RD Sharma Class 12 Exercise 14.2 Mean Value Theorems Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 14.2 Mean Value Theorems Solutions Maths - Download PDF Free Online

Updated on 27 Jan 2022, 03:32 PM IST

RD Sharma books are considered the best books for CBSE students. They contain detailed information about topics and a variety of questions on each concept. This is why they are preferred by teachers and students all over the country.

This Story also Contains

  1. RD Sharma Class 12 Solutions Chapter 14 - Mean Value Theorems - Other Exercise
  2. Mean Value Theorems Excercise:14.2
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12th Exercise 14.2 contains the chapter Mean Value Theorem. It is precisely designed to help students study and cover their syllabus efficiently. RD Sharma Solutions materials are preferred by most schools all over the country as they are very informative and exam-oriented. Moreover, a lot of students consider this book as a Math bible because of its specific content.

RD Sharma Class 12 Solutions Chapter 14 - Mean Value Theorems - Other Exercise

Mean Value Theorems Excercise:14.2


Mean value theorem exercise 14.1 question 2(i)

Answer:
$c = 4 \in (2,6)$ , Hence, Rolle’s Theorem is verified.
Hint:
f(x) is continuous for all x and hence continuous in [2,6]
Given:
$f(x) = x^2 -8x +12$ on [2,6]
Explanation:
We have
$f(x) = x^2 -8x +12$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [2,6]
  2. $f'(x) = 2x -8$ , which exists in [2,6]
$\therefore f(x)$is derivable in (2,6)
3.
$\\f(2) = (2) ^2 - 8(2) + 12 \\\\= 4- 16 +12 = 12 + 12 = 0 \\\\ f (6) = (6) ^ 2 - 8 (6) + 12 \\\\ 36 - 48 +12 \\\\ = -12 + 12 = 0 \\\\ \therefore f(2) = f (6)$
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in (2,6)$such that$f' (c) = 0$
$\\ \Rightarrow 2c- 8 = 0 \\\\ \Rightarrow 2c = 8 \\\\ \Rightarrow c = 4 \\\\ \therefore c = 4 \in (2,6 )$
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.2 question 2 (ii)

Answer:
$c=2 \in(1,3)$ , Hence, Rolle’s Theorem is verified.
Hint:
$f(x)$is continuous for all x and hence continuous in [1,3]
Given:
$f(x)=x^{2}-4 x+3$ on [1,3]
Explanation:
We have
$f(x)=x^{2}-4 x+3$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [1,3]
  2. $f^{\prime}(x)=2 x-4$ , which exists in (1,3)
$\therefore f (x )$is derivable in (1,3)
3.
$\\f(1)=(1)^{2}-4(1)+3\\\\ =1-4+3=-3+3=0\\\\ f(3)=(3)^{2}-4(3)+3\)\\\\\ =9-12+3=-3+3=0\\\\ \therefore f(1)=f(3)$
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in(1,3)$such that$f'(c) = 0$
$\\ \Rightarrow 2c - 4 = 0 \\\\ \Rightarrow c = 2 \\\\ \Rightarrow c = 2 \in (1,3)$
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(iii)

Answer:
$c = \frac{4}{3} \in (1,2)$
Hint:
Using discrimination method,$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Given:
$f(x)=(x-1)(x-2)^{2}$on [1,2]
Explanation:
We have,
$f(x)=(x-1)(x-2)^{2}$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [1,2]

$\\\\ f^{\prime}(x)=(x-1) \frac{d}{d x}(x-2)^{2}+(x-2)^{2} \frac{d}{d x}(x-1)\\\\ =(x-1) 2(x-2)^{2-1}(1)+(x-2)^{2}(1) \\\\ \quad=2(x-1)(x-2)+(x-2)^{2}$
Which exists in (1.2)
$\therefore f(x)$is derivable in (1,2)
3.
$\\ f(1)=(1-1)(1-2)^{2}=0 \\\\ f(2)=(2-1)(2-2)^{2}=0\\\\ \therefore f(1)=f(2)$

Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in(1,2)$ such that$f^{\prime}(c)=0$
Now, $f^{\prime}(c)=0$
$\begin{aligned} &=2(c-1)(c-2)+(c-2)^{2} \\ &=2\left(c^{2}-2 c-c+2\right)+c^{2}+4-4 c \\ &=2\left(c^{2}-3 c+2\right)+c^{2}+4-4 c \\ &=2 c^{2}-6 c+2+c^{2}+4-4 c \\ &=3 c^{2}-10 c+8 \end{aligned}$
Using discrimination method,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\\c=\frac{-(-10) \pm \sqrt{(-10)^{2}-4 \times 3 \times 8}}{2 \times 3}\\\\ c=\frac{10 \pm \sqrt{100-96}}{6}\\\\ c=\frac{10 \pm \sqrt{4}}{6}=\frac{10 \pm 2}{6}\\\\ =\frac{8}{6}, \frac{12}{6}\\\\ c=\frac{4}{3}, 2\\\\ c=\frac{4}{3} \in(1,2)$
[Neglecting the value 2 ]
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(iv)

Answer:
$c=\left(1, \frac{1}{3}\right) \in(0,1)$, hence Rolle’s Theorem is verified.
Hint:
Using discrimination method,$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Given:
$f(x)=x(x-1)^{2}$on [0,1]
Explanation:
We have,
$f(x)=x(x-1)^{2}$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [0,1]
2.
$\\f^{\prime}(x)=x \frac{d}{d x}(x-1)^{2}+(x-1)^{2} \frac{d}{d x} x \\\\ =x(2)(x-1)^{1}+(x-1)^{2}(1)$
$\\=2 x(x-1)+(x-1)^{2} \\ =2 x^{2}-2 x+x^{2}+1-2 x \\ =3 x^{2}-4 x+1 \\ =3 x^{2}-3 x-x+1 \\$
3.
$\\f(0)=0(0-1)^{2}=0 \\\\ \quad f(1)=1(1-1)^{2}=0 \\\\ \therefore f(0) =f(1)$
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in(0,1)$ such that$f^{\prime}(c)=0$
Now, $f^{\prime}(c)=0$
$3 c^{2}-4 c+1$
Using discrimination method,
$\\ \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\\\\\\ \begin{aligned} c &=\frac{-(-4) \pm \sqrt{16-12}}{6} \\\\ c &=\frac{4 \pm \sqrt{4}}{6} \\\\ c &=\frac{4 \pm 2}{6} \\\\ &=\frac{6}{6}, \frac{2}{6} \\\\ c &=1, \frac{1}{3} \\\\ c &=\left(1, \frac{1}{3}\right) \in(0,1) \end{aligned}$
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(v)

Answer:
$c=\left(\frac{2-\sqrt{7}}{3}, \frac{2+\sqrt{7}}{3}\right) \in[-1,2]$, Hence Rolle’s Theorem is verified.
Hint:
Using discrimination method,$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Given:
$f(x)=\left(x^{2}-1\right)(x-2)$ on [1,-2]
Explanation:
We have,
$f(x)=\left(x^{2}-1\right)(x-2)$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [-1,2]

$\\f^{\prime}(x) =\left(x^{2}-1\right) \frac{d}{d x}(x-2)+(x-2) \frac{d}{d x}\left(x^{2}-1\right) \\\\ =\left(x^{2}-1\right)(1)+(x-2)(2 x) \\\\ =x^{2}-1+2 x^{2}-4 x \\\\ =3 x^{2}-4 x-1 \\\\$

3.
$\\ f(-1)=\left((-1)^{2}-1\right)(-1-2)=(1-1)(-1-2)=0\\\\ f(2)=\left(2^{2}-1\right)(2-2)=(4-1)(0)=0 \\\\ \therefore f(-1)=f(2)$
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in(-1,2)$such that$f^{\prime}(c)=0$
Now, $f^{\prime}(c)=0$
$3 c^{2}-4 c-1$

Using discrimination method,
$\begin{array}{l} \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\\\ c=\frac{4 \pm \sqrt{16+12}}{6}=\frac{4 \pm \sqrt{28}}{6} \\\\ c=\frac{4 \pm 2 \sqrt{7}}{6} \\\\ c=\frac{2(2 \pm \sqrt{7})}{6} \\\\ c=\left(\frac{2-\sqrt{7}}{3}, \frac{2+\sqrt{7}}{3}\right) \in[-1,2] \end{array}$
Hence, Rolle’s Theorem is verified.

Mean value theorem exercise 14.1 question 2(vii)

Answer:
$c=\frac{-5}{2} \in(-3,-2)$ , hence Rolle’s Theorem is verified.
Hint:
f(x) is continuous for all x and hence continuous in [-3,-2]
Given:
$f(x)=x^{2}+5 x+6$ on [-3,-2]
Explanation:
We have,
$f(x)=x^{2}+5 x+6$
  1. Being polynomial f(x) is continuous for all x and hence continuous in [-3,-2]
  2. $f^{\prime}(x)=2 x+5$, which exists in [-3,-2]
$\therefore f(x)$ is derivable in (-3,-2)
3. $f(-3)=(-3)^{2}+5(-3)+6$
$=9-15+6=-6+6=0$
$f(-2)=(-2)^{2}+5(-2)+6$
$=4-10+6=-6+6=0$
$\therefore f(-3) =f(-2)$
Thus all the conditions of Rolle’s Theorem are satisfied.
There exists at least one$c \in(-3,-2)$such that$f^{\prime}(c)=0$Now,
$f^{\prime}(c)=0\\\\ 2 c+5=0\\\\ 2 c=-5\\\\ c=\frac{-5}{2}\\\\ c = \frac{-5}{2}\in (-3,-2)$
Hence, Rolle’s Theorem is verified.

Mean Value Theoram exercise 14.2 question 1(i)

Answer: $\frac{5}{2}$
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: $f(x)=x^{2}-1 \text { on }[2,3]$
Solution:
$f(x)=x^{2}-1$
$f(x)$ is a polynomial function.
It is continuous in [2, 3]
$f^{\prime}(x)=2 x$
(Which is defined in [2, 3])
$f(x)$ is differentiable in [2, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[2,3] \\ &f^{\prime}(c)=\frac{f(3)-f(2)}{3-2} \end{aligned}$
$\begin{aligned} &2 c=\frac{\left(3^{2}-1\right)-\left(2^{2}-1\right)}{1} \\ &2 c=(9-1)-(4-1) \end{aligned}$
$\begin{aligned} &2 c=8-3 \\ &2 c=5 \\ &c=\frac{5}{2} \end{aligned}$



Mean Value Theoram exercise 14.2 question 1(ii)

Answer: $\frac{1}{3}$
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: $f(x)=x^{3}-2 x^{2}-x+3 \text { on }[0,1]$
Solution:$f(x)=x^{3}-2 x^{2}-x+3$

$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=3 x^{2}-4 x-1$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \end{aligned}$
$3 c^{2}-4 c-1=\frac{\left((1)^{3}-2(1)^{2}-1+3\right)-\left((0)^{3}-2(0)^{2}-0+3\right)}{1}$
$\begin{aligned} &3 c^{2}-4 c-1=(1-2-1+3)-(3) \\ &3 c^{2}-4 c-1=1-3 \\ &3 c^{2}-4 c-1=-2 \\ &3 c^{2}-4 c-1+2=0 \\ &3 c^{2}-4 c+1=0 \end{aligned}$
$\begin{aligned} &3 c^{2}-3 c-c+1=0 \\ &3 c(c-1)-(c-1)=0 \\ &(3 c-1)(c-1)=0 \end{aligned}$
Therefore, $c=\frac{1}{3} \text { and } \mathrm{c}=1$


Mean Value Theoram exercise 14.2 question 1(iii)

Answer: $\frac{3}{2}$
Hint:You must know the formula of Lagrange’s Mean Value Theorem.
Given: $f(x)=x(x-1) \text { on }[1,2]$
Solution:$f(x)=x(x-1)=x^{2}-x$

$f(x)$ is a polynomial function.
It is continuous in [1, 2]
$f^{\prime}(x)=2 x-1$
(Which is defined in [1, 2])
$\therefore f(x)$ is differentiable in [1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,2] \\ &f^{\prime}(c)=\frac{f(2)-f(1)}{2-1} \\ &2 c-1=\frac{\left(2^{2}-2\right)-\left(1^{2}-1\right)}{1} \end{aligned}$
$\begin{aligned} &2 c-1=(4-2)-(1-1) \\ &2 c-1=2-0 \\ &2 c-1=2 \\ &2 c=2+1 \\ &c=\frac{3}{2} \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(iv) maths

Answer: $\frac{1}{2}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x^{2}-3 x+2 \text { on }[-1,2]$
Solution:
$f(x)=x^{2}-3 x+2$

$f(x)$ is a polynomial function.
It is continuous in [-1, 2]
$f^{\prime}(x)=2 x-3$
(Which is defined in [-1, 2])
$\therefore f(x)$ is differentiable in [-1, 2]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[-1,2] \\ &f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \end{aligned}$
$\begin{aligned} &2 c-3=\frac{\left(2^{2}-3(2)+2\right)-\left((-1)^{2}-3(-1)+2\right)}{2+1} \\ &2 c-3=\frac{(4-6+2)-(1+3+2)}{3} \end{aligned}$
$\begin{aligned} &2 c-3=\frac{0-6}{3} \\ &2 c-3=\frac{-6}{3} \\ &2 c-3=-2 \\ &2 c=-2+3 \\ &2 c=1 \\ &c=\frac{1}{2} \end{aligned}$



Mean Value Theoram exercise 14.2 question 1(v)

Answer: 2
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=2 x^{2}-3 x+1 \text { on }[1,3]$
Solution:
$f(x)=2 x^{2}-3 x+1$

$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=4 x-3$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\ &4 c-3=\frac{\left(2(3)^{2}-3(3)+1\right)-\left(2(1)^{2}-3(1)+1\right)}{2} \end{aligned}$
$\begin{aligned} &4 c-3=\frac{(2(9)-9+1)-(2-3+1)}{2} \\ &4 c-3=\frac{(18-9+1)-(2-3+1)}{2} \end{aligned}$
$\begin{aligned} &4 c-3=\frac{10-0}{2} \\ &4 c-3=5 \\ &4 c=5+3 \\ &c=\frac{8}{4} \\ &c=2 \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(vi)

Answer: 3
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x^{2}-2 x+4 \text { on }[1,5]$
Solution:
$f(x)=x^{2}-2 x+4$

$f(x)$ is a polynomial function.
It is continuous in [1, 5]
$f^{\prime}(x)=2 x-2$
(Which is defined in [1, 5])
$\therefore f(x)$ is differentiable in [1, 5]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,5] \\ &f^{\prime}(c)=\frac{f(5)-f(1)}{5-1} \\ &2 c-2=\frac{\left((5)^{2}-2(5)+4\right)-\left(2(1)^{2}-2(1)+4\right)}{4} \end{aligned}$
$\begin{aligned} &2 c-2=\frac{(25-10+4)-(1-2+4)}{4} \\ &2 c-2=\frac{19-3}{4} \end{aligned}$
$\begin{aligned} &2 c-2=\frac{16}{4} \\ &2 c-2=4 \end{aligned}$
$\begin{aligned} &2 c=4+2 \\ &2 c=6 \\ &c=\frac{6}{2} \\ &c=3 \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(vii)

Answer: $\frac{1}{2}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=2 x-x^{2} \text { on }[0,1]$
Solution:
$f(x)=2 x-x^{2}$

$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=2-2 x$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\ &2-2 c=\frac{\left(2(1)-(1)^{2}\right)-\left(2(0)-(0)^{2}\right)}{1} \end{aligned}$
$\begin{aligned} &2-2 c=(2-1)-0 \\ &2-2 c=1 \\ &2 c=2-1 \end{aligned}$
$\begin{aligned} &2 c=1 \\ &c=\frac{1}{2} \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(viii) maths

Answer: $4 \pm \frac{2}{\sqrt{3}}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=(x-1)(x-2)(x-3) \text { on }[0,4]$
Solution:$\begin{aligned} &f(x)=(x-1)(x-2)(x-3) \\ &f(x)=x^{3}-6 x^{2}+11 x-6 \end{aligned}$

$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=3 x^{2}-12 x+11$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=\frac{(4-1)(4-2)(4-3)-(0-1)(0-2)(0-3)}{4} \\ &3 c^{2}-12 c+11=\frac{(3)(2)(1)-(-1)(-2)(-3)}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=\frac{6+6}{4} \\ &3 c^{2}-12 c+11=\frac{12}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}-12 c+11=3 \\ &3 c^{2}-12 c+11-3=0 \\ &3 c^{2}-12 c+8=0 \end{aligned}$
Quadratic Equation,
$\begin{aligned} &c=\frac{12 \pm \sqrt{144-96}}{6} \\ &c=\frac{12 \pm \sqrt{48}}{6} \end{aligned}$
$\begin{aligned} &c=\frac{12 \pm 4 \sqrt{3}}{6} \\ &c=4 \pm \frac{2 \sqrt{3}}{3} \\ &c=4 \pm \frac{2}{\sqrt{3}} \end{aligned}$
Both values lie between [0, 4]



Mean Value Theoram exercise 14.2 question 1(ix)

Answer: $\pm \frac{1}{\sqrt{2}}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given:$f(x)=\sqrt{25-x^{2}} \text { on }[-3,4]$
Solution:
$f(x)=\sqrt{25-x^{2}}$

$f(x)$ is a polynomial function.
It is continuous in [-3, 4]
$\begin{aligned} &f^{\prime}(x)=\frac{1}{2}\left(25-x^{2}\right)^{\frac{-1}{2}}(-2 x) \\ &f^{\prime}(x)=\frac{-x}{\sqrt{25-x^{2}}} \end{aligned}$
(Which is defined in [-3, 4])
$\therefore f(x)$ is differentiable in [-3, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[-3,4] \\ &f^{\prime}(c)=\frac{f(4)-f(-3)}{4-(-3)} \end{aligned}$
$\begin{aligned} &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{25-(4)^{2}}-\sqrt{25-(-3)^{2}}}{4+3} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{25-16}-\sqrt{25-9}}{7} \end{aligned}$
$\begin{aligned} &\frac{-c}{\sqrt{25-c^{2}}}=\frac{\sqrt{9}-\sqrt{16}}{7} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{3-4}{7} \\ &\frac{-c}{\sqrt{25-c^{2}}}=\frac{-1}{7} \end{aligned}$
$\begin{aligned} &-7 c=-\sqrt{25-c^{2}} \\ &7 c=\sqrt{25-c^{2}} \end{aligned}$
Squaring on both sides,
$\begin{aligned} &49 c^{2}=25-c^{2} \\ &49 c^{2}+c^{2}-25=0 \\ &50 c^{2}-25=0 \end{aligned}$
$\begin{aligned} &2 c^{2}-1=0 \\ &2 c^{2}=1 \\ &c^{2}=\frac{1}{2} \\ &c^{2}=\pm \frac{1}{\sqrt{2}} \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(x)

Answer: $\sqrt{\frac{4}{\pi}-1}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=\tan ^{-1} x \text { on }[0,1]$
Solution:
$f(x)=\tan ^{-1} x$

$f(x)$ is a polynomial function.
It is continuous in [0, 1]
$f^{\prime}(x)=\frac{1}{\left(1+x^{2}\right)}$
(Which is defined in [0, 1])
$\therefore f(x)$ is differentiable in [0, 1]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,1] \\ &f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\ &\frac{1}{1+c^{2}}=\frac{\tan ^{-1}(1)-\tan ^{-1}(0)}{1} \end{aligned}$
$\begin{aligned} &\frac{1}{1+c^{2}}=\frac{\frac{\pi}{4}-0}{1} \\ &\frac{1}{1+c^{2}}=\frac{\pi}{4} \end{aligned}$
$\begin{aligned} &\pi\left(1+c^{2}\right)=4 \\ &\pi+\pi c^{2}=4 \\ &\pi c^{2}=4-\pi \end{aligned}$
$\begin{aligned} &c^{2}=\frac{4-\pi}{\pi} \\ &c=\sqrt{\frac{4-\pi}{\pi}} \end{aligned}$
$c=\sqrt{\frac{4}{\pi}-1}$


Mean Value Theoram exercise 14.2 question 1(xi)

Answer: $\sqrt{3}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x+\frac{1}{x} \text { on }[1,3]$
Solution:
$f(x)=x+\frac{1}{x}$

$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=1-\frac{1}{x^{2}}$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\ &1-\frac{1}{c^{2}}=\frac{3+\frac{1}{3}-1-\frac{1}{1}}{2} \end{aligned}$
$1-\frac{1}{c^{2}}=\frac{3+\frac{1}{3}-1-1}{2}$
$\begin{aligned} &1-\frac{1}{c^{2}}=\frac{9+1-3-3}{2 \times 3} \\ &1-\frac{1}{c^{2}}=\frac{10-6}{6} \end{aligned}$
$\begin{aligned} &1-\frac{1}{c^{2}}=\frac{4}{6} \\ &1-\frac{1}{c^{2}}=\frac{2}{3} \end{aligned}$
$\begin{aligned} &\frac{1}{c^{2}}=1-\frac{2}{3} \\ &\frac{1}{c^{2}}=\frac{3-2}{3} \end{aligned}$
$\begin{aligned} &\frac{1}{c^{2}}=\frac{1}{3} \\ &c^{2}=3 \\ &c=\sqrt{3} \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(xii)

Answer: $\frac{-8+4 \sqrt{13}}{3}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x(x+4)^{2} \text { on }[0,4]$
Solution:
$\begin{aligned} &f(x)=x(x+4)^{2} \\ &f(x)=x\left(x^{2}+16+8 x\right) \\ &f(x)=x^{3}+8 x^{2}+16 x \end{aligned}$

$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=3 x^{2}+16 x+16$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \end{aligned}$
$\begin{aligned} &3 c^{2}+16 c+16=\frac{(4)^{3}+8(4)^{2}+16(4)-(0)^{3}+8(0)^{2}+16(0)}{4} \\ &3 c^{2}+16 c+16=\frac{64+128+64-0}{4} \end{aligned}$
$\begin{aligned} &3 c^{2}+16 c+16=\frac{256}{4} \\ &3 c^{2}+16 c+16=64 \\ &3 c^{2}+16 c+16-64=0 \\ &3 c^{2}+16 c-48=0 \end{aligned}$
$\begin{aligned} &c=\frac{-16 \pm \sqrt{(16)^{2}-4(3)(-48)}}{6} \\ &c=\frac{-16 \pm \sqrt{256+576}}{6} \end{aligned}$
$c=\frac{-16 \pm \sqrt{832}}{6}$
$c=\frac{-8 \pm 4 \sqrt{13}}{3}$
But in [0, 4], only $\frac{-8 \pm 4 \sqrt{13}}{3}$ exists.




Mean Value Theoram exercise 14.2 question 1(xiii)

Answer: $\sqrt{6}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=\sqrt{x^{2}-4} \text { on }[2,4]$
Solution:
$f(x)=\sqrt{x^{2}-4}$

$f(x)$ is a polynomial function.
It is continuous in [2, 4]
$\begin{aligned} &f^{\prime}(x)=\frac{1}{2}\left(\frac{2 x}{\sqrt{x^{2}-4}}\right) \\ &f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}} \end{aligned}$
(Which is defined in [2, 4])
$\therefore f(x)$ is differentiable in [2, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[2,4] \\ &f^{\prime}(c)=\frac{f(4)-f(2)}{4-2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{(4)^{2}-4}-\sqrt{(2)^{2}-4}}{2} \\ &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{16-4}-\sqrt{4-4}}{2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\frac{\sqrt{12}-0}{2} \\ &\frac{c}{\sqrt{c^{2}-4}}=\frac{2 \sqrt{3}}{2} \end{aligned}$
$\begin{aligned} &\frac{c}{\sqrt{c^{2}-4}}=\sqrt{3} \\ &c=\sqrt{3\left(c^{2}-4\right)} \end{aligned}$
Squaring on both sides,
$\begin{aligned} &c^{2}=3\left(c^{2}-4\right) \\ &c^{2}=3 c^{2}-12 \\ &3 c^{2}-c^{2}=12 \\ &2 c^{2}=12 \\ &c^{2}=6 \\ &c=\sqrt{6} \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(xiv) maths

Answer: 2
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x^{2}+x-1 \text { on }[0,4]$
Solution:
$f(x)=x^{2}+x-1$

$f(x)$ is a polynomial function.
It is continuous in [0, 4]
$f^{\prime}(x)=2 x+1$
(Which is defined in [0, 4])
$\therefore f(x)$ is differentiable in [0, 4]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0,4] \\ &f^{\prime}(c)=\frac{f(4)-f(2)}{4-2} \end{aligned}$
$\begin{aligned} &2 c+1=\frac{\left((4)^{2}+4-1\right)-\left((0)^{2}+0-1\right)}{4} \\ &2 c+1=\frac{(16+4-1)-(0+0-1)}{4} \end{aligned}$
$\begin{aligned} &2 c+1=\frac{19+1}{4} \\ &2 c+1=\frac{20}{4} \end{aligned}$
$\begin{aligned} &2 c+1=5 \\ &2 c=5-1 \\ &2 c=4 \\ &c=\frac{4}{2} \\ &c=2 \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(xv)

Answer: $\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right)$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given:$f(x)=\sin x-\sin 2 x-x \text { on }[0, \pi]$
Solution:
$f(x)=\sin x-\sin 2 x-x$

$f(x)$ is a polynomial function.
It is continuous in $\left [ 0,\pi \right ]$
$f^{\prime}(x)=\cos x-2 \cos 2 x-1$
(Which is defined in $\left [ 0,\pi \right ]$)
$\therefore f(x)$ is differentiable in $\left [ 0,\pi \right ]$. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[0, \pi] \\ &f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi-0} \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c-1=\frac{(\sin \pi-\sin 2 \pi-\pi)-(\sin 0-\sin 0-0)}{\pi} \\ &\cos c-2 \cos 2 c-1=\frac{(0-0-\pi)-(0-0-0)}{\pi} \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c-1=\frac{-\pi}{\pi} \\ &\cos c-2 \cos 2 c-1=-1 \\ &\cos c-2 \cos 2 c=-1+1 \end{aligned}$
$\begin{aligned} &\cos c-2 \cos 2 c=0 \\ &\cos c-2\left(2 \cos ^{2} c-1\right)=0 \\ &\cos c-4 \cos ^{2} c+2=0 \\ &4 \cos ^{2} c-\cos c-2=0 \end{aligned}$
$\begin{aligned} &\cos c=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 4 \times(-2)}}{2 \times 4} \\ &\cos c=\frac{1 \pm \sqrt{1+32}}{8} \end{aligned}$
$\begin{aligned} &\cos c=\frac{1 \pm \sqrt{33}}{8} \\ &c=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right) \end{aligned}$


Mean Value Theoram exercise 14.2 question 1(xvi)

Answer: $\frac{7}{3}$
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=x^{3}-5 x^{2}-3 x \text { on }[1,3]$
Solution:
$f(x)=x^{3}-5 x^{2}-3 x$

$f(x)$ is a polynomial function.
It is continuous in [1, 3]
$f^{\prime}(x)=3 x^{2}-10 x-3$
(Which is defined in [1, 3])
$\therefore f(x)$ is differentiable in [1, 3]. Hence it satisfies the condition of Lagrange’s Mean Value Theorem.
Now, there exists at least one value,
$\begin{aligned} &c \in[1,3] \\ &f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{\left((3)^{3}-5(3)^{2}-3(3)\right)-\left((1)^{3}-5(1)^{2}-3(1)\right)}{2} \\ &3 c^{2}-10 c-3=\frac{(27-45-9)-(1-5-3)}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{(27-54)-(1-8)}{2} \\ &3 c^{2}-10 c-3=\frac{(-27)-(-7)}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=\frac{-27+7}{2} \\ &3 c^{2}-10 c-3=\frac{-20}{2} \end{aligned}$
$\begin{aligned} &3 c^{2}-10 c-3=-10 \\ &3 c^{2}-10 c-3+10=0 \\ &3 c^{2}-10 c+7=0 \\ &3 c^{2}-3 c-7 c+7=0 \end{aligned}$
$\begin{aligned} &3 c(c-1)-7(c-1)=0 \\ &(3 c-7)(c-1)=0 \end{aligned}$
$c=\frac{7}{3} \text { And } c=1$
$c=\frac{7}{3}$ Value exists.


Mean Value Theoram exercise 14.2 question 2

Answer: Not applicable
Hint: Using Lagrange’s mean theorem and limits.

Given: $f(x)=|x| \text { on }[-1,1]$
Solution:
Lagrange’s mean value theorem states if a function$f(x)$ is continuous on a closed interval [a, b] and differentiable on the open interval (a, b), then there is at least one point x = c on this interval, such that
Differentiability at x = 0:
LHD =
$\begin{aligned} &\lim _{x \rightarrow 0^{-}} \frac{f(0-h)-f(0)}{-h} \\ &\lim _{x \rightarrow 0^{-}} \frac{-(0-h)-0}{-h} \end{aligned}$
$=\lim _{x \rightarrow 0^{-}} \frac{h-0}{-h}$$\begin{aligned} & \lim _{x \rightarrow 0^{-}} \frac{h}{-h} \\ =&-1 \end{aligned}$

RHD = $\lim _{x \rightarrow 0^{+}} \frac{f(0-h)-f(0)}{-h}$

$\begin{aligned} &=\lim _{x \rightarrow 0^{-}} \frac{(0-h)-0}{-h} \\ &=\lim _{x \rightarrow 0^{-}} \frac{-h-0}{-h} \\ &=\lim _{x \rightarrow 0^{-}} \frac{-h}{-h} \\ &=1 \end{aligned}$

$\mathrm{LHS} \neq \mathrm{RHS}$

$\therefore f(x)$ is not differentiable at x = 0

$\therefore$Lagrange’s mean value theorem is not applicable for function f (x) = |x| on [-1, 1]




Mean Value Theoram exercise 14.2 question 3

Answer:
Hint: Check the continuity of function

Given: $f(x)=\frac{1}{x} \text { on }[-1,1]$
Solution:
$f(x)=\frac{1}{x} \text { on }[-1,1]$
It is clear $x\neq 0$
$\Rightarrow$ f (x) exists for all the values of x except 0
$\Rightarrow$ f (x) is the discontinuous at x = 0
So, f (x) is not continuous in [-1, 1]
Thus, the Lagrange’s mean value theorem is not applicable for the function:
$f(x)=\frac{1}{x} \text { on }[-1,1]$



Mean Value Theoram exercise 14.2 question 4

Answer: Not applicable
Hint: You must know the formula of Lagrange’s Mean Value Theorem.

Given: $f(x)=\frac{1}{4 x-1}, 1 \leq x \leq 4$
Solution:
$f(x)=\frac{1}{4 x-1} \text { on }[1,4]$
Here, $4 x-1>0$

f'(x) has the unique values for all x except $\frac{1}{4}$

So, f (x) is continuous in [1, 4]

$f(x)=\frac{1}{4 x-1}$
Differentiate:
$\begin{aligned} &f(x)=(-1)(4 x-1)^{-2}(4) \\ &f^{\prime}(x)=\frac{-4}{(4 x-1)^{2}} \end{aligned}$

f (x) is differentiable in (1, 4)

So, there exists a point c $\in$ (1, 4)

$\begin{aligned} &f^{\prime}(c)=\frac{f(4)-f(1)}{4-1} \\ &f^{\prime}(c)=\frac{f(4)-f(1)}{3} \end{aligned}$

$\frac{-4}{(4 c-1)^{2}}=\frac{\frac{1}{4(4)-1}-\frac{1}{4(1)-1}}{3}$

$\frac{-4}{(4 c-1)^{2}}=\frac{\frac{1}{15}-\frac{1}{3}}{3}$

$-3(4)=(4 c-1)^{2}\left(\frac{1}{15}-\frac{1}{3}\right)$

$\begin{aligned} &-12=(4 c-1)^{2}\left(\frac{3-15}{45}\right) \\ &-12=(4 c-1)^{2}\left(\frac{-12}{45}\right) \end{aligned}$

$-12 \times \frac{45}{-12}=(4 c-1)^{2}$

$\begin{aligned} &(4 c-1)^{2}=45 \\ &4 c-1=\sqrt{45} \\ &4 c-1=\pm 3 \sqrt{5} \end{aligned}$

$\begin{aligned} &c=\frac{\pm 3 \sqrt{5}+1}{4} \\ &c=\frac{3 \sqrt{5}+1}{4} \approx 1.92 \in(1,4) \end{aligned}$
Thus, Lagrange’s Theorem is verified.


Mean Value Theoram exercise 14.2 question 5 maths

Answer: $\left(\frac{9}{2}, \frac{1}{4}\right)$
Hint: You must know the value of tangent parabola.

Given:$y=(x-4)^{2}$ parallel to chord: $(4,0)(5,1)$
Solution:
$y=(x-4)^{2}$
Since tangent is parallel to chord joining (3, 0) and (4, 1), so, we get:
$2(x-4)=\frac{1-0}{5-4}$
$\begin{aligned} &2 x-8=\frac{1}{1} \\ &2 x=9 \end{aligned}$
$x=\frac{9}{2}$
$\begin{aligned} &\text { When } &x=\frac{9}{2}, \text { then } y=\left(\frac{9}{2}-4\right)^{2} \end{aligned}$
$\begin{aligned} &=\left(\frac{9-8}{2}\right)^{2} \\ &=\left(\frac{1}{2}\right)^{2} \\ &=\frac{1}{4} \end{aligned}$
Hence, the point is $\left(\frac{9}{2}, \frac{1}{4}\right) .$

Mean Value Theoram exercise 14.2 question 6

Answer: $\left(\frac{1}{2}, \frac{3}{4}\right)$
Hint: You must know the slope of tangent’

Given:$y=x^{2}+x$ parallel to chord: $\left [ 0,0 \right ],\left [ 1,2 \right ]$
Solution:
$y=x^{2}+x,[0,0],[1,2]$
$\frac{d y}{d x}=2 x+1$
Slope of tangent $= 2x + 1$
Slope of line joining [0, 0] and [1, 2] = = 2
The tangent is parallel to this line:
$\therefore$ Slope is equal
$\begin{aligned} &2 x+1=2 \\ &2 x=2-1 \\ &2 x=1 \\ &x=\frac{1}{2} \end{aligned}$
$x=\frac{1}{2}$
$\therefore \quad y=\left(\frac{1}{2}\right)^{2}+\frac{1}{2}$
$\begin{aligned} &=\left(\frac{1}{4}\right)+\frac{1}{2} \\ &=\frac{3}{4} \end{aligned}$
Hence, the points are $\left(\frac{1}{2}, \frac{3}{4}\right)$

Mean Value Theoram exercise 14.2 question 7

Answer: $\left(\frac{7}{2}, \frac{1}{4}\right)$
Hint: You must know the value of tangent parabola.

Given: $y=(x-3)^{2}$parallel to chord: $(3,0)(4,1)$
Solution:
$y=(x-3)^{2}$
Since tangent is parallel to chord joining (3, 0) and (4, 1), so, we get:
$2(x-3)=\frac{1-0}{4-3}$
$\begin{aligned} &2 x-6=\frac{1}{1} \\ &2 x=7 \\ &x=\frac{7}{2} \end{aligned}$
$\begin{aligned} \text {When} \; \; \; \; \; &x=\frac{7}{2}, \text { then } &y=\left(\frac{7}{2}-3\right)^{2} \end{aligned}$
$\begin{aligned} &=\left(\frac{7-6}{2}\right)^{2} \\ &=\left(\frac{1}{2}\right)^{2} \\ &=\frac{1}{4} \end{aligned}$
Hence, the point is $\left(\frac{7}{2}, \frac{1}{4}\right)$

Mean Value Theoram exercise 14.2 question 8

Answer: $\left(\pm \sqrt{\frac{7}{3}}, \mp \frac{2}{3} \sqrt{\frac{7}{3}}\right)$
Hint: You must know the slope of the tangent.

Given:$y=x^{3}-3 x ;(1,-2),(2,2)$
Solution:
$\begin{aligned} &y=x^{3}-3 x \\ &\frac{d y}{d x}=3 x^{2}-3 \end{aligned}$
Slope of tangent $=3 x^{2}-3$
Slope of line joining (1, -2) and (2, 2) $=\frac{2-(-2)}{2-1}$
$\begin{aligned} &=\frac{2+2}{1} \\ &=4 \end{aligned}$
The tangent is parallel to the line: $y=x^{3}-x$
Slope is equal to $3 x^{2}-3=4$
$\begin{gathered} 3 x^{2}=7 \\ x^{2}=\frac{7}{3} \\ x=\pm \sqrt{\frac{7}{3}} \\ y=x^{3}-x \end{gathered}$
$\begin{aligned} &=\left(\sqrt{\frac{7}{3}}\right)^{3}+3 \sqrt{\frac{7}{3}} \\ &=\sqrt{\frac{7}{3}}\left(\frac{7}{3}-3\right) \\ &=\sqrt{\frac{7}{3}}\left(\frac{7-9}{3}\right) \\ &=\frac{2}{3} \sqrt{\frac{7}{3}} \end{aligned}$
Points are $\left(\pm \sqrt{\frac{7}{3}}, \mp \frac{2}{3} \sqrt{\frac{7}{3}}\right)$



Mean Value Theoram exercise 14.2 question 9 maths

Answer: $\left(\pm \sqrt{\frac{13}{3}} \cdot\left(\frac{13}{3}\right)^{\frac{1}{2}}+1\right)$
Hint: You must know the slope of the tangent.

Given:$y=x^{3}+1 ;(1,2),(3,28)$
Solution:
$\begin{aligned} &y=x^{3}+1 \\ &\frac{d y}{d x}=3 x^{2} \end{aligned}$
Slope of tangent = 3x2
Slope of line joining (1, 2) and (3, 28) $=\frac{28-2}{3-1}$
$\begin{aligned} &=\frac{26}{2} \\ &=13 \end{aligned}$
The tangent is parallel to the line:
Slope is equal to $3x^{2} = 13$
$\begin{aligned} &x^{2}=\frac{13}{3} \\ &x=\pm \sqrt{\frac{13}{3}} \end{aligned}$
$\Rightarrow \quad y=x^{3}+1$
$\begin{aligned} &=\left(\sqrt{\frac{13}{3}}\right)^{3}+1 \\ &=\left(\frac{13}{3}\right)^{\frac{3}{2}}+1 \end{aligned}$
Points are $\left(\pm \sqrt{\frac{13}{3}} ,\left (\frac{13}{3}\right)^{\frac{1}{2}}+1\right)$

Mean Value Theoram exercise 14.2 question 10

Answer: Point P $\left(\frac{a}{2 \sqrt{2}}, \frac{a}{2 \sqrt{2}}\right)$
Hint: Find $\frac{dy}{dx}$ and then use this formula for slope of tangent.

Given: $\mathrm{x}=a \cos ^{3} \theta, y=a \sin ^{3} \theta, \quad 0<\theta<\frac{\pi}{2} .$
The tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
Solution:
$\begin{aligned} &x=a \cos ^{3} \theta \\ &\frac{d x}{d \theta}=-3 a \cos ^{2} \theta \sin \theta \\ &y=a \sin ^{3} \theta \\ &\frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta \end{aligned}$
Now, $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
$\begin{aligned} &\Rightarrow \frac{d y}{d x}=\frac{3 a \sin ^{2} \theta \cdot \cos \theta}{-3 a \cos ^{2} \theta \cdot \sin \theta} \\ &\Rightarrow \frac{d y}{d x}=-\tan \theta \end{aligned}$
Now, slope of chord $=\frac{a-0}{0-a}$
Slope of chord $=\frac{a}{-a}=-1$
Slope of chord $=\frac{d y}{d x}$
$\begin{aligned} &\Rightarrow-1=-\tan \theta \\ &\Rightarrow \tan \theta=1 \\ &\Rightarrow \tan \theta=\tan \frac{\pi}{4} \\ &\Rightarrow \theta=\frac{\pi}{4} \end{aligned}$
Now, $x=a \cos ^{3} \theta$
$\begin{aligned} &=a \cos ^{3} \frac{\pi}{4} \\ &=a\left(\frac{1}{\sqrt{2}}\right)^{2} \\ &=\frac{a}{2 \sqrt{2}} \quad\left[\because \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\right] \end{aligned}$
Now, $y=a \sin ^{3} \theta$
$\begin{aligned} &=a \sin ^{3} \frac{\pi}{4} \\ &=a\left(\frac{1}{\sqrt{2}}\right)^{2} \\ &=\frac{a}{2 \sqrt{2}} \quad\left[\because \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}\right] \end{aligned}$
Hence Point P is $\left(\frac{a}{2 \sqrt{2}}, \frac{a}{2 \sqrt{2}}\right)$

Mean Value Theoram exercise 14.2 question 11

Answer:
Hint: Use Lagrange’s mean value theorem formula.

Given:Use Lagrange’s mean value theorem on $(b-a) \sec ^{2} a<\tan b-\tan a<(b-a) \sec ^{2} b$ , where $0<a<b<\frac{\pi}{2}$.
Solution:
$\text { Let } f(x)=\tan x \text { in }(a, b) \text { where } 0<a<b<\frac{\pi}{2}$
$\therefore$ f (x) is continuous in [a, b] and differentiable in (a, b)
Now, $f^{\prime}(x)=\sec ^{2} x$
$\Rightarrow f^{\prime}(c)=\sec ^{2} c$
By Mean Value Theorem,
$\begin{aligned} f^{\prime}(c) &=\frac{f(b)-f(a)}{b-a} \\ f^{\prime}(c) &=\frac{\tan b-\tan a}{b-a} \end{aligned}$ $c \in(a, b)$
$\begin{aligned} &\Rightarrow a<c<b \\ &\Rightarrow \sec ^{2} a<\sec ^{2} c<\sec ^{2} b \\ &\Rightarrow \sec ^{2} a<\frac{\tan b-\tan a}{b-a}<\sec ^{2} b \end{aligned}$


Hence, proved.

RD Sharma Class 12th Exercise 14.2 has 26 questions, 24 of which are Level 1 and two are Level 2. The Level 1 sums are simple and can be completed in a short time. This exercise is based on Lagrange's Mean Value theorem, calculating the tangents to curve, parabola, and other essential functional problems.

RD Sharma Class 12th Exercise 14.2 material is created by a group of subject experts who have years of experience on question paper patterns. Moreover, it is also updated to the latest version, which means students don't have to worry about missing or additional questions. As this chapter contains many questions, referring to the material will ease your work and reduce preparation time. As there are many questions on a particular concept, students can practice some questions and refer to the solutions to save time and prepare efficiently.

RD Sharma Class 12 Chapter 14 Exercise 14.2 material can help students understand their class lectures better by practicing beforehand. The solved questions make it much easier to verify and pick out mistakes from the answers. This, in turn, reduces the number of doubts and provides a clear understanding of the chapter. Students can stay ahead of their class by practicing these solutions beforehand and completing the portion ahead of time.

RD Sharma Class 12 solutions Chapter 12 Ex 14.2 contain step-by-step solutions, it is straightforward for students to understand. Even as students do not know the chapter, they can easily pick up from these solutions. Moreover, the answers are available for free on Career360's website, which makes them easily accessible.

Thousands of students have already started using RD Sharma Class 12th Exercise 14.2 material as it is convenient and helps score better marks. However, the ones who didn't know about this should give it a try.

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)