RD Sharma books are considered the best books for CBSE students. They contain detailed information about topics and a variety of questions on each concept. This is why they are preferred by teachers and students all over the country.
This Story also Contains
RD Sharma Class 12th Exercise 14.2 contains the chapter Mean Value Theorem. It is precisely designed to help students study and cover their syllabus efficiently. RD Sharma Solutions materials are preferred by most schools all over the country as they are very informative and exam-oriented. Moreover, a lot of students consider this book as a Math bible because of its specific content.
Mean value theorem exercise 14.1 question 2(i)
Answer:Mean value theorem exercise 14.2 question 2 (ii)
Answer:Mean value theorem exercise 14.1 question 2(iii)
Answer:Mean value theorem exercise 14.1 question 2(iv)
Answer:Mean value theorem exercise 14.1 question 2(v)
Answer:Mean value theorem exercise 14.1 question 2(vii)
Answer:Mean Value Theoram exercise 14.2 question 1(i)
Answer: $\frac{5}{2}$Mean Value Theoram exercise 14.2 question 1(ii)
Answer: $\frac{1}{3}$$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=3 x^{2}-4 x-1$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \end{aligned}$
$3 c^{2}-4 c-1=\frac{\left((1)^{3}-2(1)^{2}-1+3\right)-\left((0)^{3}-2(0)^{2}-0+3\right)}{1}$
$\begin{aligned} &3 c^{2}-4 c-1=(1-2-1+3)-(3) \\ &3 c^{2}-4 c-1=1-3 \\ &3 c^{2}-4 c-1=-2 \\ &3 c^{2}-4 c-1+2=0 \\ &3 c^{2}-4 c+1=0 \end{aligned}$
$\begin{aligned} &3 c^{2}-3 c-c+1=0 \\ &3 c(c-1)-(c-1)=0 \\ &(3 c-1)(c-1)=0 \end{aligned}$
Therefore, $c=\frac{1}{3} \text { and } \mathrm{c}=1$
Mean Value Theoram exercise 14.2 question 1(iii)
Answer: $\frac{3}{2}$$f(x)$ is a polynomial function.
It is continuous in [1, 2]
$f^{\prime}(x)=2 x-1$
(Which is defined in [1, 2])
$\therefore f(x)$ is differentiable in [1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,2] \\ &f^{\prime}(c)=\frac{f(2)-f(1)}{2-1} \\ &2 c-1=\frac{\left(2^{2}-2\right)-\left(1^{2}-1\right)}{1} \end{aligned}$
$\begin{aligned} &2 c-1=(4-2)-(1-1) \\ &2 c-1=2-0 \\ &2 c-1=2 \\ &2 c=2+1 \\ &c=\frac{3}{2} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(iv) maths
Answer: $\frac{1}{2}$$f(x)$ is a polynomial function.
It is continuous in [-1, 2]
$f^{\prime}(x)=2 x-3$
(Which is defined in [-1, 2])
$\therefore f(x)$ is differentiable in [-1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[-1,2] \\ &f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \end{aligned}$
$\begin{aligned} &2 c-3=\frac{\left(2^{2}-3(2)+2\right)-\left((-1)^{2}-3(-1)+2\right)}{2+1} \\ &2 c-3=\frac{(4-6+2)-(1+3+2)}{3} \end{aligned}$
$\begin{aligned} &2 c-3=\frac{0-6}{3} \\ &2 c-3=\frac{-6}{3} \\ &2 c-3=-2 \\ &2 c=-2+3 \\ &2 c=1 \\ &c=\frac{1}{2} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(v)
Answer: 2$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=4 x-3$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\ &4 c-3=\frac{\left(2(3)^{2}-3(3)+1\right)-\left(2(1)^{2}-3(1)+1\right)}{2} \end{aligned}$
$\begin{aligned} &4 c-3=\frac{(2(9)-9+1)-(2-3+1)}{2} \\ &4 c-3=\frac{(18-9+1)-(2-3+1)}{2} \end{aligned}$
$\begin{aligned} &4 c-3=\frac{10-0}{2} \\ &4 c-3=5 \\ &4 c=5+3 \\ &c=\frac{8}{4} \\ &c=2 \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(vi)
Answer: 3$f(x)$ is a polynomial function.
It is continuous in [1, 5]
$f^{\prime}(x)=2 x-2$
(Which is defined in [1, 5])
$\therefore f(x)$ is differentiable in [1, 5]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,5] \\ &f^{\prime}(c)=\frac{f(5)-f(1)}{5-1} \\ &2 c-2=\frac{\left((5)^{2}-2(5)+4\right)-\left(2(1)^{2}-2(1)+4\right)}{4} \end{aligned}$
$\begin{aligned} &2 c-2=\frac{(25-10+4)-(1-2+4)}{4} \\ &2 c-2=\frac{19-3}{4} \end{aligned}$
$\begin{aligned} &2 c-2=\frac{16}{4} \\ &2 c-2=4 \end{aligned}$
$\begin{aligned} &2 c=4+2 \\ &2 c=6 \\ &c=\frac{6}{2} \\ &c=3 \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(vii)
Answer: $\frac{1}{2}$$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=2-2 x$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\ &2-2 c=\frac{\left(2(1)-(1)^{2}\right)-\left(2(0)-(0)^{2}\right)}{1} \end{aligned}$
$\begin{aligned} &2-2 c=(2-1)-0 \\ &2-2 c=1 \\ &2 c=2-1 \end{aligned}$
$\begin{aligned} &2 c=1 \\ &c=\frac{1}{2} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(viii) maths
Answer: $4 \pm \frac{2}{\sqrt{3}}$$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=3 x^{2}-12 x+11$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=\frac{(4-1)(4-2)(4-3)-(0-1)(0-2)(0-3)}{4} \\ &3 c^{2}-12 c+11=\frac{(3)(2)(1)-(-1)(-2)(-3)}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=\frac{6+6}{4} \\ &3 c^{2}-12 c+11=\frac{12}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=3 \\ &3 c^{2}-12 c+11-3=0 \\ &3 c^{2}-12 c+8=0 \end{aligned}$
Quadratic Equation,
$\begin{aligned} &c=\frac{12 \pm \sqrt{144-96}}{6} \\ &c=\frac{12 \pm \sqrt{48}}{6} \end{aligned}$
$\begin{aligned} &c=\frac{12 \pm 4 \sqrt{3}}{6} \\ &c=4 \pm \frac{2 \sqrt{3}}{3} \\ &c=4 \pm \frac{2}{\sqrt{3}} \end{aligned}$
Both values lie between [0, 4]
Mean Value Theoram exercise 14.2 question 1(ix)
Answer: $\pm \frac{1}{\sqrt{2}}$$f(x)$ is a polynomial function.
It is continuous in [-3, 4]
$\begin{aligned} &f^{\prime}(x)=\frac{1}{2}\left(25-x^{2}\right)^{\frac{-1}{2}}(-2 x) \\ &f^{\prime}(x)=\frac{-x}{\sqrt{25-x^{2}}} \end{aligned}$
(Which is defined in [-3, 4])
$\therefore f(x)$ is differentiable in [-3, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[-3,4] \\ &f^{\prime}(c)=\frac{f(4)-f(-3)}{4-(-3)} \end{aligned}$
$\begin{aligned} &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{25-(4)^{2}}-\sqrt{25-(-3)^{2}}}{4+3} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{25-16}-\sqrt{25-9}}{7} \end{aligned}$
$\begin{aligned} &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{9}-\sqrt{16}}{7} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{3-4}{7} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{-1}{7} \end{aligned}$
$\begin{aligned} &-7 c=-\sqrt{25-c^{2}} \\ &7 c=\sqrt{25-c^{2}} \end{aligned}$
Squaring on both sides,
$\begin{aligned} &49 c^{2}=25-c^{2} \\ &49 c^{2}+c^{2}-25=0 \\ &50 c^{2}-25=0 \end{aligned}$
$\begin{aligned} &2 c^{2}-1=0 \\ &2 c^{2}=1 \\ &c^{2}=\frac{1}{2} \\ &c^{2}=\pm \frac{1}{\sqrt{2}} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(x)
Answer: $\sqrt{\frac{4}{\pi}-1}$$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=\frac{1}{\left(1+x^{2}\right)}$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\ &\frac{1}{1+c^{2}}=\frac{\tan ^{-1}(1)-\tan ^{-1}(0)}{1} \end{aligned}$
$\begin{aligned} &\frac{1}{1+c^{2}}=\frac{\frac{\pi}{4}-0}{1} \\ &\frac{1}{1+c^{2}}=\frac{\pi}{4} \end{aligned}$
$\begin{aligned} &\pi\left(1+c^{2}\right)=4 \\ &\pi+\pi c^{2}=4 \\ &\pi c^{2}=4-\pi \end{aligned}$
$\begin{aligned} &c^{2}=\frac{4-\pi}{\pi} \\ &c=\sqrt{\frac{4-\pi}{\pi}} \end{aligned}$
$c=\sqrt{\frac{4}{\pi}-1}$
Mean Value Theoram exercise 14.2 question 1(xi)
Answer: $\sqrt{3}$$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=1-\frac{1}{x^{2}}$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\ &1-\frac{1}{c^{2}}=\frac{3+\frac{1}{3}-1-\frac{1}{1}}{2} \end{aligned}$
$1-\frac{1}{c^{2}}=\frac{3+\frac{1}{3}-1-1}{2}$
$\begin{aligned} &1-\frac{1}{c^{2}}=\frac{9+1-3-3}{2 \times 3} \\ &1-\frac{1}{c^{2}}=\frac{10-6}{6} \end{aligned}$
$\begin{aligned} &1-\frac{1}{c^{2}}=\frac{4}{6} \\ &1-\frac{1}{c^{2}}=\frac{2}{3} \end{aligned}$
$\begin{aligned} &\frac{1}{c^{2}}=1-\frac{2}{3} \\ &\frac{1}{c^{2}}=\frac{3-2}{3} \end{aligned}$
$\begin{aligned} &\frac{1}{c^{2}}=\frac{1}{3} \\ &c^{2}=3 \\ &c=\sqrt{3} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(xii)
Answer: $\frac{-8+4 \sqrt{13}}{3}$$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=3 x^{2}+16 x+16$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \end{aligned}$
$\begin{aligned} &3 c^{2}+16 c+16=\frac{(4)^{3}+8(4)^{2}+16(4)-(0)^{3}+8(0)^{2}+16(0)}{4} \\ &3 c^{2}+16 c+16=\frac{64+128+64-0}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}+16 c+16=\frac{256}{4} \\ &3 c^{2}+16 c+16=64 \\ &3 c^{2}+16 c+16-64=0 \\ &3 c^{2}+16 c-48=0 \end{aligned}$
$\begin{aligned} &c=\frac{-16 \pm \sqrt{(16)^{2}-4(3)(-48)}}{6} \\ &c=\frac{-16 \pm \sqrt{256+576}}{6} \end{aligned}$
$c=\frac{-16 \pm \sqrt{832}}{6}$
$c=\frac{-8 \pm 4 \sqrt{13}}{3}$
But in [0, 4], only $\frac{-8 \pm 4 \sqrt{13}}{3}$ exists.
Mean Value Theoram exercise 14.2 question 1(xiii)
Answer: $\sqrt{6}$$f(x)$ is a polynomial function.
It is continuous in [2, 4]
$\begin{aligned} &f^{\prime}(x)=\frac{1}{2}\left(\frac{2 x}{\sqrt{x^{2}-4}}\right) \\ &f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}} \end{aligned}$
(Which is defined in [2, 4])
$\therefore f(x)$ is differentiable in [2, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[2,4] \\ &f^{\prime}(c)=\frac{f(4)-f(2)}{4-2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{(4)^{2}-4}-\sqrt{(2)^{2}-4}}{2} \\ &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{16-4}-\sqrt{4-4}}{2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{12}-0}{2} \\ &\frac{c}{\sqrt{c^{2}-4}}=\frac{2 \sqrt{3}}{2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\sqrt{3} \\ &c=\sqrt{3\left(c^{2}-4\right)} \end{aligned}$
Squaring on both sides,
$\begin{aligned} &c^{2}=3\left(c^{2}-4\right) \\ &c^{2}=3 c^{2}-12 \\ &3 c^{2}-c^{2}=12 \\ &2 c^{2}=12 \\ &c^{2}=6 \\ &c=\sqrt{6} \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(xiv) maths
Answer: 2$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=2 x+1$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(2)}{4-2} \end{aligned}$
$\begin{aligned} &2 c+1=\frac{\left((4)^{2}+4-1\right)-\left((0)^{2}+0-1\right)}{4} \\ &2 c+1=\frac{(16+4-1)-(0+0-1)}{4} \end{aligned}$
$\begin{aligned} &2 c+1=\frac{19+1}{4} \\ &2 c+1=\frac{20}{4} \end{aligned}$
$\begin{aligned} &2 c+1=5 \\ &2 c=5-1 \\ &2 c=4 \\ &c=\frac{4}{2} \\ &c=2 \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(xv)
Answer: $\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right)$$f(x)$ is a polynomial function.
It is continuous in $\left [ 0,\pi \right ]$
$f^{\prime}(x)=\cos x-2 \cos 2 x-1$
(Which is defined in $\left [ 0,\pi \right ]$)
$\therefore f(x)$ is differentiable in $\left [ 0,\pi \right ]$. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0, \pi] \\ &f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi-0} \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c-1=\frac{(\sin \pi-\sin 2 \pi-\pi)-(\sin 0-\sin 0-0)}{\pi} \\ &\cos c-2 \cos 2 c-1=\frac{(0-0-\pi)-(0-0-0)}{\pi} \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c-1=\frac{-\pi}{\pi} \\ &\cos c-2 \cos 2 c-1=-1 \\ &\cos c-2 \cos 2 c=-1+1 \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c=0 \\ &\cos c-2\left(2 \cos ^{2} c-1\right)=0 \\ &\cos c-4 \cos ^{2} c+2=0 \\ &4 \cos ^{2} c-\cos c-2=0 \end{aligned}$
$\begin{aligned} &\cos c=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 4 \times(-2)}}{2 \times 4} \\ &\cos c=\frac{1 \pm \sqrt{1+32}}{8} \end{aligned}$
$\begin{aligned} &\cos c=\frac{1 \pm \sqrt{33}}{8} \\ &c=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right) \end{aligned}$
Mean Value Theoram exercise 14.2 question 1(xvi)
Answer: $\frac{7}{3}$$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=3 x^{2}-10 x-3$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{\left((3)^{3}-5(3)^{2}-3(3)\right)-\left((1)^{3}-5(1)^{2}-3(1)\right)}{2} \\ &3 c^{2}-10 c-3=\frac{(27-45-9)-(1-5-3)}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{(27-54)-(1-8)}{2} \\ &3 c^{2}-10 c-3=\frac{(-27)-(-7)}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{-27+7}{2} \\ &3 c^{2}-10 c-3=\frac{-20}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=-10 \\ &3 c^{2}-10 c-3+10=0 \\ &3 c^{2}-10 c+7=0 \\ &3 c^{2}-3 c-7 c+7=0 \end{aligned}$
$\begin{aligned} &3 c(c-1)-7(c-1)=0 \\ &(3 c-7)(c-1)=0 \end{aligned}$
$c=\frac{7}{3} \text { And } c=1$
$c=\frac{7}{3}$ Value exists.
Mean Value Theoram exercise 14.2 question 2
Answer: Not applicableRHD = $\lim _{x \rightarrow 0^{+}} \frac{f(0-h)-f(0)}{-h}$
$\begin{aligned} &=\lim _{x \rightarrow 0^{-}} \frac{(0-h)-0}{-h} \\ &=\lim _{x \rightarrow 0^{-}} \frac{-h-0}{-h} \\ &=\lim _{x \rightarrow 0^{-}} \frac{-h}{-h} \\ &=1 \end{aligned}$
$\mathrm{LHS} \neq \mathrm{RHS}$
$\therefore f(x)$ is not differentiable at x = 0
$\therefore$Lagrange’s mean value theorem is not applicable for function f (x) = |x| on [-1, 1]
Mean Value Theoram exercise 14.2 question 3
Answer:Mean Value Theoram exercise 14.2 question 4
Answer: Not applicablef'(x) has the unique values for all x except $\frac{1}{4}$
So, f (x) is continuous in [1, 4]
$f(x)=\frac{1}{4 x-1}$
Differentiate:
$\begin{aligned} &f(x)=(-1)(4 x-1)^{-2}(4) \\ &f^{\prime}(x)=\frac{-4}{(4 x-1)^{2}} \end{aligned}$
f (x) is differentiable in (1, 4)
So, there exists a point c $\in$ (1, 4)
$\begin{aligned} &f^{\prime}(c)=\frac{f(4)-f(1)}{4-1} \\ &f^{\prime}(c)=\frac{f(4)-f(1)}{3} \end{aligned}$
$\frac{-4}{(4 c-1)^{2}}=\frac{\frac{1}{4(4)-1}-\frac{1}{4(1)-1}}{3}$
$\frac{-4}{(4 c-1)^{2}}=\frac{\frac{1}{15}-\frac{1}{3}}{3}$
$-3(4)=(4 c-1)^{2}\left(\frac{1}{15}-\frac{1}{3}\right)$
$\begin{aligned} &-12=(4 c-1)^{2}\left(\frac{3-15}{45}\right) \\ &-12=(4 c-1)^{2}\left(\frac{-12}{45}\right) \end{aligned}$
$-12 \times \frac{45}{-12}=(4 c-1)^{2}$
$\begin{aligned} &(4 c-1)^{2}=45 \\ &4 c-1=\sqrt{45} \\ &4 c-1=\pm 3 \sqrt{5} \end{aligned}$
$\begin{aligned} &c=\frac{\pm 3 \sqrt{5}+1}{4} \\ &c=\frac{3 \sqrt{5}+1}{4} \approx 1.92 \in(1,4) \end{aligned}$
Thus, Lagrange’s Theorem is verified.
Mean Value Theoram exercise 14.2 question 5 maths
Answer: $\left(\frac{9}{2}, \frac{1}{4}\right)$Mean Value Theoram exercise 14.2 question 6
Answer: $\left(\frac{1}{2}, \frac{3}{4}\right)$Mean Value Theoram exercise 14.2 question 7
Answer: $\left(\frac{7}{2}, \frac{1}{4}\right)$Mean Value Theoram exercise 14.2 question 8
Answer: $\left(\pm \sqrt{\frac{7}{3}}, \mp \frac{2}{3} \sqrt{\frac{7}{3}}\right)$Mean Value Theoram exercise 14.2 question 9 maths
Answer: $\left(\pm \sqrt{\frac{13}{3}} \cdot\left(\frac{13}{3}\right)^{\frac{1}{2}}+1\right)$Mean Value Theoram exercise 14.2 question 10
Answer: Point P $\left(\frac{a}{2 \sqrt{2}}, \frac{a}{2 \sqrt{2}}\right)$Mean Value Theoram exercise 14.2 question 11
Answer:Hence, proved.
RD Sharma Class 12th Exercise 14.2 has 26 questions, 24 of which are Level 1 and two are Level 2. The Level 1 sums are simple and can be completed in a short time. This exercise is based on Lagrange's Mean Value theorem, calculating the tangents to curve, parabola, and other essential functional problems.
RD Sharma Class 12th Exercise 14.2 material is created by a group of subject experts who have years of experience on question paper patterns. Moreover, it is also updated to the latest version, which means students don't have to worry about missing or additional questions. As this chapter contains many questions, referring to the material will ease your work and reduce preparation time. As there are many questions on a particular concept, students can practice some questions and refer to the solutions to save time and prepare efficiently.
RD Sharma Class 12 Chapter 14 Exercise 14.2 material can help students understand their class lectures better by practicing beforehand. The solved questions make it much easier to verify and pick out mistakes from the answers. This, in turn, reduces the number of doubts and provides a clear understanding of the chapter. Students can stay ahead of their class by practicing these solutions beforehand and completing the portion ahead of time.
RD Sharma Class 12 solutions Chapter 12 Ex 14.2 contain step-by-step solutions, it is straightforward for students to understand. Even as students do not know the chapter, they can easily pick up from these solutions. Moreover, the answers are available for free on Career360's website, which makes them easily accessible.
Thousands of students have already started using RD Sharma Class 12th Exercise 14.2 material as it is convenient and helps score better marks. However, the ones who didn't know about this should give it a try.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE