left|\begin{array}{ll} 1 & -1 \\ 2 & -1 \end{array}\right|=-1 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{cc} 1 & 5 \\ 2 & -1 \end{array}\right|=17 \end{array}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right|=5 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}\right|=1 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 2 & 5 \\ -1 & -1 \end{array}\right|=3 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 5 \\ 1 & -1 \end{array}\right|=6 \end{aligned}
\begin{aligned} &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right|=-3 \\ &\operatorname{adjA}=\left[\begin{array}{ccc} 4 & -1 & 5 \\ 17 & -11 & 1 \\ 3 & 6 & -3 \end{array}\right]^{T}=\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right] \\ &A^{-1}=\frac{1}{|A|} a d j A \end{aligned}
\begin{gathered} =\frac{1}{27}\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right] \\ {\left[\begin{array}{ccc} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 10 \\ -2 \\ -11 \end{array}\right]} \\ A X=B \end{gathered}
\begin{aligned} &X=A^{-1} B \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{27}\left[\begin{array}{ccc} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{array}\right]\left[\begin{array}{c} 10 \\ -2 \\ -11 \end{array}\right]} \end{aligned}
\begin{aligned} &\frac{1}{27}\left[\begin{array}{c} 40-34-33 \\ -10+22-66 \\ 50-2+33 \end{array}\right] \\ &=\frac{1}{27}\left[\begin{array}{c} -27 \\ -54 \\ 81 \end{array}\right] \\ &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} \frac{-27}{27} \\ \frac{-54}{27} \\ \frac{81}{27} \end{array}\right]=\left[\begin{array}{c} -1 \\ -2 \\ 3 \end{array}\right]} \end{aligned}
\begin{aligned} &x=-1, \mathrm{y}=-2, z=3 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (i)

Answer:
x=4,\; \; y=-3,\: \: z=1
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \\ &x-2 y=10 \\ &2 x+y+3 y=8 \\ &-2 y+z=7 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A &=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \\ |A| &=1(1+6)+2(2-0)+0(-4-0) \\ &=7+4+0 \\ &=11 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{array}{ll} C_{11}=-1^{1+1}\left|\begin{array}{cc} 1 & 3 \\ -2 & 1 \end{array}\right|=7 \quad , \quad C_{21}=-1^{2+1}\left|\begin{array}{ll} -2 & 0 \\ -2 & 1 \end{array}\right|=2 \\ C_{12}=-1^{1+2}\left|\begin{array}{ll} 2 & 3 \\ 0 & 1 \end{array}\right|=-2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right|=1 \end{array}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} 2 & 1 \\ 0 & -2 \end{array}\right|=-4 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & -2 \\ 0 & -2 \end{array}\right|=2 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -2 & 0 \\ 1 & 3 \end{array}\right|=-6 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 0 \\ 2 & 3 \end{array}\right|=3 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array}\right|=5 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 7 & -2 & -4 \\ 2 & 1 & 2 \\ -6 & -3 & 5 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right] \end{aligned}
\begin{aligned} A^{-1} &=\frac{1}{|A|} a d j A \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & 6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ -1 \end{array}\right] \\ &=\frac{1}{11}\left[\begin{array}{c} 70+16-42 \\ -20+8-21 \\ -40+16+35 \end{array}\right]=\frac{1}{11}\left[\begin{array}{c} 44 \\ -33 \\ 11 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 4 \\ -3 \\ 1 \end{array}\right]} \\ &x=4, y=-3, z=1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (ii)

Answer:
\begin{aligned} &x=3, y=2, z=-1 \end{aligned}
Given:
A=\left[\begin{array}{ccc} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{array}\right]
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A &=\left[\begin{array}{ccc} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{array}\right] \\ |A| &=3(3-0)+4(2-5)+2(0-3) \\ &=9-12-6 \\ &=-9 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{ll} 3 & 5 \\ 0 & 1 \end{array}\right|=3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} -4 & 2 \\ 0 & 1 \end{array}\right|=4 \\ &C_{12}=-1^{1+2}\left|\begin{array}{ll} 2 & 5 \\ 1 & 1 \end{array}\right|=3 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right|=1 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{ll} 2 & 3 \\ 1 & 0 \end{array}\right|=-3 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 3 & -4 \\ 1 & 0 \end{array}\right|=-4 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} -4 & 2 \\ 3 & 5 \end{array}\right|=-26 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{ll} 3 & 2 \\ 2 & 5 \end{array}\right|=-11 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 3 & -4 \\ 2 & 3 \end{array}\right|=17 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right] \\ A^{-1} &=\frac{1}{|A|} \operatorname{adjA} \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{-9}\left[\begin{array}{ccc} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{array}\right]\left[\begin{array}{c} -1 \\ 7 \\ 2 \end{array}\right] \\ &=\frac{1}{-9}\left[\begin{array}{c} -3+28-52 \\ -3+7-22 \\ 3-28+34 \end{array}\right]=\frac{1}{-9}\left[\begin{array}{c} -27 \\ -18 \\ 9 \end{array}\right] \end{aligned}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 3 \\ 2 \\ -1 \end{array}\right]} \\ &x=3, y=2, z=-1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (iii)

Answer:
\begin{aligned} &x=4, y=-3, z=1 \end{aligned}
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \\ &x-2 y=10 \\ &2 x+y+3 y=8 \\ &-2 y+z=7 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A B &=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{array}\right]\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 7+4+0 & 2-2+0 & -6+6+0 \\ 14-2-12 & 4+1+6 & -12-3+15 \\ 0+4-4 & 0-1+2 & 0+6+5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{array}\right] \\ A B &=11\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}
\begin{aligned} &A B=11 I_{3} \\ &{\left[\frac{1}{11}\right] A B=I_{3}} \\ &{\left[\frac{1}{11} B\right] A=I_{3}} \\ &A^{-1}=\frac{1}{11} B \\ &\quad=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right] \end{aligned}
\begin{aligned} X &=A^{-1} B \\ &=\frac{1}{11}\left[\begin{array}{ccc} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 1 & 5 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right] \\ &=\frac{1}{11}\left[\begin{array}{c} 70+16-42 \\ -20+8-21 \\ -40+16+35 \end{array}\right]=\frac{1}{11}\left[\begin{array}{c} 44 \\ -33 \\ 11 \end{array}\right] \end{aligned}
\begin{aligned} &x=4, y=-3, z=1 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (iv)

Answer:
x=0,\: \: y=-5,\: \: z=-3
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right] \\ &x-2 y=10 \\ &2 x-y-z=8 \\ &-2 y+z=7 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A &=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right] \\ |A| &=1(-1-2)+2(2) \\ &=-3+4 \\ &=1 \end{aligned}
C_{i j}\; be\; the\; co-\! f\! actor\; o\! f\; the\; elements\; a_{i j}\; in \; A=\left[a_{i j}\right].\; Then,
\begin{aligned} &C_{11}=-1^{1+1}\left|\begin{array}{cc} -1 & -2 \\ -1 & 1 \end{array}\right|=-3 \quad, \quad C_{21}=-1^{2+1}\left|\begin{array}{cc} 2 & 0 \\ -1 & 1 \end{array}\right|=-2 \\ &C_{12}=-1^{1+2}\left|\begin{array}{cc} -2 & -2 \\ 0 & 1 \end{array}\right|=2 \quad, \quad C_{22}=-1^{2+2}\left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right|=1 \end{aligned}
\begin{aligned} &C_{13}=-1^{1+3}\left|\begin{array}{cc} -2 & -1 \\ 0 & -1 \end{array}\right|=2 \quad, \quad C_{23}=-1^{2+3}\left|\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array}\right|=1 \\ &C_{31}=-1^{3+1}\left|\begin{array}{cc} 2 & 0 \\ -1 & -2 \end{array}\right|=-4 \quad, \quad C_{32}=-1^{3+2}\left|\begin{array}{cc} 1 & 0 \\ -2 & -2 \end{array}\right|=2 \\ &C_{33}=-1^{3+3}\left|\begin{array}{cc} 1 & 2 \\ -2 & -1 \end{array}\right|=3 \end{aligned}
\begin{aligned} \operatorname{adj} A &=\left[\begin{array}{rcc} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right]^{T} \\ &=\left[\begin{array}{ccc} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{array}\right] \end{aligned}
\begin{aligned} &\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \\ &\text { i.e } C=\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{array}\right] \\ &C^{-1}=\left[\begin{array}{rrr} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right] \end{aligned}
\begin{gathered} {\left[\begin{array}{ccc} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right]} \\ C X=B \\ X=C^{-1} B \end{gathered}
\begin{aligned} =\left[\begin{array}{ccc} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{array}\right]\left[\begin{array}{c} 10 \\ 8 \\ 7 \end{array}\right] \\ =\left[\begin{array}{c} -30+16+14 \\ -20+8+7 \\ -40+16+21 \end{array}\right] \\ x=0, y=-5, z=-3 \end{aligned}

Solution of Simultaneous Linear Equation exercise 7.1 question 8 subquestion (v)

Answer:
\begin{aligned} x=2, y=-1, z=4 \end{aligned}
Given:
\begin{aligned} &A=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \quad, \quad B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \\ &y+2 z=7 \\ &x-y=3 \\ &2 x+3 y+11 z=17 \end{aligned}
Hint:
X=A-1B is used to solve this problem. First we find the determinant and co-factor of matrix A, take it’s transpose, and that will be Adj A using Adj A calculate A-1.
Solution:
\begin{aligned} A &=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right], B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \\ B A &=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &=\left[\begin{array}{ccc} 2+4+0 & 2-2+0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{array}\right] \end{aligned}
\begin{aligned} &=\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \\ &B A=6\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &B A=6 I_{3} \\ &B\left[\frac{1}{6} A\right]=I_{3} \end{aligned}
\begin{aligned} &{\left[\frac{1}{11} B\right] A=I_{3}} \\ &B^{-1}=\frac{1}{6} A \\ &\quad=\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right] \\ &B X=C \\ &X=B^{-1} C \end{aligned}
\begin{gathered} =\frac{1}{6}\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]\left[\begin{array}{c} 3 \\ 17 \\ 7 \end{array}\right] \\ =\frac{1}{6}\left[\begin{array}{c} 6+34-28 \\ -12+34-28 \\ 6-17+35 \end{array}\right] \end{gathered}
\begin{aligned} &{\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{6}\left[\begin{array}{l} 12 \\ -6 \\ 24 \end{array}\right]} \\ &x=2, y=-1, z=4 \end{aligned}

Class 12 RD Sharma chapter 7 exercise 7.1 solution is an achievement for each understudy. Students concentrate on every day of the week to score excellent grades and further join the surge of their inclination. Students can't get their ideal outcomes without thorough practice.

The numerical ideas, issues, and solutions are referenced exhaustively in the book.

RD Sharma Class 12th Exercise 7.1 Chapter 7 – Solution of Simultaneous Linear Equations rehearsing these solutions can get their questions cleared immediately. RD Sharma Solutions are fundamental reference books to score high in Mathematics board tests as in serious difficulties.

Rd Sharma class 12th exercise 7.1 answers that are straightforward and recall. Further assists students with grasping formulae and addressing methods. RD Sharma class 12th exercise 7.1 solution has around 57 questions, including its subparts, and it incorporates themes like: -

  • Definition and which means of the reliable matrix.

  • Solving the given arrangement of straight conditions when the coefficient network is consistent

  • Solving the given arrangement of conditions when the coefficient grid is inconsistent

Advantages of picking RD Sharma Class 12 Solution of Simultaneous Linear Equation Exercise 7.1 from Career360 include:

  • Easy to fathom the idea

  • At one place i.e. Career360, you will be able to get all the solutions so no need to go anywhere else

  • You can also benchmark your performance basis these solutions

  • Since RD Sharma is a widely used book, there are chances that some of these questions might appear in your final exams

  • These solutions are free of cost

  • Unique yet coordinated show of the themes

  • Detailed clarification of ideas and formulae

  • Helps students to rehearse without any problem

  • One book covers all chapters and is adequate for scoring great imprints

Class 12 students will be happy to realize that now they can get this maths book of scriptures at the simplicity of their seats. So presently, you can download RD Sharma class 12 solutions chapter 7 ex 7.1 in PDF format from Us at Career360. You might store the PDFs on their telephone, tablet, or PC and approach these at whatever point they need.

As Mathematics is a complex subject for Class 12 students, these solutions will change each understudy's method towards Mathematics.

RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. What are the advantages of utilizing Rd Sharma class 12 exercise 7.1 Solutions?

RD Sharma Solutions can be amazingly useful to understudies who will show up for their board tests. In addition, students can utilize these responses to test their insight at home and foster their numerical abilities.

2. Does Career360 give solutions to rd Sharma class 12 chapter 7 exercise 7.1?

Indeed, Career360 gives the most exact and point-by-point solutions for Class 12 Maths RD Sharma Chapter 7. Subject specialists have planned the RD Sharma Class 12 Solutions to work with a smooth and clear comprehension of ideas.

3. Are the RD Sharma Class 12 Solutions Chapter 7 Exercise 7.1 adequate for CBSE students?

It's profoundly proposed that class 12 rd Sharma chapter 7 exercise 7.1 solution students pick the RD Sharma Class 12 Solutions from Career360 as reference material for arrangements.

4. Does Career360 give solutions to RD Sharma class 12 chapter 7 exercise 7.1?

Indeed, Career360 gives the most exact and point-by-point solutions for Class 12 Maths RD Sharma Chapter 7. Subject specialists have planned the RD Sharma Class 12 Solutions to work with a smooth and clear comprehension of ideas.

5. What number of questions are there in RD Sharma class 12th exercise 7.1?

There are 57 questions in RD Sharma Class 12 Solution of Simultaneous Linear Equation ex 7.1.


Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top