Careers360 Logo
RD Sharma Class 12 Exercise 14.2 Mean Value Theorems Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 14.2 Mean Value Theorems Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 27, 2022 03:32 PM IST

RD Sharma books are considered the best books for CBSE students. They contain detailed information about topics and a variety of questions on each concept. This is why they are preferred by teachers and students all over the country.

RD Sharma Class 12th Exercise 14.2 contains the chapter Mean Value Theorem. It is precisely designed to help students study and cover their syllabus efficiently. RD Sharma Solutions materials are preferred by most schools all over the country as they are very informative and exam-oriented. Moreover, a lot of students consider this book as a Math bible because of its specific content.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 14 - Mean Value Theorems - Other Exercise
  2. Mean Value Theorems Excercise:14.2
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter 14 - Mean Value Theorems - Other Exercise

Mean Value Theorems Excercise:14.2


Mean value theorem exercise 14.1 question 2(i)

Answer:
c=4(2,6) , Hence, Rolle’s Theorem is verified.
Hint:
f(x) is continuous for all x and hence continuous in [2,6]
Given:
f(x)=x28x+12 on [2,6]
Explanation:
We have
f(x)=x28x+12
  1. Being polynomial f(x) is continuous for all x and hence continuous in [2,6]
  2. f(x)=2x8 , which exists in [2,6]
f(x)is derivable in (2,6)
3.
f(2)=(2)28(2)+12=416+12=12+12=0f(6)=(6)28(6)+123648+12=12+12=0f(2)=f(6)
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(2,6)such thatf(c)=0
2c8=02c=8c=4c=4(2,6)
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.2 question 2 (ii)

Answer:
c=2(1,3) , Hence, Rolle’s Theorem is verified.
Hint:
f(x)is continuous for all x and hence continuous in [1,3]
Given:
f(x)=x24x+3 on [1,3]
Explanation:
We have
f(x)=x24x+3
  1. Being polynomial f(x) is continuous for all x and hence continuous in [1,3]
  2. f(x)=2x4 , which exists in (1,3)
f(x)is derivable in (1,3)
3.
f(1)=(1)24(1)+3=14+3=3+3=0f(3)=(3)24(3)+3\) =912+3=3+3=0f(1)=f(3)
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(1,3)such thatf(c)=0
2c4=0c=2c=2(1,3)
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(iii)

Answer:
c=43(1,2)
Hint:
Using discrimination method,b±b24ac2a
Given:
f(x)=(x1)(x2)2on [1,2]
Explanation:
We have,
f(x)=(x1)(x2)2
  1. Being polynomial f(x) is continuous for all x and hence continuous in [1,2]

f(x)=(x1)ddx(x2)2+(x2)2ddx(x1)=(x1)2(x2)21(1)+(x2)2(1)=2(x1)(x2)+(x2)2
Which exists in (1.2)
f(x)is derivable in (1,2)
3.
f(1)=(11)(12)2=0f(2)=(21)(22)2=0f(1)=f(2)

Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(1,2) such thatf(c)=0
Now, f(c)=0
=2(c1)(c2)+(c2)2=2(c22cc+2)+c2+44c=2(c23c+2)+c2+44c=2c26c+2+c2+44c=3c210c+8
Using discrimination method,
b±b24ac2a
c=(10)±(10)24×3×82×3c=10±100966c=10±46=10±26=86,126c=43,2c=43(1,2)
[Neglecting the value 2 ]
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(iv)

Answer:
c=(1,13)(0,1), hence Rolle’s Theorem is verified.
Hint:
Using discrimination method,b±b24ac2a
Given:
f(x)=x(x1)2on [0,1]
Explanation:
We have,
f(x)=x(x1)2
  1. Being polynomial f(x) is continuous for all x and hence continuous in [0,1]
2.
f(x)=xddx(x1)2+(x1)2ddxx=x(2)(x1)1+(x1)2(1)
=2x(x1)+(x1)2=2x22x+x2+12x=3x24x+1=3x23xx+1
3.
f(0)=0(01)2=0f(1)=1(11)2=0f(0)=f(1)
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(0,1) such thatf(c)=0
Now, f(c)=0
3c24c+1
Using discrimination method,
b±b24ac2ac=(4)±16126c=4±46c=4±26=66,26c=1,13c=(1,13)(0,1)
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(v)

Answer:
c=(273,2+73)[1,2], Hence Rolle’s Theorem is verified.
Hint:
Using discrimination method,b±b24ac2a
Given:
f(x)=(x21)(x2) on [1,-2]
Explanation:
We have,
f(x)=(x21)(x2)
  1. Being polynomial f(x) is continuous for all x and hence continuous in [-1,2]

f(x)=(x21)ddx(x2)+(x2)ddx(x21)=(x21)(1)+(x2)(2x)=x21+2x24x=3x24x1

3.
f(1)=((1)21)(12)=(11)(12)=0f(2)=(221)(22)=(41)(0)=0f(1)=f(2)
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(1,2)such thatf(c)=0
Now, f(c)=0
3c24c1

Using discrimination method,
b±b24ac2ac=4±16+126=4±286c=4±276c=2(2±7)6c=(273,2+73)[1,2]
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(vii)

Answer:
c=52(3,2) , hence Rolle’s Theorem is verified.
Hint:
f(x) is continuous for all x and hence continuous in [-3,-2]
Given:
f(x)=x2+5x+6 on [-3,-2]
Explanation:
We have,
f(x)=x2+5x+6
  1. Being polynomial f(x) is continuous for all x and hence continuous in [-3,-2]
  2. f(x)=2x+5, which exists in [-3,-2]
f(x) is derivable in (-3,-2)
3. f(3)=(3)2+5(3)+6
=915+6=6+6=0
f(2)=(2)2+5(2)+6
=410+6=6+6=0
f(3)=f(2)
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least onec(3,2)such thatf(c)=0Now,
f(c)=02c+5=02c=5c=52c=52(3,2)
Hence, Rolle’s Theorem is verified.

Mean Value Theoram exercise 14.2 question 1(i)

Answer: 52
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: f(x)=x21 on [2,3]
Solution:
f(x)=x21
f(x) is a polynomial function.
It is continuous in [2, 3]
f(x)=2x
(Which is defined in [2, 3])
f(x) is differentiable in [2, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[2,3]f(c)=f(3)f(2)32
2c=(321)(221)12c=(91)(41)
2c=832c=5c=52



Mean Value Theoram exercise 14.2 question 1(ii)

Answer: 13
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: f(x)=x32x2x+3 on [0,1]
Solution:f(x)=x32x2x+3

f(x) is a polynomial function.
It is continuous in [0, 1]
f(x)=3x24x1
(Which is defined in [0, 1])
f(x) is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,1]f(c)=f(1)f(0)10
3c24c1=((1)32(1)21+3)((0)32(0)20+3)1
3c24c1=(121+3)(3)3c24c1=133c24c1=23c24c1+2=03c24c+1=0
3c23cc+1=03c(c1)(c1)=0(3c1)(c1)=0
Therefore, c=13 and c=1


Mean Value Theoram exercise 14.2 question 1(iii)

Answer: 32
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: f(x)=x(x1) on [1,2]
Solution:f(x)=x(x1)=x2x

f(x) is a polynomial function.
It is continuous in [1, 2]
f(x)=2x1
(Which is defined in [1, 2])
f(x) is differentiable in [1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,2]f(c)=f(2)f(1)212c1=(222)(121)1
2c1=(42)(11)2c1=202c1=22c=2+1c=32


Mean Value Theoram exercise 14.2 question 1(iv) maths

Answer: 12
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x23x+2 on [1,2]
Solution:
f(x)=x23x+2

f(x) is a polynomial function.
It is continuous in [-1, 2]
f(x)=2x3
(Which is defined in [-1, 2])
f(x) is differentiable in [-1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,2]f(c)=f(2)f(1)2(1)
2c3=(223(2)+2)((1)23(1)+2)2+12c3=(46+2)(1+3+2)3
2c3=0632c3=632c3=22c=2+32c=1c=12



Mean Value Theoram exercise 14.2 question 1(v)

Answer: 2
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=2x23x+1 on [1,3]
Solution:
f(x)=2x23x+1

f(x) is a polynomial function.
It is continuous in [1, 3]
f(x)=4x3
(Which is defined in [1, 3])
f(x) is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,3]f(c)=f(3)f(1)314c3=(2(3)23(3)+1)(2(1)23(1)+1)2
4c3=(2(9)9+1)(23+1)24c3=(189+1)(23+1)2
4c3=10024c3=54c=5+3c=84c=2


Mean Value Theoram exercise 14.2 question 1(vi)

Answer: 3
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x22x+4 on [1,5]
Solution:
f(x)=x22x+4

f(x) is a polynomial function.
It is continuous in [1, 5]
f(x)=2x2
(Which is defined in [1, 5])
f(x) is differentiable in [1, 5]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,5]f(c)=f(5)f(1)512c2=((5)22(5)+4)(2(1)22(1)+4)4
2c2=(2510+4)(12+4)42c2=1934
2c2=1642c2=4
2c=4+22c=6c=62c=3


Mean Value Theoram exercise 14.2 question 1(vii)

Answer: 12
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=2xx2 on [0,1]
Solution:
f(x)=2xx2

f(x) is a polynomial function.
It is continuous in [0, 1]
f(x)=22x
(Which is defined in [0, 1])
f(x) is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,1]f(c)=f(1)f(0)1022c=(2(1)(1)2)(2(0)(0)2)1
22c=(21)022c=12c=21
2c=1c=12


Mean Value Theoram exercise 14.2 question 1(viii) maths

Answer: 4±23
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=(x1)(x2)(x3) on [0,4]
Solution:f(x)=(x1)(x2)(x3)f(x)=x36x2+11x6

f(x) is a polynomial function.
It is continuous in [0, 4]
f(x)=3x212x+11
(Which is defined in [0, 4])
f(x) is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,4]f(c)=f(4)f(0)40
3c212c+11=(41)(42)(43)(01)(02)(03)43c212c+11=(3)(2)(1)(1)(2)(3)4
3c212c+11=6+643c212c+11=124
3c212c+11=33c212c+113=03c212c+8=0
Quadratic Equation,
c=12±144966c=12±486
c=12±436c=4±233c=4±23
Both values lie between [0, 4]



Mean Value Theoram exercise 14.2 question 1(ix)

Answer: ±12
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given:f(x)=25x2 on [3,4]
Solution:
f(x)=25x2

f(x) is a polynomial function.
It is continuous in [-3, 4]
f(x)=12(25x2)12(2x)f(x)=x25x2
(Which is defined in [-3, 4])
f(x) is differentiable in [-3, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[3,4]f(c)=f(4)f(3)4(3)
c25c2=25(4)225(3)24+3c25c2=25162597
c25c2=9167c25c2=347c25c2=17
7c=25c27c=25c2
Squaring on both sides,
49c2=25c249c2+c225=050c225=0
2c21=02c2=1c2=12c2=±12


Mean Value Theoram exercise 14.2 question 1(x)

Answer: 4π1
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=tan1x on [0,1]
Solution:
f(x)=tan1x

f(x) is a polynomial function.
It is continuous in [0, 1]
f(x)=1(1+x2)
(Which is defined in [0, 1])
f(x) is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,1]f(c)=f(1)f(0)1011+c2=tan1(1)tan1(0)1
11+c2=π40111+c2=π4
π(1+c2)=4π+πc2=4πc2=4π
c2=4ππc=4ππ
c=4π1


Mean Value Theoram exercise 14.2 question 1(xi)

Answer: 3
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x+1x on [1,3]
Solution:
f(x)=x+1x

f(x) is a polynomial function.
It is continuous in [1, 3]
f(x)=11x2
(Which is defined in [1, 3])
f(x) is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,3]f(c)=f(3)f(1)3111c2=3+131112
11c2=3+13112
11c2=9+1332×311c2=1066
11c2=4611c2=23
1c2=1231c2=323
1c2=13c2=3c=3


Mean Value Theoram exercise 14.2 question 1(xii)

Answer: 8+4133
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x(x+4)2 on [0,4]
Solution:
f(x)=x(x+4)2f(x)=x(x2+16+8x)f(x)=x3+8x2+16x

f(x) is a polynomial function.
It is continuous in [0, 4]
f(x)=3x2+16x+16
(Which is defined in [0, 4])
f(x) is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,4]f(c)=f(4)f(0)40
3c2+16c+16=(4)3+8(4)2+16(4)(0)3+8(0)2+16(0)43c2+16c+16=64+128+6404
3c2+16c+16=25643c2+16c+16=643c2+16c+1664=03c2+16c48=0
c=16±(16)24(3)(48)6c=16±256+5766
c=16±8326
c=8±4133
But in [0, 4], only 8±4133 exists.




Mean Value Theoram exercise 14.2 question 1(xiii)

Answer: 6
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x24 on [2,4]
Solution:
f(x)=x24

f(x) is a polynomial function.
It is continuous in [2, 4]
f(x)=12(2xx24)f(x)=xx24
(Which is defined in [2, 4])
f(x) is differentiable in [2, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[2,4]f(c)=f(4)f(2)42
cc24=(4)24(2)242cc24=164442
cc24=1202cc24=232
cc24=3c=3(c24)
Squaring on both sides,
c2=3(c24)c2=3c2123c2c2=122c2=12c2=6c=6


Mean Value Theoram exercise 14.2 question 1(xiv) maths

Answer: 2
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x2+x1 on [0,4]
Solution:
f(x)=x2+x1

f(x) is a polynomial function.
It is continuous in [0, 4]
f(x)=2x+1
(Which is defined in [0, 4])
f(x) is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,4]f(c)=f(4)f(2)42
2c+1=((4)2+41)((0)2+01)42c+1=(16+41)(0+01)4
2c+1=19+142c+1=204
2c+1=52c=512c=4c=42c=2


Mean Value Theoram exercise 14.2 question 1(xv)

Answer: cos1(1±338)
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given:f(x)=sinxsin2xx on [0,π]
Solution:
f(x)=sinxsin2xx

f(x) is a polynomial function.
It is continuous in [0,π]
f(x)=cosx2cos2x1
(Which is defined in [0,π])
f(x) is differentiable in [0,π]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[0,π]f(c)=f(π)f(0)π0
cosc2cos2c1=(sinπsin2ππ)(sin0sin00)πcosc2cos2c1=(00π)(000)π
cosc2cos2c1=ππcosc2cos2c1=1cosc2cos2c=1+1
cosc2cos2c=0cosc2(2cos2c1)=0cosc4cos2c+2=04cos2ccosc2=0
cosc=(1)±(1)24×4×(2)2×4cosc=1±1+328
cosc=1±338c=cos1(1±338)


Mean Value Theoram exercise 14.2 question 1(xvi)

Answer: 73
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=x35x23x on [1,3]
Solution:
f(x)=x35x23x

f(x) is a polynomial function.
It is continuous in [1, 3]
f(x)=3x210x3
(Which is defined in [1, 3])
f(x) is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
c[1,3]f(c)=f(3)f(1)31
3c210c3=((3)35(3)23(3))((1)35(1)23(1))23c210c3=(27459)(153)2
3c210c3=(2754)(18)23c210c3=(27)(7)2
3c210c3=27+723c210c3=202
3c210c3=103c210c3+10=03c210c+7=03c23c7c+7=0
3c(c1)7(c1)=0(3c7)(c1)=0
c=73 And c=1
c=73 Value exists.


Mean Value Theoram exercise 14.2 question 2

Answer: Not applicable
Hint: Using Lagrange’s mean theorem and limits.

Given: f(x)=|x| on [1,1]
Solution:
Lagrange’s mean value theorem states if a functionf(x) is continuous on a closed interval [a, b] and differentiable on the open interval (a, b), then there is at least one point x = c on this interval, such that
Differentiability at x = 0:
LHD =
limx0f(0h)f(0)hlimx0(0h)0h
=limx0h0hlimx0hh=1

RHD = limx0+f(0h)f(0)h

=limx0(0h)0h=limx0h0h=limx0hh=1

LHSRHS

f(x) is not differentiable at x = 0

Lagrange’s mean value theorem is not applicable for function f (x) = |x| on [-1, 1]




Mean Value Theoram exercise 14.2 question 3

Answer:
Hint: Check the continuity of function

Given: f(x)=1x on [1,1]
Solution:
f(x)=1x on [1,1]
It is clear x0
f (x) exists for all the values of x except 0
f (x) is the discontinuous at x = 0
So, f (x) is not continuous in [-1, 1]
Thus, the Lagrange’s mean value theorem is not applicable for the function:
f(x)=1x on [1,1]



Mean Value Theoram exercise 14.2 question 4

Answer: Not applicable
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: f(x)=14x1,1x4
Solution:
f(x)=14x1 on [1,4]
Here, 4x1>0

f'(x) has the unique values for all x except 14

So, f (x) is continuous in [1, 4]

f(x)=14x1
Differentiate:
f(x)=(1)(4x1)2(4)f(x)=4(4x1)2

f (x) is differentiable in (1, 4)

So, there exists a point c (1, 4)

f(c)=f(4)f(1)41f(c)=f(4)f(1)3

4(4c1)2=14(4)114(1)13

4(4c1)2=115133

3(4)=(4c1)2(11513)

12=(4c1)2(31545)12=(4c1)2(1245)

12×4512=(4c1)2

(4c1)2=454c1=454c1=±35

c=±35+14c=35+141.92(1,4)
Thus, Lagrange’s Theorem is verified.


Mean Value Theoram exercise 14.2 question 5 maths

Answer: (92,14)
Hint: You must know the value of tangent parabola.

Given:y=(x4)2 parallel to chord: (4,0)(5,1)
Solution:
y=(x4)2
Since tangent is parallel to chord joining (3, 0) and (4, 1), so, we get:
2(x4)=1054
2x8=112x=9
x=92
 When x=92, then y=(924)2
=(982)2=(12)2=14
Hence, the point is (92,14).

Mean Value Theoram exercise 14.2 question 6

Answer: (12,34)
Hint: You must know the slope of tangent’

Given:y=x2+x parallel to chord: [0,0],[1,2]
Solution:
y=x2+x,[0,0],[1,2]
dydx=2x+1
Slope of tangent =2x+1
Slope of line joining [0, 0] and [1, 2] = = 2
The tangent is parallel to this line:
Slope is equal
2x+1=22x=212x=1x=12
x=12
y=(12)2+12
=(14)+12=34
Hence, the points are (12,34)

Mean Value Theoram exercise 14.2 question 7

Answer: (72,14)
Hint: You must know the value of tangent parabola.

Given: y=(x3)2parallel to chord: (3,0)(4,1)
Solution:
y=(x3)2
Since tangent is parallel to chord joining (3, 0) and (4, 1), so, we get:
2(x3)=1043
2x6=112x=7x=72
Whenx=72, then y=(723)2
=(762)2=(12)2=14
Hence, the point is (72,14)

Mean Value Theoram exercise 14.2 question 8

Answer: (±73,2373)
Hint: You must know the slope of the tangent.

Given:y=x33x;(1,2),(2,2)
Solution:
y=x33xdydx=3x23
Slope of tangent =3x23
Slope of line joining (1, -2) and (2, 2) =2(2)21
=2+21=4
The tangent is parallel to the line: y=x3x
Slope is equal to 3x23=4
3x2=7x2=73x=±73y=x3x
=(73)3+373=73(733)=73(793)=2373
Points are (±73,2373)



Mean Value Theoram exercise 14.2 question 9 maths

Answer: (±133(133)12+1)
Hint: You must know the slope of the tangent.

Given:y=x3+1;(1,2),(3,28)
Solution:
y=x3+1dydx=3x2
Slope of tangent = 3x2
Slope of line joining (1, 2) and (3, 28) =28231
=262=13
The tangent is parallel to the line:
Slope is equal to 3x2=13
x2=133x=±133
y=x3+1
=(133)3+1=(133)32+1
Points are (±133,(133)12+1)

Mean Value Theoram exercise 14.2 question 10

Answer: Point P (a22,a22)
Hint: Find dydx and then use this formula for slope of tangent.

Given: x=acos3θ,y=asin3θ,0<θ<π2.
The tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
Solution:
x=acos3θdxdθ=3acos2θsinθy=asin3θdydθ=3asin2θcosθ
Now, dydx=dydθdxdθ
dydx=3asin2θcosθ3acos2θsinθdydx=tanθ
Now, slope of chord =a00a
Slope of chord =aa=1
Slope of chord =dydx
1=tanθtanθ=1tanθ=tanπ4θ=π4
Now, x=acos3θ
=acos3π4=a(12)2=a22[cosπ4=12]
Now, y=asin3θ
=asin3π4=a(12)2=a22[sinπ4=12]
Hence Point P is (a22,a22)

Mean Value Theoram exercise 14.2 question 11

Answer:
Hint: Use Lagrange’s mean value theorem formula.

Given:Use Lagrange’s mean value theorem on (ba)sec2a<tanbtana<(ba)sec2b , where 0<a<b<π2.
Solution:
 Let f(x)=tanx in (a,b) where 0<a<b<π2
f (x) is continuous in [a, b] and differentiable in (a, b)
Now, f(x)=sec2x
f(c)=sec2c
By Mean Value Theorem,
f(c)=f(b)f(a)baf(c)=tanbtanaba c(a,b)
a<c<bsec2a<sec2c<sec2bsec2a<tanbtanaba<sec2b


Hence, proved.

RD Sharma Class 12th Exercise 14.2 has 26 questions, 24 of which are Level 1 and two are Level 2. The Level 1 sums are simple and can be completed in a short time. This exercise is based on Lagrange's Mean Value theorem, calculating the tangents to curve, parabola, and other essential functional problems.

RD Sharma Class 12th Exercise 14.2 material is created by a group of subject experts who have years of experience on question paper patterns. Moreover, it is also updated to the latest version, which means students don't have to worry about missing or additional questions. As this chapter contains many questions, referring to the material will ease your work and reduce preparation time. As there are many questions on a particular concept, students can practice some questions and refer to the solutions to save time and prepare efficiently.

RD Sharma Class 12 Chapter 14 Exercise 14.2 material can help students understand their class lectures better by practicing beforehand. The solved questions make it much easier to verify and pick out mistakes from the answers. This, in turn, reduces the number of doubts and provides a clear understanding of the chapter. Students can stay ahead of their class by practicing these solutions beforehand and completing the portion ahead of time.

RD Sharma Class 12 solutions Chapter 12 Ex 14.2 contain step-by-step solutions, it is straightforward for students to understand. Even as students do not know the chapter, they can easily pick up from these solutions. Moreover, the answers are available for free on Career360's website, which makes them easily accessible.

Thousands of students have already started using RD Sharma Class 12th Exercise 14.2 material as it is convenient and helps score better marks. However, the ones who didn't know about this should give it a try.

RD Sharma Chapter wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Can I study only through this material?

Class 12 RD Sharma Chapter 14 Exercise 14.2 Solutions material covers all topics and contains clear concepts. It is the best choice for students for exam preparation.

2. What are the benefits of this material from an exam perspective?

RD Sharma Class 12th Exercise 14.2 material contains solved questions. It will help students save time and be convenient for revision. 



3. What is the mean value theorem?

If an arc is drawn using two endpoints, at least one point where its tangent is parallel to the secant of the points. 

4. What is Rolle's theorem?

Any differentiable function with equal values at two points will have at least one value where the first derivative is zero. To get more information about this, topic check RD Sharma Class 12 Solutions Chapter 14 Ex 14.2.

5. What is Lagrange's theorem?

If a subgroup is taken from a group of any order, it will be a divisor of that group. This is Lagrange's theorem. For more info, check RD Sharma Class 12 Solutions Mean Value Theorem Ex 14.2. 

Articles

Get answers from students and experts
Back to top