RD Sharma Class 12 Exercise 27.2 Straight line in space Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 27.2 Straight line in space Solutions Maths - Download PDF Free Online

Edited By Lovekush kumar saini | Updated on Jan 25, 2022 09:47 AM IST

RD Sharma books are considered to be the best option for exam preparation. They are used by a majority of CBSE schools all over the country. RD Sharma books are well known to be comprehensive and informative which is why they are used extensively for setting up question papers.

Also Read - RD Sharma Solutions For Class 9 to 12 Maths

  • The RD Sharma class 12th exercise 27.2 is used by thousands of students and teachers for the practical knowledge of maths. The RD Sharma class 12 solution of Straight line in space exercise 27.2 consists of 36 questions covering all the concepts which are
  • Prove the lines are mutually perpendicular

  • lines through the points are perpendicular to the line through the points

  • lines through the points are parallel to the line through the points

  • The angle between the pair of lines given in vector and cartesian form

  • Equation of line passing through the points

  • Perpendicularity of two lines

RD Sharma Class 12 Solutions Chapter27 Straight line in space - Other Exercise

Straight Line in Space Excercise: 27.2

Straight Line in Space Exercise 27.2 Question 1

Answer: three direction cosines i.e. a, b, c are perpendicular to each other
Given: show that three lines with directions cosines \frac{12}{13},\frac{-3}{13},\frac{-4}{13},\frac{4}{13},\frac{12}{13},\frac{3}{13},\frac{3}{13},\frac{-4}{13},\frac{12}{13}; are mutually perpendicular
Hint: for mutally perpendicular
\vec{a}.\vec{b}=0,\vec{b}.\vec{c}=0,\vec{a}.\vec{c}=0
solution:
\begin{aligned} &1^{\text {st }} \text { vector } \vec{a}=\frac{12}{13} \hat{i}-\frac{3}{13} \hat{j}-\frac{4}{13} \hat{k} \\ \end{aligned}
\begin{aligned} &2^{\text {nd }} \text { vector } \vec{b}=\frac{4}{13} \hat{i}+\frac{12}{13} \hat{j}+\frac{3}{13} \hat{k} \\ \end{aligned}
\begin{aligned} &3^{\text {rd }} \text { vector } \vec{c}=\frac{3}{13} \hat{i}-\frac{4}{13} \hat{j}+\frac{12}{13} \hat{k} \end{aligned}
\begin{aligned} &\vec{a} \cdot \vec{b}=\frac{12}{13} \times \frac{4}{13}-\frac{3}{13} \times \frac{12}{13}-\frac{-4}{13} \times \frac{3}{13}=0 \\ \end{aligned}
\begin{aligned} &\vec{a} \cdot \vec{c}=\frac{36}{13 \times 13}+\frac{-12}{13 \times 13}-\frac{48}{13 \times 13}=0 \\ \end{aligned}
\begin{aligned} &\vec{b} \cdot \vec{c}=\frac{12}{13 \times 13}-\frac{48}{13 \times 13}+\frac{36}{13 \times 13}=0 \\\\ &=\frac{12-48+36}{13 \times 13}=\frac{0}{13 \times 13}=0 \end{aligned}
so all the three dimensions cosines are mutually perpendicular to each other .

Straight Line in Space Exercise 27.2 Question 2

Answer : the lines are perpendicular to the given points showed
Given: show that the line through the points( 1 ,-1,2) and (3,4,-2) is perpendicular to the points (0,3,2) and (3,5,6)
hint: sum will solve by the help of the direction ratio
\begin{aligned} &\mathrm{DR}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}\\ \end{aligned}
Solution: direction ratio of
\begin{aligned} &Line_{1}=(3-1)_{,}(4+1),(-2-2)\\ \end{aligned}
\begin{aligned} &=2 \hat{i}+5 \hat{j}-4 \hat{k}\\ \end{aligned}

Direction ratio of \begin{aligned} &Line_{2}=(3-0),(5-3),(6-2)\\ \end{aligned}
\begin{aligned} &=3 \hat{i}+2 \hat{j}+4 \hat{k}\\ \end{aligned}
For showing perpendicular, \begin{aligned} &\text { } \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0\\ \end{aligned}
Now
\begin{aligned} &3.2+10-16=6+10-16\\ \end{aligned}
=0
Hence line1 and line2 are perpendicular to the points (showed)

Straight Line in Space Exercise 27.2 Question 3

Answer: The given two lines will be parallel through the two points equal to ‘0’ showed;

Given: Show that the line through the points(4,7,8) and (2,3,4) is parallel to the line through the points (-1,-2,1) and (1,2,5)

Hint: for showing parallel v1 and v2 must be equal to ‘0’

Solution:

\begin{aligned} &\vec{v}_{1}=(4-2) \hat{i}+(7-3) \hat{j}+(8-4) \hat{k} \\ &\overrightarrow{v_{1}}=2 \hat{i}+4 \hat{j}+4 \hat{k} \\ &\overline{v_{2}}=(1+1) \hat{i}+(2+2) \hat{j}+(5-1) \hat{k} \\ &\overline{v_{2}}=2 \hat{i}+4 \hat{j}+4 \hat{k} \end{aligned}

Now, \begin{aligned} \cos \theta=\cos \theta &=\frac{\overrightarrow{v_{1}} \overline{v_{2}}}{\left|\overrightarrow{v_{1}}\right|\left|\overrightarrow{v_{2}}\right|} \\ \end{aligned}

\begin{aligned} &=\frac{4+16+16}{\sqrt{36} \sqrt{36}} \\ \end{aligned}

\begin{aligned} =& \frac{36}{36} \\ \end{aligned}

\begin{aligned} &=1 \\ \end{aligned}

\begin{aligned} \cos \theta &=1 \\ \end{aligned}

\begin{aligned} \cos \theta=\cos 0^{\circ} \\ \end{aligned}

\begin{aligned} \theta=0^{\circ} \\ \end{aligned}

\begin{aligned} \mathrm{v}_{1} \| \mathrm{v}_{2} \text { (proved) } \end{aligned}

So the two lines are parallel to each other

Straight Line in Space Exercise 27.2 Question 4

Answer : the Cartesian equation which is parallel to given lines will be \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}
Given: find the Cartesian equation of the line which passes through the points (-2,4,-5)and parallel to the given line by: \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}
Hint: let the Cartesian equation will be :- \frac{x+x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z+z_{1}}{c}
Solution: \frac{x+x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z+z_{1}}{c} [here a,b,c\; are 3,-5,6 and\; x,y,z \; is -2,4,-5]
now, \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}
so the above line \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} is parallel to \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6} and passes through the given points.

Straight Line in Space Exercise 27.2 Question 5

Answer : the given lines \frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} and \frac{x}{1}=\frac{y}{2}=\frac{z}{3} are perpendicular to each other
Given: show that lines \frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} and \frac{x}{1}=\frac{y}{2}=\frac{z}{3} are perpendicular to each other.
Hint: For showing perpendicular a.b must be equal to ‘ 0’
Solution: \frac{x-5}{7}=\frac{y+2}{-5}=\frac{Z}{1}
Direction: ratio = 7,-5,1
Vector \vec{a}=7\hat{i}-5\hat{j}+\hat{k}
Again,
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}
\begin{aligned} &\therefore \text { Direction ratios }=1,2,3 \\ \end{aligned}
\begin{aligned} &\therefore \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k} \\ \end{aligned}
\begin{aligned} &\vec{a} \cdot \vec{b}=7-10+3 \\ &=0 \end{aligned}
So the given two lines are perpendicular to each other (showed)

Straight Line in Space Exercise 27.2 Question 6

Answer: the line joining by the point (2,1,1) is perpendicular to the line determined by the other two points
Given: show that the line joining to the point (2,1,1) is perpendicular to the line determined by the points (3,5,-1) and (4,3,-1)
Hint:
Direction ratio\left (x _{2}-0 \right ),\left ( y_{2}-0 \right ),\left ( z_{2}-0 \right )because line passes through origin
Solution:
\begin{aligned} &v_{1}=(2-0) \hat{i}+(1-0) \hat{j}+(1-0) \hat{k} \\ &v_{1}=2 \hat{i}+\hat{j}+\hat{k} \\ &v_{2}=(4-3) \hat{i}+(3-5) \hat{j}+(-1+1) \hat{k} \\ &v_{2}=\hat{i}-2 \hat{j} \end{aligned}
Now from \begin{aligned} v_{1} \cdot v_{2} &=0 \\ \end{aligned}
\begin{aligned} v_{1} v_{2} &=2-2 \\ &=0 \end{aligned}

So the line joining to the point (2,1,1) is perpendicular to the line joining by the determined points (3,5,-1) and (4,3,-1)

Straight Line in Space Exercise 27.2 Question 7

Answer: the equation parallel to x-axis will be \frac{x}{1}=\frac{y}{0}=\frac{3}{0}
Given: find the equation of the line parallel to x-axis and passing through the origin
Hint: the line parallel to x-axis so the direction ratio will be (1,0,0);(0,1,0);(0,0,1)
Solution:
Equation:
\begin{aligned} &\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\ &\frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0} \\ &\frac{x}{1}=\frac{y}{0}=\frac{z}{0} \end{aligned}
So the equation will be =\frac{x}{1}=\frac{y}{0}=\frac{z}{0}

Straight Line in Space Exercise 27.2 Question 8(i)

Answer: the angles between the lines will be 0^{0}
Given : find the angle between the points of lines
\vec{r}=(4 \hat{i} - \hat{j})+8(\hat{i}+2 \hat{j}-2 \hat{k}) and
\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})-\mu[2 \hat{i}+4 \hat{j}-4 \hat{k}] \\
Hint: \cos \theta= \frac{\overline{b_{1}} \cdot \overline{b_{2}}}{\left|b_{1}\right| \cdot\left|b_{2}\right|}
Solution:
The 1st line is parallel to b1= (i+2j-2k) and the 2nd line is parallel to b2 = (2i+4j-4k)
If \theta be an angle between the lines , so \theta will be the angle between b1&b2
So,\begin{aligned} &\cos \theta=\frac{2+8+8}{\sqrt{2^{2}+2^{2}(-2)} \sqrt{2^{2}+4^{2}+\left(-4^{2}\right)}} \\ \end{aligned}
\begin{aligned} &=\frac{18}{\sqrt{9 \mid \sqrt{36}}} \\ &=\frac{18}{3 \times 6} \\ &\quad=1 \\ &\cos \theta=\cos 0 \\ &\theta=0^{\circ} \end{aligned}

The angle between the lines will be 0^{0}

Straight Line in Space Exercise 27.2 Question 8(ii)

Answer: the angle between the points of lines will be \cos ^{-1}\frac{19}{21}
Given: find the angle between the points of lines
\vec{r}=(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+8(\hat{\mathrm{i}}+2 \hat{j}+2 \hat{k}) and
\vec{r}=(5 \hat{j}-2 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
Hint: \cos \theta=\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\vec{b}_{1}\right|\left|\overrightarrow{b_{2}}\right|}
Solution:
Let ‘\theta’ be the angle between points of lines
\begin{aligned} &\vec{b}_{1}=\hat{i}+2 \hat{j}+2 \hat{k} \\ &\overrightarrow{b_{2}}=3 \hat{i}+2 \hat{j}+6 \hat{k} \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{3+4+12}{\left|\sqrt{1^{2}+2^{2}+2^{2}} \| \sqrt{3^{2}+2^{2}+6^{2}}\right|} \\ \end{aligned}
\begin{aligned} &=\frac{19}{|\sqrt{9} \| \sqrt{49}|} \\ \end{aligned}
\begin{aligned} &=\frac{19}{3 \times 7} \\ \end{aligned}\begin{aligned} &=\frac{19}{3 \times 7} \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{19}{21} \\ \end{aligned}
\begin{aligned} &\theta=\cos ^{-1} \frac{19}{21} \end{aligned}
So the answer will be \cos ^{-1}\frac{19}{21}

Straight Line in Space Exercise 27.2 Question 8(iii)

Answer: the angle between the points of lines will be \frac{\pi }{3}
Given: find the angle between the points of lines
\begin{aligned} &\vec{r}=\lambda(\hat{i}+\hat{j}+2 \hat{k}) \\ &\vec{r}=2 \hat{j}+\mu(\sqrt{3}-1) \hat{\mathrm{i}}-(\sqrt{3}+1) \hat{j}+4 \hat{k} \end{aligned}
Hint: \cos \theta=\frac{\overrightarrow{b_{1}} \cdot \overline{b_{2}}}{\left|\vec{b}_{1}\right|\left|\overrightarrow{b_{2}}\right|}
Solution:
\begin{aligned} &\vec{r}=2 \hat{j}+\mu[(-1) \hat{i}-(1) \hat{j}+4 \hat{k}] \\\\ &\overrightarrow{b_{1}}=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6} \\\\ &\overrightarrow{b_{2}}=\sqrt{(\sqrt{3}-1)^{2}+(\sqrt{3}+1)^{2}+4^{2}}=\sqrt{24}=2 \sqrt{6} \\\\ &\therefore \cos \theta=\frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})[(\sqrt{3-1})-(\sqrt{3+1})+4 \hat{k}}{\sqrt{6} \times 2 \sqrt{6}} \\ &\qquad \begin{array}{c} \end{array} \end{aligned}
\begin{aligned} \cos \theta=\frac{1}{2} \therefore \theta=\frac{\pi}{3} \\\\ \Rightarrow \cos \theta=\cos 60^{\circ} \end{aligned}

Straight Line in Space Exercise 27.2 Question 9(i)

Answer: the angle between the given pairs of lines will be \cos ^{-1}=\frac{8}{5\sqrt{3}}
Given: find the angle between the following pairs of lines:
\frac{x+y}{3}=\frac{y-1}{5}=\frac{z+3}{4} and \frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}
Hints: \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
Solution:
Directon ratio = 3,5,4
Direction vector \vec{a}=3\hat{i}+5\hat{j}+4\hat{k}
Again DR=1,1,2
Direction vector \vec{b}=\hat{i}+\hat{j}+2\hat{k}
\begin{aligned} \cos \theta &=\frac{3+5+8}{\left|\sqrt{3^{2}+5^{2}+4^{2}}\right| \mid \sqrt{1^{2}+1^{2}+2^{2}}} \mid \\ &=\frac{16}{|\sqrt{50}| \sqrt{6} \mid} \\ =& \frac{8}{5 \sqrt{3}} \\ & \theta=\cos ^{-1} \frac{8}{5 \sqrt{3}} \end{aligned}
So the answer will be \theta =\cos ^{-1}\frac{8}{5\sqrt{3}}

Straight Line in Space Exercise 27.2 Question 9(ii)

Answer: the angle between the given pairs of a line is \cos ^{-1}=\frac{10}{9\sqrt{22}}
Given: find the angle between the pairs of lines
\begin{gathered} \frac{x-1}{2}=\frac{y-1}{3}=\frac{z-3}{-3} \text { and } \frac{x+3}{-1}=\frac{y-5}{8}=\frac{z-1}{4} \\ \end{gathered}
Hint:\begin{gathered} \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \end{gathered}
Solution: Direction \: ratio \: ofline_{1}=2,3,-3
Direction \; vector \vec{a}=2 \hat{i}+3 \hat{j}-3 \hat{k}\\\\
Direction ratio of line _{2}=-1,8,4\\\\\
Direction \: vector \vec{b}=-\hat{i}+8 \hat{j}+4 \hat{k}
\begin{aligned} \cos \theta &=\frac{-2+24-12}{\left|\sqrt{2^{2}+3^{2}-(3)^{2}} \| \sqrt{(-1)^{2}+8^{2}+4^{2}}\right|} \\ &=\frac{24-14}{|\sqrt{22} \| \sqrt{81}|} \\ &=\frac{10}{9 \sqrt{22}} \\ & \theta=\cos ^{-1}=\frac{10}{9 \sqrt{22}} \end{aligned}
The angle between the points will be \cos ^{-1}=\frac{10}{9\sqrt{22}}

Straight Line in Space Exercise 27.2 Question 9(iii)

Answer: the angle between the lines given in the question is \cos ^{-1}\frac{11}{14}
Given: find the angle between the pairs of lines;
\begin{aligned} &\frac{5-x}{-2}=\frac{y+3}{1}=\frac{1-z}{3} \text { and } \frac{x}{3}=\frac{1-y}{-2}=\frac{z+5}{-1} \\ \end{aligned}
Hint:
\begin{aligned} &\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \end{aligned}

Solution:

$$ \begin{aligned} &\frac{-(x-5)}{-2}=\frac{y-(-3)}{1}=\frac{-(3-1)}{3} \\ &\frac{x-b}{2}=\frac{y+3}{1}=\frac{(3+1)}{3} \end{aligned}

Direction \: \: vector \vec{a}=2 \hat{i}+\hat{j}-3 \hat{k}

Again:

\frac{x-0}{3}=\frac{(y-1)}{ 2}=\frac{(z+5)}{-1}

\begin{aligned} Direction \: \: vector \vec{b}=3 \hat{i}+2 \hat{j}-\hat{k} \end{aligned}

\begin{aligned} &\cos \theta=\frac{6+2+3}{\left|\sqrt{2^{2}+1^{2}+(-3)^{2}}\right| \sqrt{3^{2}+(-2)^{2}+(-1)^{2}} \mid} \\ \end{aligned}

\frac{11}{\sqrt{14} \sqrt{14}}=\frac{11}{14} \\

\theta=\cos ^{-1} \frac{11}{14}

So the angle between the lines will be\cos ^{-1}\frac{11}{14}

Straight Line in Space Exercise 27.2 Question 9(iv)

Answer: the angle between the pairs of lines will be \frac{\lambda }{2}
Given: find the angle between the points of lines
\begin{aligned} &\frac{x-2}{3}=\frac{y+3}{-2}=z=5 \\ &\frac{x+1}{1}=\frac{2 y-3}{3}=\frac{z-5}{2} \end{aligned}
Hint:\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
Solution:\frac{x-2}{3}=\frac{y-(-3)}{-2}=\frac{z-5}{0} \\
\vec{A}=3 \hat{i}-2 \hat{j}+0 \hat{k}
Secondly: \frac{x-(-1)}{1}=\frac{y-3 / 2}{3 / 2}=\frac{z-5}{2}
\cos \theta=\frac{(3)-3+0}{\sqrt{3^{2}+(-2)^{2}} \sqrt{1^{2}+(3 / 2)^{2}+(2)^{2}}} \\
\cos \theta=0
\cos \theta=\cos \frac{\lambda}{2}
\theta=\frac{\pi}{2}
So the angle will be \theta =\frac{\lambda }{2}

Straight Line in Space Exercise 27.2 Question 9(v)

Answer: the angle between the pairs of given line is \cos ^{-1}\frac{4}{5\sqrt{6}}
Given: find the angle between the pairs of lines
\begin{aligned} &\frac{x-5}{1}=\frac{2 y+6}{-2}=\frac{z-3}{1} \text { and } \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-6}{5} \\ \end{aligned}
Hint:\begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ \end{aligned}
Solution:
\begin{aligned} &\frac{x-5}{1}=\frac{y+3}{-1}=\frac{z-3}{1} \\\\ &a_{1}, b_{1}, c_{1}=1,-1,1 \\ \end{aligned}
again,
\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-6}{5} \\\\
\cdot a_{2}, b_{2}, c_{2}=3,4,5 \\\\
\cos \theta=\frac{3-4+5}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \sqrt{3^{2}+4^{2}+5^{2}}}
\begin{aligned} &\quad=\frac{8-4}{\sqrt{3} \sqrt{50}}=\frac{4}{5 \sqrt{6}} \\ &\cos \theta=\cos ^{-1} \frac{4}{5 \sqrt{6}} \end{aligned}
So the angle will be\cos ^{-1}\frac{4}{5\sqrt{6}}

Straight Line in Space Exercise 27.2 Question 10(i)

Answer: the angle between the pairs of lines will be \cos ^{-1}\frac{1}{65}
Given: find the angle between the pairs of lines with direction ratios proportional to
5,-12,13 and -3,4,5
Hint: \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{aligned}

Solution:
\begin{aligned} &\cos \theta=\frac{-15-48+65}{\sqrt{5^{2}+(-12)^{2}}+13^{2} \sqrt{(-3)^{2}+4^{2}}+5^{2}} \\ &=\frac{-63+65}{\sqrt{338} \sqrt{50}} \\ &=\frac{2}{13 \sqrt{2} \mid 5 \sqrt{2}} \\ &\therefore \quad \cos \theta=\frac{2}{65 \times 2}=\frac{1}{65} \\ &\therefore \quad \theta=\cos ^{-1} \frac{1}{65} \end{aligned}
The angle between the pairs of lines will be \cos ^{-1}\frac{1}{65}

Straight Line in Space Exercise 27.2 Question 10(ii)

Answer: the angle between the given pairs of lines will be \cos ^{-1}\frac{2}{3}
Given: find the angle between the pairs of lines with direction ratios proportion to2,2,1 and 4,1,8
Hint:\begin{gathered} \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{gathered}
Solution:\begin{gathered} \cos \theta=\frac{8+2+8}{\sqrt{2^{2}+2^{2}+1^{2}} \sqrt{4^{2}+1^{2}+8^{2}}} \\ \end{gathered}
\begin{gathered} =\frac{18}{\sqrt{9} \sqrt{81}} \\ =\cos \theta=\frac{2}{3} \\ \therefore \theta=\cos ^{-1} \frac{2}{3} \end{gathered}
So the angle between the pairs of lines will be \cos ^{-1}\frac{2}{3}

Straight Line in Space Exercise 27.2 Question 10(iii)

Answer: the angle between the given points of lines will be 90^{0}
Given: find the angle between the pairs of lines with direction ratio proportional to (1,2,-2) and
(-2,2,1)
Hint: \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{aligned}
Solution:\begin{aligned} &\cos \theta=\frac{-2+4-2}{\sqrt{1^{2}+2^{2}+(-2)^{2}} \sqrt{(-2)^{2}+2^{2}+1^{2}}} \\ \end{aligned}
\begin{aligned} &=\frac{0}{\sqrt{1+4+4} \sqrt{4+4+1}} \\ \end{aligned}
\begin{aligned} &\cos \theta=0 \\ \end{aligned}
\begin{aligned} \cos \theta=90^{\circ} \\ \therefore \theta=90^{\circ} \end{aligned}
The angle between the pairs of lines will be \theta =90^{0}

Straight Line in Space Exercise 27.2 Question 10(iv)

Answer: the angle between the given pairs of lines will be 90^{0}
Given: find the angle between the pairs of lines with direction ratio proportional to(a,b,c)and
(b-c), (c-a) (a-b)
Hint: \begin{aligned} \cos \theta=& \frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{aligned}
Solution:\begin{aligned} & a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=a b-a c+b c-b a+a c-b c=0 \\ \end{aligned}
\begin{aligned} & \therefore \cos \theta=\frac{0}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}} \\ \end{aligned}
\begin{aligned} \cos \theta=0 \\ \end{aligned}
\begin{aligned} & \cos \theta=90^{\circ} \\ \end{aligned}
\begin{aligned} \therefore \theta=90^{\circ} \end{aligned}
The angle between the pairs of lines will be \theta=90^{0}

Straight Line in Space Exercise 27.2 Question 11

Answer: the angle between the pairs given in the question \cos ^{-1}\frac{2}{3}
Given: find the angle between two lines on of which has direction ratio (2,2,1) while other one is obtained by joining the points (3,1,4) and (7,2,12)
Hint: \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{aligned}
Solution: now \left ( a_{1},b_{1},c_{1}\right )=2,2,1
While \begin{aligned} &a_{2}=\left(x_{2}-x_{1}\right)=4 \\ \end{aligned}
\begin{aligned} &b_{2}=\left(y_{2}-y_{1}\right)=1 \\ &c_{2}=\left(z_{2}-z_{1}\right)=8 \\ \end{aligned}
\begin{aligned} &\cos \theta=\frac{8+2+8}{\sqrt{2^{2}+2^{2}+1^{2} \sqrt{1^{2}+1^{2}+8^{2}}}} \\ \end{aligned}\begin{aligned} &=\frac{18}{\sqrt{9 \sqrt{81}}} \\ &=\frac{2}{3} \\ &\theta=\cos ^{-1} \frac{2}{3} \end{aligned}

So the angle between the pairs will be \cos ^{-1}\frac{2}{3}

Straight Line in Space Exercise 27.2 Question 12

Answer: the equation will be:\frac{x-1}{4}=\frac{y-2}{2}=\frac{z+4}{3}
Given: find the equation of line passing through the point (1,2,-4) and parallel to line \frac{x-3}{4}=\frac{y-5}{2}=\frac{z+1}{3}
Hint: equation will be \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
Solution: Direction ratio of lines (4,2,3) points (1,2,-4)
\frac{x-1}{4}=\frac{y-2}{2}=\frac{z+4}{3}
So the equation of the line passing through the point is \frac{x-1}{4}=\frac{y-2}{2}=\frac{z+4}{3}

Straight Line in Space Exercise 27.2 Question 13

Answer: the equation of the lines will be \vec{r}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+2 / 3 \hat{j}-3 \hat{k})
Given : Find the equation of the line passing through the point (-1,2,1) and parallel to the line
\frac{2x-1}{2}=\frac{3y+5}{2}=\frac{2-z}{3}
Hint:\vec{r}=\vec{a}+\lambda \vec{b}
Solution:\vec{a}=\vec{-i}+2\hat{j}+\hat{k}
Now: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
=\frac{x-1 / 2}{2}=\frac{y-(-5 / 3)}{2 / 3}=\frac{z-2}{-3} \\
\vec{R}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+2 / 3 \hat{j}-3 \hat{k})
So the equation will be \vec{R}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda\left(2 \hat{i}+\frac{2}{3} \hat{j}-3 \hat{k}\right)

Straight Line in Space Exercise 27.2 Question 14

Answer: the equation of the line passing through the point will be \therefore \vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-5 \hat{k})
Given: find the equation of the line passing through the point(2,-1,-3)and parallel to the line \therefore \vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-5 \hat{k})
Hint: for parallel equation will be: \vec{r}=\vec{a}+\lambda \vec{b}
Solution: direction ratio = 2,3,-5
\therefore \vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-5 \hat{k})
∴the equation will be;
\therefore \vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-5 \hat{k})

Straight Line in Space Exercise 27.2 Question 15

Answer: the equation of the line will be \vec{r}=(2 \hat{i}+\hat{j}+3 \hat{k})+\lambda(4 \hat{i}-14 \hat{j}+8 \hat{k})
Given: find the equation of the line passing through the point (2,1,3) and perpendicular to the
\begin{aligned} &\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{-3} \text { and } \frac{x}{-3}=\frac{y}{2}=\frac{z}{5} \\ \end{aligned}
Hint:\begin{aligned} &\vec{r}=\vec{a}+\lambda \vec{b} \\ \end{aligned}
Solution:
\begin{aligned} &\vec{b}=\vec{b}_{1} \times \overline{b_{2}} \\ &\vec{b}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -3 & 2 & 5 \end{array}\right| \\ &=\hat{i}(10-6)-\hat{j}(5+9)+\hat{k}(2+6) \\ &=4 \hat{i}-14 \hat{j}+8 \hat{k} \\ &\vec{r}=(2 \hat{i}+\hat{j}+3 \hat{k})+\lambda(4 \hat{i}-14 \hat{j}+8 \hat{k}) \end{aligned}
So, the equation of the line will be \vec{r}=(2 \hat{i}+\hat{j}+3 \hat{k})+\lambda(4 \hat{i}-14 \hat{j}+8 \hat{k})

Straight Line in Space Exercise 27.2 Question 16

Answer: The equation will be \begin{aligned} &\vec{r}=(\hat{i}+\hat{j}-3 \hat{k})+\lambda(4 \hat{i}-5 \hat{j}+\hat{k}) \\ \end{aligned}
Given: Find the equation of the line passing through the pointi+j-3k and perpendicular to the lines \begin{aligned} &\vec{r}=\hat{i}+\lambda(2 \hat{i}+\hat{j}-3 \hat{k}) \& \vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\mu(\hat{i}+\hat{j}+\hat{k}) \\ \end{aligned}
Hint: \begin{aligned} &\vec{r}=\vec{a}+\lambda \vec{b} \end{aligned}
Solution:
\vec{b}=\vec{b}_{1} \times \overrightarrow{b_{2}} \rightarrow b_{1}=2 \hat{i}+\hat{j}-3 \hat{k} \& b_{2}=\hat{i}+\hat{j}+\hat{k}
\vec{b}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right| \\
=\hat{i}(1+3)+\hat{j}(-3-2)+\hat{k}(2-1)
= 4 \hat{i}-5 \hat{j}+\hat{k}
\\ \therefore \vec{r}=(\hat{i}+\hat{j}-3 \hat{k})+\lambda(4 \hat{i}-5 \hat{j}+\hat{k)}

Straight Line in Space Exercise 27.2 Question 17

Answer : The equation will be \frac{x-1}{10}=\frac{y+1}{y}=\frac{3}{7}
Given: Find the equation of the line passing through the point(1, -1, 1) and perpendicular to the lines joining the points (4,3,2)(1,-1,0) and (1,2,-1), (2,1,1
Hint: equation will be in the form of
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
Solution:
Direction ratio of a_{1}b_{1}c_{1}=3,4,2
Direction ratio of a_{2}b_{2}c_{2}=\left ( -1,1,-2 \right )
Now
\begin{aligned} &3 a+4 b+2 c=0 \\ &-a+b-2 c=0 \\ &\frac{a}{10}=\frac{b}{y}=\frac{c}{7} \\ &\frac{x-1}{10}=\frac{y+1}{4}=\frac{3-0}{7} \end{aligned}
The equation will be\frac{x-1}{10}=\frac{y+1}{y}=\frac{3}{7}

Straight Line in Space Exercise 27.2 Question 18

Answer: The equation of the given question will be \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
Given: Determine the equation of the line passing through the point (1,2,-4) and perpendicular to the two lines;
\frac{x-8}{3}=\frac{y+9}{-16}=\frac{3-0}{7} &\frac{x-15}{3}=\frac{y-29}{8}=\frac{3-5}{5}
Hint:\vec{r}=\vec{a}+\lambda \vec{b}(for showing parallel lines)
Solution:
Direction\: ratio _{1}=3 i-16 \hat{j}+7 \hat{k}
Direction \: ratio _{2}=3 i-8 \hat{j}-5 \hat{k}
\begin{aligned} &\therefore D R_{1} \times D R_{2}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & -8 & -5 \end{array}\right| \\ &=24 \hat{i}+36 \hat{j}+72 \hat{k} \\ &=12(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\ &\therefore D R=2,3,6 \\ &\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \end{aligned}
The equation will be \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})

Straight Line in Space Exercise 27.2 Question 19

Answer: The two lines are perpendicular to each other(shown)
Given: show that the lines \frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} and \frac{x}{1}=\frac{y}{2}=\frac{3}{2}are perpendicular to each other
Hint: for showing perpendicular \vec{b}.\vec{c}=0
Solution:
Direction ratio_{1}=7\hat{i}-5\hat{j}+\hat{k}
Direction ratio_{2}=\hat{i}-2\hat{j}+3\hat{k}
\vec{b}.\vec{c}=0
\begin{aligned} &\Rightarrow(7 \hat{i}-5 \hat{j}+\hat{k}) \cdot(\hat{i}+2 \hat{j}+3 \hat{k}) \\ &\Rightarrow 7-10+3=0 \end{aligned}
Therefore the two lines are perpendicular

Straight Line in Space Exercise 27.4 Question 12

Answer: the equation will be \frac{x-2}{1}=\frac{y+1}{2}=\frac{z+1}{3} which is parallel to \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})
Given: find the vector equation of the line passing through the point (2,-1,-1) parallel to line 6x-2=3y+1=2z-2
Hint: for vector equation, \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
Solution: 6x-2=3y+1=2z-2
6(x-1 / 3)=3(y+1 / 3)=2(z-1) \\
=\frac{x-1 / 3}{1 / 6}=\frac{y+1 / 3}{1 / 3}=\frac{z-1}{1 / 2} \\
D R=1 / 6,1 / 3,1 / 2=1,2,3
Now \frac{x-2}{1} =\frac{y+1}{2}=\frac{z+1}{3} \\
\therefore \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k} \\
\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k}) \\

So, the vector equation will be
\frac{x-2}{1}= \frac{y+1}{2}=\frac{z+1}{3}

Straight Line in Space Exercise 27.2 Question 21

Answer : the value of the \lambda will be \frac{10}{7}
Given: if the lines \frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2} \text { and } \frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{5} are perpendicular find the value of \lambda
Hint: Because lines are perpendicular
So \vec{a}.\vec{b}=0
Solution: \frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2} \text { and } \frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{5} are perpendicular that means they =’0
So, \cos \theta =0
\begin{aligned} &=(3 \lambda)(-3)+(2 \lambda)(1)+(2 \times 5)=0 \\\\ &=-9 \lambda+2 \lambda+10=0 \\\\ &=-7 \lambda=-10 \\\\ &\lambda=\frac{10}{7} \end{aligned}
so the value will be \frac{10}{7}

Straight Line in Space Exercise 27.2 Question 22

Answer : the angle cannot be made between AB and CD because both are parallel to each other
Given: the coordinates of the points A,B,C,D be (1,2,3);(4,5,7);(-4,3,-3);(2,9,2) respectively. Find angles between the lines AB and CD
Hint: \vec{CD}=2\vec{AB}
Solution:
\begin{aligned} &\vec{A}=(\hat{i}+2 \hat{j}+3 \hat{k}) \\ &\vec{B}=(4 \hat{i}+5 \hat{j}+7 \hat{k}) \\ &\vec{C}=(-4 \hat{i}+3 \hat{j}-6 \hat{k}) \\ \end{aligned}\begin{aligned} &\vec{D}=(2 \hat{i}+9 \hat{j}+2 \hat{k}) \\ &\overrightarrow{A B}=3 \hat{i}+3 \hat{j}+4 \hat{k} \\ &\overrightarrow{C D}=6 \hat{i}+6 \hat{j}+8 \hat{k} \\ &\therefore C D=2 \overrightarrow{A B} \\ &=2(3 \hat{i}+3 \hat{j}+4 \hat{k}) \\ &=6 \hat{i}+6 \hat{j}+8 \hat{k} \end{aligned}

CD and AB are parallel. So it cannot make any angle

Straight Line in Space Exercise 27.2 Question 23

Answer: the value \lambda will be 1
Given: find the value of \lambda so that the following lines are perpendicular to each other;
\begin{aligned} &\frac{x-5}{5 \lambda+2}=\frac{2-y}{5}=\frac{1-z}{-1}, \frac{x}{1}=\frac{2 y+1}{4 \lambda}=\frac{1-z}{-3} \\ \end{aligned}
Hint: \begin{aligned} &\cos \theta=0 \\ \end{aligned} because lines are perpendicular.
Solution: \begin{aligned} &\frac{x-5}{5 \lambda+2}=\frac{y-2}{-5}=\frac{z-1}{1} \\ \end{aligned}
Therefore \begin{aligned} &\cos \theta=0 \\ \end{aligned}
\begin{aligned} &\quad=(5 \lambda+2)(1)+(-5)(2 \lambda)+(3)(1)=0 \\ \end{aligned}
\begin{aligned} &=5 \lambda+2-10 \lambda+3=0 \\ &=5 \lambda=5 \\ &=\lambda=1 \end{aligned}
so the answer will be ‘1

Straight Line in Space Exercise 27.2 Question 24

Answer : the direction cosines will be \frac{2}{7},\frac{3}{7},\frac{-6}{7} and the equation will be \vec{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 2\hat{i}+3\hat{j}-6\hat{k} \right )
Given: find the direction cosines of the lines \frac{x+2}{2}=\frac{2y-7}{6}=\frac{5-z}{6} and also find the vector equation of the line through the point (-1,2,3) and parallel to the given line
Hint:
Solution: \frac{x+2}{2}=\frac{y-7/2}{3}=\frac{z-5}{-6}
Direction ratio =2,3,-6
Direction cosines = \frac{2}{\sqrt{49}}=\frac{3}{\sqrt{49}}=\frac{6}{\sqrt{49}}
\mathrm{DC}=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},=\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
Now, vector along the line; 2\hat{i}+3\hat{j}-6\hat{k}\vec{r}=\hat{i}-2\hat{j}+3\hat{k} +\lambda \left ( 2\hat{i}+3\hat{j}-6\hat{k} \right )

So the answer will be

\vec{r}=\hat{i}-2\hat{j}+3\hat{k} +\lambda \left ( 2\hat{i}+3\hat{j}-6\hat{k} \right ) and cosines will be \frac{2}{7},\frac{3}{7},\frac{-6}{7}

Straight Line in Space Exercise 27.2 Question 25

Answer: the value of k will be ‘2
Given: find the value of k so that the lines x-y=kz \: and \: \: x-2y=2y+1 = -z+1 are perpendicular to each other.
Hint: when two lines are perpendicular then dot product will be equal to ‘0
Solution: from equ (i)
x=y=kz=\frac{x}{1}=\frac{y}{-1}=\frac{3}{1/k}
From equation (ii)
\frac{x-2}{1}=\frac{y+1/2}{1/2}=\frac{z-1}{-1}
Since two straight lines are perpendicular to each other then
\begin{aligned} &a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \\\\ &(1)+(-1 / 2)+(-1 / k)=0 \\\\ &\frac{2-1}{2}=\frac{1}{k} \\\\ &1 / 2=1 / \mathrm{k} \\\\ &\mathrm{K} \quad=2 \end{aligned}

So the answer will be ‘2

Straight Line in Space Exercise 27.2 Question 26

Answer: the required vector equation is \vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-4 \hat{i}+4 \hat{j}-\hat{k})

Given: find the vector and Cartesian equation of the line which is perpendicular to the lines with the equation
\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{2}and \: \frac{x-1}{2}=\frac{y-2}{3}
= \frac{z-3}{4} and passes through the points (1,1,1). Also find the angle between the given lines
Hint: for showing perpendicular dot product must be equal to ‘0
Solution: let the cartesian equation of the line passing through the point (1,1,1) will be
\frac{x-1}{a}=\frac{y-1}{b}=\frac{z-1}{c}
Now parallel vectors are \bar{b_{1}},\bar{b_{2}},\bar{b_{3}}
From the question,
\begin{aligned} &\vec{b}_{1}=\hat{a} \hat{i}+b \hat{j}+c \hat{k} \\ &\overrightarrow{b_{2}}=\hat{i}+2 \hat{j}+4 \hat{k} \text { Here } \\ &\overrightarrow{b_{3}}=2 \hat{i}+3 \hat{j}+4 \hat{k} \end{aligned}
\begin{aligned} &a+2 b+4 c=0 \ldots .(\mathrm{lV}) \\ &2 a+3 b+4 c=0 \ldots \ldots(\mathrm{V}) \end{aligned}
Solving (iv) and (v) we get
\begin{aligned} &\frac{a}{8-12}=\frac{b}{8-4}=\frac{c}{3-4} \\ &\therefore \frac{a}{-4}=\frac{b}{4}=\frac{c}{-1}=\lambda \end{aligned}
Therefore a=4\lambda ,b=4\lambda ,c=-\lambda
Now putting the above makes in equation;
\begin{aligned} &\frac{x-1}{-4 \lambda}=\frac{y-1}{4 \lambda}=\frac{z-1}{-\lambda} \\ &\frac{x-1}{-4}=\frac{y-1}{4}=\frac{z-1}{-1} \end{aligned} hence the vector equation is \vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-4 \hat{i}+4 \hat{j}-\hat{k}).


Class 12 RD Sharma chapter 27 exercise 27.2 material is prepared by a group of subject experts who have years of experience in the field. This material is updated to the latest version of the book. Students can use it as a guide for the textbook and prepare accordingly. Additionally, it follows the CBSE syllabus, which means that students can use it for their homework.

As maths is a vast subject, teachers can't cover all topics through their lectures. However, RD Sharma class 12th exercise 27.2 material covers all topics and contains solutions students can refer to and stay ahead of their class.

The benefits of RD Sharma class 12th exercise 27.2 material are:

1. Easily accessible

This material is available on Career360's website and can be accessed through any device with an internet connection. This makes it easily accessible for students as they can now study from the comfort of their homes.

2. Convenient for revision

As RD Sharma's class 12th exercise 27.2 material contains questions and answers in the same place, students can refer to it quickly and efficiently. This helps a lot for last-minute revision as they won't have to look up answers in the textbook.

3. Saves time in preparation

Students can take advantage of this material to save a lot of time in their preparation. In addition, as this material covers the entire syllabus, there is no other textbook they will need to study.

4. Easier to understand

RD Sharma class 12 solutions chapter 27 exercise 27.2 material contains expert-related answers that have step-by-step solutions. Students who are weak in maths can also cope up and score good marks in exams.

5. Free of cost

The best part about RD Sharma's class 12th exercise 27.2 material is that it is free of cost and can be accessed by anyone through Career360's website. Career360 has prepared this material to help students gain more knowledge and score good marks in exams.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. In what ways is the RD Sharma class 12th solution accommodating for me?

It tends to be beneficial all around on the off chance that you practice routinely and thoroughly consistently and try to individual test with the RD Sharma solutions and assess the imprints as needs are.

2. Are the issues in the RD Sharma solutions like the NCERT solution?

Indeed, the materials gave in the RD Sharma solutions are ready as per the NCERT to coordinate with the prospectus for board exams.

3. How can RD Sharma class 12 chapter 27 be helpful for me?

It can be a guide for the students who like to self-test themselves on their recent lessons. You can use the answers in the book to evaluate your responses and correct them accordingly.

4. What number of questions are there in class 12 RD Sharma chapter 27.2?

There are 36 questions in RD Sharma Solutions Class 12 RD Sharma chapter 27.2 exercise 27.2.

5. Is the RD Sharma class 12 chapter 27 of the latest version?

Yes, these solutions are regularly updated to correspond with the syllabus of NCERT textbooks, which helps crack public examinations.

Articles

Get answers from students and experts
Back to top