Careers360 Logo
RD Sharma Class 12 Exercise 15.1 Tangents and Normals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 15.1 Tangents and Normals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 01:10 PM IST

Students studying in the CBSE board schools possess the set of RD Sharma solution books for their reference. When they are unable to clarify their doubts with the teacher, these books will help them out. Mathematics is a challenging subject for every student. The Class 12 students are no exception to it.RD Sharma solution Significantly, in the 15th chapter, Tangents and Normals tend to be more challenging. In such cases, the RD Sharma Class 12th Exercise 15.1 books lend a helping hand.

RD Sharma Class 12 Solutions Chapter 15 Tangents and Normals - Other Exercise

Chapter 15 - Tangents and Normals Ex 15.2

Chapter 15 - Tangents and Normals Ex 15.3

Chapter 15 -Tangents and Normals Ex-MCQ

Chapter 15 -Tangents and Normals Ex-FBQ

Chapter 15 -Tangents and Normals Ex-VSA

Tangents and Normals Excercise: 15.1

Tangents and Normals Exercise 15.1 Question 1 Sub Question 1 .

Answer: TheSlopeofthetangentis3
TheSlopeofthenormalsis13
Hint:

Tangents and Normals Exercise 15.1 Question 1 Sub Question 2 .

Answer:
Theslopeofthetangentis16
 The slope of the normal is 6
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given: y=x at x=9
Solution:
 First we have to find dydx of given function, 
f(x) that is to find the derivative of f(x)
y=x
xn=x1ny=(x)12ddx(xn)=nxn1
 We know that the slope of the tangent is dydx
dydx12(x)121dydx12(x)12
Since,x=9
(dydx)x912(9)12(dydx)x912×19(dydx)x912×13(dydx)x916
 The slope of the tangent at x= is 16
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)x9
 The slope of the normal =116=6


Tangents and Normals Exercise 15.1 Question 1 Sub Question 3 .

Answer:
 The slope of the tangent is 11
 The slope of the normal is 111
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given: y=x3x at x=2
Solution:
 First we have to find dydx of given function, 
f(x) that is to find the derivative of f(x)
y=x3x
ddx(xn)=nxn1
 We know that the slope of the tangent is dydx
dydx=3x311x11dydx=3x21{x0=1}
Since,x=2
(dydx)x=23(2)21(dydx)x23(4)1(dydx)x2121(dydx)x211
 The slope of the tangent at x=2 is 11
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)x2
 The slope of the normal =111

Tangents and Normals Exercise 15.1 Question 1 Sub Question 4

Answer:
 The slope of the tangent is 3
 The slope of the normal is 13
Hint
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:y=2x2+3sinx at x=0
Solution:
 First we have to find dydx of given function, 
f(x) that is to find the derivative of f(x)

y=2x2+3sinx
ddx(xn)=nxn1ddx(sinx)=cosx
 We know that the slope of the tangent is dydx
dydx=2(2x21)+3cosxdydx=4x+3cosx
Since,x=0
(dydx)x=04(0)3cos(0)
(dydx)x=00+3(1){cos(0)=1}
(dydx)x03
 The slope of the tangent at x=0 is 3
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)x0
 The slope of the normal =13

Tangents and Normals Exercise 15.1 Question 1 Sub Question 5

Answer:
 The slope of the tangent is 1
 The slope of the normal is 1
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent  at P and passing through P . 
Given:x=a(θsinθ),y=a(1+cosθ) at θ=π2
 Here to find dydx , we have to find dydθ&dxdθ and 
 divide dydθdxdθ and we get desired dydx
Solution:
ddx(xn)=nxn1ddx(sinx)=cosxx=a(θsinθ)dxdθ=a{ddθ(θ)ddθ(sinθ)}
dxdθ=a(1cosθ)(1)
y=a(1+cosθ)
dydθ=a{ddθ(1)+ddθ(cosθ)}
ddx( constant )=0
ddx(cosx)=sinx
dydθ=a(0+(sinθ))
dydθ=a(sinθ)
dydθ=asinθ(2)
dydx=dydθdxdθasinθa(1cosθ)
dydx=sinθ(1cosθ)
 The slope of the tangent is sinθ(1cosθ)
 Since, θ=π2
(dydx)θπ2sin(π2)(1cosπ2)
 We know that cos(π2)=0 and sin(π2)=1
(dydx)θπ2(1)(1(0))(dydx)θπ21101
 The slope of the tangent at θ=π2 is 1
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)θπ2
 The slope of the normal =11=1

Tangents and Normals Exercise 15.1 Question 1 Sub Question 6

Answer:
 The slope of the tangent is 1
 The slope of the normal is 1
Hint
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:x=acos3θ,y=asin3θ at θ=π4
Solution:
 Here to find dydx, we have to find dydθ&dxdθ and 
 divide dydθdxdθ and we get desired dydx
ddx(xn)=nxn1ddx(cosx)=sinxx=acos3θdxdθ=a{ddθ(cos3θ)}
dxdθ=a(3cos31θ×sinθ)
dxdθ=3acos2θsinθ(1)
y=asin3θ
dydθ=a{ddθ(sin3θ)}
ddx(sinx)=cosx
dydθ=a(3sin31θ×cosθ)
dydθ=3asin2θcosθ(2)
dydx=dydθdxdθ3asin2θcosθ3acos2θsinθ
dydx=sinθcosθ
dydx=tanθ
 The slope of the tangent is tanθ
 Since, θ=π4
(dydx)θ=π4tanπ4=1
 The slope of the tangent at θ=π4 is 1
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)θ=π2
 The slope of the normal =11=1

Tangents and Normals Exercise 15.1 Question 1 Sub Question 7

Answer:
 The slope of the tangent is 1
 The slope of the normal is 1
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:x=a(θsinθ)y=a(1cosθ) at θ=π2
Solution:
 Here to find dydx, we have to find dydθ&dxdθ and 
 divide dydθdxdθ and we get desired dydx
ddx(xn)=nxn1ddx(sinx)=cosx
x=a(θsinθ)dxdθ=a{dxdθ(θ)dxdθ(sinθ)}dxdθ=a(1cosθ)(1)
y=a(1cosθ)
dydθ=a{dydθ(1)dydθ(cosθ)}
ddx( constant )=0
ddx(cosx)=sinx
dydθ=a(0(sinθ))
dydθ=asinθ(2)
dydx=dydθdxdθasinθa(1cosθ)
dydx=sinθ(1cosθ)
 Since, θ=π2
(dydx)θ=π2=sinπ2(1cosπ2)
 We know that cos(π2)=0 and sin(π2)=1
(dydx)θ=π2=1(10)=1
 The slope of the tangent at θ=π2 is 1
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)θ=π2
 The slope of the normal =11=1

Tangents and Normals Exercise 15.1 Question 1 Sub Question 8 .

Answer:
 The slope of the tangent is 12
 The slope of the normal is 112
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:y=(sin2x+cotx+2)2 at x=π2
Solution:
 First we have to find dydx of given function, 
f(x) that is to find the derivative of f(x)
ddx(xn)=nxn1y=(sin2x+cotx+2)2
dydx=2(sin2x+cotx+2)21+{ddx(sin2x)+ddx(cotx)+ddx(2)}
dydx=2(sin2x+cotx+2){(cos2x)2+(cosec2x)+(0)}
ddx(sinx)=cosxddx(cotx)=cosec2xdydx=2(sin2x+cotx+2)(2cos2xcosec2x)
 Since, x=π2
(dydx)x=π2=2(sin2(π2)+cot(π2)+2)(2cos2(π2)cosec2(π2))
(dydx)x=π2=2×(0+0+2)(2(1)1)
 We know that cot(π2)=0 and cosec(π2)=1
(dydx)x=π2=2×(2)(21)
(dydx)x=π2=4×(3)=12
 The slope of the tangent at x=π2 is 12
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)x=π2
 The slope of the normal =112

Tangents and Normals Exercise 15.1 Question 1 Sub Question 9

Answer:
 The slope of the tangent is 25
 The slope of the normal is 52
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:x2+3y+y2=5 at (1,1)
 Here we have to differentiate the equation with respect to x
Solution:
ddx(x2+3y+y2)=ddx(5)
ddx(x2)+ddx(3y)+ddx(y2)=ddx(5)
ddx(xn)=nxn1
2x+3dydx+2ydydx=0
2x+dydx(3+2y)=0
dydx(3+2y)=2x
dydx=2x(3+2y)
 The slope of tangent at (1,1) is 
dydx=2×1(3+2×1)=23+2
dydx=25
 The slope of the tangent at (1,1) is 25
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)
 The slope of the normal =125=52


Tangents and Normals Exercise 15.1 Question 1 Sub Question 10 .

Answer:
 The slope of the tangent is 6
 The slope of the normal is 16
Hint:
 The slope of tangent is the limit of ΔyΔx as Δx approaches zero. 
 The slope of normal is the normal to a curve at P=(x,y) is a line perpendicular to the tangent 
 at P and passing through P . 
Given:xy=6 at (1,6)
 Here we have to use product rule, 
Solution:
ddx(xy)=ddx(6)
xddx(y)+yddx(x)=ddx(6)
ddx (constant) =0
xdydx+y=0
xdydx=y
dydx=yx
 The slope of tangent at (1,6) is 
dydx=61=6
 The slope of the tangent at (1,6) is 6
 The slope of the normal =1 The slope of the tangent 
 The slope of the normal =1(dydx)
 The slope of the normal =16=16

Tangents and Normals Exercise 15.1 Question 2 .

Answer:a=5 and b=4
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:
 The slope of the tangent to the curve xy+ax+by=2 at (1,1) is 2
Solution:
 First we will find the slope of tangent by using product rule, we get 
xy+ax+by=2
xddx(y)+yddx(x)+addx(x)+bddx(y)=ddx(2)
xdydx+y+a+bdydx=0
dydx(x+b)=(a+y)
dydx=(a+y)(x+b)
 The slope of tangent to the curve xy+ax+by=2 at (1,1) is 2
dydx=2
(a+y)(x+b)=2
(a+1)(1+b)=2
(a+1)=2(1+b)
(a+1)=2+2b
a+2b=3(1)
 Also the point (1,1) lies on the curve xy+ax+by=2 we have, 
1×1+a×1+b×1=21+a+b=2a+b=1(2)
 Subtract eqn(1) and (2) a+2b=3a+b=1b=4
 Substitute b=4 in a+b=1
a4=1a=5 So, a=5 and b=4

Tangents and Normals Exercise 15.1 Question 3 .

Answer:a=2 and b=5
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:
 The slope of the tangent to the curve y=x3+ax+b at (1,6)
Solution:
First we will find the slope of tangent, we get
y=x3+ax+b
dydx=ddx(x3)+ddx(ax)+ddx(b)
dydx=3x31+adxdx+0
dydx=3x2+a
 The slope of tangent to the curve y=x3+ax+b at (1,6) is 
dydx(x=1,y=6)=3(1)2+a
3+a(1)
 The given line is xy+5=0
y=x+5 is the form of equation of a straight line y=mx+c
 where m is the slope of line. 
 So, the slope of the line is y=1×x+c
 so, the slope is 1(2)
 Also the point (1,6) lie on the tangent 
x=1&y=6 satisfies the equation 
y=x3+ax+b
6=(1)3+a×1+b
6=1+a+b
a+b=7(3)
 Since the tangent is parallel to the line, from (1) \& (2) 
3+a=1
a=2
 from (3) 
a+b=7
2+b=7
b=7+2
b=5
 so, the value is a=2 and b=5


Tangents and Normals Exercise 15.1 Question 4

Answer:x=±73&y=±2373
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: Curve y=x33x
Solution:
 First we will find the slope of tangent, we get 
y=x33x
dydx=ddx(x3)ddx(3x)
dydx=3x313dxdx
dydx=3x23(1)
 The equation of line passing through (x0,y0) and the slope m is yy0=m(xx0)
 So the slope m=yy0xx0
 The slope of the chord joining (1,2)&(2,2)
dydx=2(2)21=41
dydx=4(2)
 from (1) \&(2) 
3x23=4
3x2=4+3
3x2=7
x2=73
x=±73
y=x33x
y=x(x23)
y=±73((±73)23)
y=±73(733)
y=±73(793)
y=±73(23)
y=±(23)73
 Thus, the required point is x=±73&y=±2373

Tangents and Normals Exercise 15.1 Question 5

Answer: The points are (2,4)&(23,427)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: Curve y=x32x22x and a line y=2x3
Solution:
First we will find the slope of tangent, we get
y=x32x22x
ddx(xn)=nxn1dydx=ddx(x3)ddx(2x2)ddx(2x)dydx=3x312×2(x21)2×x11dydx=3x24x2(1)
y=2x3 is the form of equation of a straight line y=mx+c
 where m is the slope of line. 
 So, the slope of the line is y=2×x3
 so, the slope is 2(2)
 from (1) \& (2) 
3x24x2=23x24x=43x24x4=0
 We will use factorization method to solve the above quadratic equation. 
3x26x+2x4=03x(x2)+2(x2)=0(x2)(3x+2)=0
x2=0&3x+2=0
x=2 or x=23
 Substitute x=2&x=23 in y=x32x22x
 When x=2
y=(2)32×(2)22×(2)y=82×44y=884y=4
 When x=23
y=(23)32(23)22(23)
y=8272×49+43
y=8272×49+43
y=82789+43
 L.C.M of 27,3 and 9 is 27
y=(8×1)(8×3)+(4×9)27
y=824+3627=427
 Thus, the points are (2,4)&(23,427)

Tangents and Normals Exercise 15.1 Question 6

Answer:  The required point is (2,4)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: The curve y2=2x3 and the slope of tangent is 3
Solution: y2=2x3
 Differentiating the above with respect to xddx(xn)=nxn12y21dydx=2×(3x)31
2ydydx=2×3x2ydydx=3x2dydx=3x2y
Since the slope of tangent is 3

3x2y=3x2y=1x2=y
 Substituting x2=y in y2=2x3
(x2)2=2x3
x42x3=0
x3(x2)=0
x3=0 or x2=0
x=0 or x=2
 If x=0
dydx=3(0)2y
dydx=0 which is not possible 
 So we take x=2 and substitute it in y2=2x3
y2=2(2)3y2=2×8y2=16
y=4..{ As y=x2,4 as been discarded }
 So,the required point is (2,4)

Tangents and Normals Exercise 15 .1 Question 7 .

Answer:  The required points are (2,2)&(2,2)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: The curve xy+4=0
Solution:
 If a tangent line to the curve y=f(x) makes an angle θ with x -axis in the positive direction, then 
dydx= The slope of\: tangent =tanθ
xy+4=0
 Differentiating the above with respect to xxddx(y)+yddx(x)+ddx(4)=0
xdydx+y=0
ddx( constant )=0
xdydx=y
dydx=yx(1)
 Also, dydx=tan45=1(2)
 From (1)\&(2) we get 
yx=1x=y
Substituting x=-y in xy+4=0
x(x)+4=0x2+4=0x2=4x=±2
 So when x=2,y=2
 and when x=2,y=2
 Thus the required points are (2,2)&(2,2)







Tangents and Normals Exercise 15.1 Question 8 .

Answer: The required point is (0,0)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:  The curve y=x2
Solution:y=x2
Differentiating the above with respect to x
ddx(xn)=nxn1
dydx=2x21
dydx=2x(1)
Also given the slope of tangent is equal to the x-coordinate

dydx=x(2)
 From (1)\&(2) we get 
2x=x
x=0
 Substituting this in y=x2, we get 
y=(0)2
y=0
 So,the required point is (0,0)



Tangents and Normals Exercise 15.1 Question 9 .

Answer:  The required point is (1,0)&(1,4)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: The curve is x2+y22x4y+1=0
Solution: x2+y22x4y+1=0
 Differentiating the above with respect to x
ddx(xn)=nxn1,ddx( constant )=0
2x21+2y21dydx24dydx+0=0
2x+2ydydx24dydx=0
dydx(2y4)=2x+2
dydx=(x1)(y2)(1)
dydx= The slope of tangent =tanθ
 Since the tangent is parallel to the x -axis 
dydx=tan(0)=0(2)
From (1)&(2) we get
(x1)(y2)=0
(x1)=0
x+1=0
x=1
 Substituting x=1 in x2+y22x4y+1=0, we get 
 (1) 2+y22(1)4y+1=0
1+y224y+1=0
y24y=0
y(y4)=0
y=0&y4=0
y=0&y=4
 So, the required point is (1,0)&(1,4)

Tangents and Normals Exercise 15.1 Question 10 .

Answer: The required point is (12,14)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:  The curve is y=x2
Solution: y=x2
 Differentiating the above with respect to x
ddx(xn)=nxn1
dydx=2x21
dydx=2x(1)
dydx= The slope of tangent =tanθ
 Since the tangent make an angle of 45 with x -axis 
dydx=tan(45)=1(2)
From (1)&(2) we get
2x=1
x=12
 Substituting x=12 in y=x2 , we get 
y=(12)2
y=14
So, the required point is (12,14)

Tangents and Normals Exercise 15.1 Question 10

Answer: The required points are (53,43) or (43,43)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: The curve is y=3x29x+8
Solution: y=3x29x+8
 Differentiating the above with respect to x
ddx(xn)=nxn1,ddx( constant )=0
dydx=3(2)x219
dydx=6x9(1)
dydx= The slope of tangent =tanθ
 The tangent is equally inclined with the axis θ=π4 or π4
dydx=tan(π4) or tan(π4)
=1 or 1(2)
From(1)&(2) we get
6x9=1 or 6x9=1
6x=1+9 or 6x=1+9
6x=10 or 6x=8
x=106 or x=86
x=53 or x=43
Thus the requried points are(53,43) or (43,43)



Tangents and Normals Exercise 15.1 Question 12

Answer: The required point is (1,2)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:
y=2x2x+1(1)
y=3x+4(2)
Solution:  Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0dydx=2×2(x)211+0dydx=4x1(3)
 Again differentiating eqn (2) with respect to x
dydx=3(3)
ATQ
 The curve y=2x2x+1 is the tangent parallel to the line y=3x+4
4x1=34x=3+14x=4x=44=1
Thus from(1)
y=2
Hence the point is (1,2)


Tangents and Normals Exercise15.1 Question 13 .

Answer: The required point is (1,7)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:  The curve is y=3x2+4
Solution: y=3x2+4
 Differentiating the above with respect to x
ddx(xn)=nxn1,ddx( constant )=0
dydx=3×(2)x21
dydx=6x(1)
 The slope m1=dydx=6x
 Now the given slope is m2=16
 We have tangent is perpendicular to tangent whose slope is 16
m1×m2=1
6x×16=1
x=1
From(1)
y=7
Thue the required points is (1,7)

Tangents and Normals Exercise15.1 Question 14 .

Answer: The requried point are (2,3)&(2,3)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
GIven:
 Equation of the curve is x2+y2=13(1)
 Equation of the line is 2x+3y=7(2)
Solution:
 Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=02x21+2y21dydx=0
2x+2ydydx=02ydydx=2xdydx=xy
 Slope m1 for (1)=dydx=xy(3)
 Differentiating eqn(1) with respect to x
2+3dydx=0
3dydx=2
dydx=23
 Slope m2=dydx=23
ATQ
m1=m2.{ as the tangents are parallel }
xy=23
x=23y
 When put x=23y in eqn (1) x2+y2=13
(23y)2+y2=13
49y2+y2=13
L.C.M.of 1ans 9 is 9
4y2+9y29=13
13y29=13
y2=9
y=±3
Puty=±3 in x=23y
x=23(±3)
x=±2
Thus the requried points are (2,3)&(2,3)


Tangents and Normals Exercise 15.1 Question 15

Answer: The requried point are (0,0)&(2a,2a)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:The Curve is 2a2y=x33ax2(1)
Solution:2a2y=x33ax2
 Differentiating the above with respect to x
ddx(xn)=nxn1,ddx( constant )=0
2a2dydx=3x313a(2)(x)21
2a2dydx=3x26ax
dydx=12a2[3x26ax]
 Slope m1=dydx=12a2[3x26ax](2)
Also
 Slope m2=dydx=tanθ
tan0=0
 [slope is parallel to x -axis] 
m1=m2
12a2[3x26ax]=0
3x26ax=0
3x(x2a)=03x=0 or x2a=0x=0 or x=2a
 When put x=0 in eqn(1) 2a2y=x33ax2
2a2y=(0)33a(0)22a2y=0y=0
 When put x=2a in eqn (1) 2a2y=x33ax2
2a2y=(2a)33a(2a)22a2y=8a33a(4a2)2a2y=8a312a32a2y=4a3y=2a
Thus the requried points are (0,0)&(2a,2a)

Tangents and Normals Exercise 15.1 Question 16

Answer: The requried points are (3,2)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:
 Equation of the curve is y=x24x+5(1)
 Equation of the line is 2y+x=7(2)
Solution: Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0
dydx=2x214
dydx=2x4
 Slope m1=dydx=2x4(3)
 Differentiating eqn (2) with respect to x
2dydx+1=0
2dydx=1
dydx=12
 Slope m2=dydx=12
 We have given that slope(1) and slope (2) are perpendicular to each other 
Hence,
m1×m2=1(2x4)×(12)=1(2x)(12)(4)(12)=1
x+2=1x=2+1x=3
 When put x=3 in eqn (1) y=x24x+5
y=(3)24(3)+5y=912+5y=2
Thus the required points are (3,2)

Tangents and Normals Exercise 15.1 Question 17 Sub Question 1 .

Answer:  The points at which the tangents are parallel to x -axis are (0,5)&(0,5)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:x24+y225=1(1)
Solution:  Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0
2x214+2y25dydx=0
2x4+2y25dydx=0
x2+2y25dydx=0
2y25dydx=x2
dydx=x2×252y
dydx=25x4y
Now the tangent is parallel to the x-axis if the slope of the tangent is zero
25x4y=0
 This is possible if x=0
 Then, x24+y225=1 for x=0
04+y225=1y2=25y=±5
 Substitute y=±5 in 25x4y
 Put y=5, Put y=525x4(5)=0,25x4(5)=05x4=0,5x4=0
x=0,x=0
Thus the points at which the tangents are parallel to x-axis are 0,5&0,-5




Tangents and Normals Exercise 15.1 Question 17 Sub Question 2 .

Answer: The points at which the tangents are parallel to y -axis are (2,0)&(2,0)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: x24+y225=1(1)
Solution:  Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0
2x214+2y25dydx=0
2x4+2y25dydx=0
x2+2y25dydx=02y25dydx=x2dydx=x2×252ydydx=25x4y&dxdy=4y25x
Now the tangent is parallel to the y-axis if the slope of the normal is zero
Slope of normal=1 Slope of tangent 125x4y=0
4y25x=0
 This is possible if y=0
 Then, x24+y225=1 for y=0
x24+025=1
x2=4
x=±2
Thus  The points at which the tangents are parallel to y -axis are (2,0)&(2,0)

Tangents and Normals Exercise 15.1 Question 18 Sub Question 1 .

Answer:  The points at which the tangents are parallel to x -axis are (1,2)&(1,2)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: x2+y22x3=0(1)
Solution: Differentiating eqn (1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0
2x21+2y21dydx2=0
2x+2ydydx=2
2ydydx=22x2ydydx=2(1x)dydx=1xy
Now the tangent is parallel to the x-axis if the slope of the tangent is zero
1xy=01x=0x=1
 substitute x=1inx2+y22x3=0
(1)2+y22(1)3=0
1+y223=0
1+y25=0
y2=51
y2=4
y=±2
 Thus the points at which the tangents are parallel to x -axis are (1,2)&(1,2)

Tangents and Normals Exercise 15.1 Question 18 Sub Question 2 .

Answer:  The points at which the tangents are parallel to y -axis are (1,0)&(3,0)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: x2+y22x3=0(1)
Solution: Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=02x21+2y21dydx2=02x+2ydydx=22ydydx=22x2ydydx=2(1x)dydx=1xy
 Now the tangent is parallel to the y -axis if the slope of the normal is zero  Slope of normal =1 Slope of tangent 11xy=y1x=0
But
x2+y22x3=0 for y=0x2+02x3=0x22x3=0x23x+x3=0x(x3)+1(x3)=0x+1=0&x3=0x=1&x=3
Thus  The points at which the tangents are parallel to y -axis are (1,0)&(3,0)

Tangents and Normals Exercise 15.1 Question 19 Sub Question 1 .

Answer: The points at which the tangents are parallel to x -axis are (0,4)&(0,4)
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:x29+y216=1(1)
Solution: Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=02x9+2y16dydx=0dydx=169xy
 Now the tangent is parallel to the x -axis if the slope of the tangent is zero 
169xy=0 which is possible if x=0
Then,
x29+y216=1 for x=0
y2=16y=±4
 Thus the points at which the tangents are parallel to x -axis are (0,4)&(0,4)

Tangents and Normals Exercise 15.1 Question 19 Sub Question 2 .

Answer:  The points at which the tangents are parallel to y -axis are (3,0)&(3,0)

Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given: x29+y216=1(1)
Solution:  Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=02x9+2y16dydx=0dydx=169xy
 Now the tangent is parallel to the y -axis if the slope of the normal is zero 
 slope of the normal =1(16x9y)9y16x=0 which is possible if y=0
Then,
x29+y216=1 for y=0
x2=9
x=±3
 Thus the points at which the tangents are parallel to y -axis are (3,0)&(3,0)

Tangents and Normals Exercise 15.1 Question 20 .

Answer:
Hence Proved that the tangents to the curve y=7x3+11 at the points x=2 and x=2 are parallel 
Hint: The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:  The equation of the curve is y=7x3+11(1)
Solution:  Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0dydx=7(3)x31+0dydx=21x2
 The slope of the tangent to a curve at (x0,y0) is dydx(x0,y0)
 Therefore the slope of the tangent at the point where x=2 is given by 
dydxx=2=21(2)2
=21×4=84
 and the slope of the tangent at the point where x=2 is given by 
dydxx=2=21(2)2
=21×4=84
It is observed that the slopes of the tangent at the points where x=2 and x=-2 are equal.
Hence, the two tangents are parallel

Tangents and Normals Exercise 15.1 Question 21 .

Answer: The requried point is(0,0) or (13,127)
Hint:  The slope of the tangent is the limit of ΔyΔx as Δx approaches zero. 
Given:  The equation of the curve is y=x3(1)
Solution: Differentiating eqn(1) with respect to x
ddx(xn)=nxn1,ddx( constant )=0dydx=3x2(2)
 Slope of the tangent to (1) is 
m1=dydx=3x2
 Also, given that slope of the tangent is parallel to x -coordinate of the point 
m2=dydx=x(3)
From (2) & (3)
m1=m2
3x2=x
3x2x=0
x(3x1)=0
x=0 or 3x1=0
x=0 or x=13
 Substitute x=0 in y=x3
y=0
 Substitute x=13 in y=x3
y=(13)3
y=127
y=0 or 127
 Thus the required point is (0,0) or (13,127)

Tangents and Normals Exercise 15.2 Question 3 Sub Question 2 .

Answer: Equation of tangent 2xy+1=0
Equation of normal x+2y7=0
HINTS:
Putting x=1 in the given equation and differentiate it.
GIVEN:
y=x46x3+13x210x+5 at x=1
Solution:
y=16+1310+5=3
So,(x1,y1)=(1,3)
Now,
y=x46x3+13x210x+5dydx=4x318x2+26x10
Slope of tangent , m=(dydx)(1,3)=418+2610=2

Equation of tangent is,

yy1=2(xx1)y3=2(x1)y3=2x22xy+1=0

Equation of Normal is,

yy1=1m(xx1)y3=12(x1)2y6=x+1x+2y7=0

Chapter-wise RD Sharma Class 12 Solutions

Articles

Upcoming School Exams

Application Date:24 March,2025 - 23 April,2025

Admit Card Date:25 March,2025 - 21 April,2025

Admit Card Date:25 March,2025 - 17 April,2025

View All School Exams
Back to top