Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 16 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 16 MCQ

Edited By Kuldeep Maurya | Updated on Jan 21, 2022 01:29 PM IST

The RD Sharma Solutions Class 12 Maths Chapter 16 Increasing and Decreasing Functions–Our experts plan Differentiation to help students understand the thoughts peddled in this chapter and systems to deal with issues in a more limited period. Points shrouded in class 12 RD Sharma chapter 16 exercise MCQ solution of common mathematical imbalances, rigorously expanding capacities, Strictly diminishing abilities, Monotonic powers, Finding the spans in which a degree is increasing or decreasing, Proving the monotonicity of a total on a given stretch, Finding the span in which a capacity is expanding or diminishing, and so forth At Career360, RD Sharma class 12th exercise MCQ helps students who try to get a fair, insightful score in the exam.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 16 MCQ Increasing and Decreasing Functions - Other Exercise
  2. Increasing and Decreasing Functions Excercise:MCQ
  3. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 16 MCQ Increasing and Decreasing Functions - Other Exercise

Increasing and Decreasing Functions Excercise:MCQ

Increasing and Decreasing Functions exercise Multiple choice question , question 1

Answer:

Correct option (b)
Hint: Iff(x) is increasing functionf(x)>0
Given:f(x)=xex+tan(2π7)
Explanation: It is given that
f(x)=xex+tan(2π7)
Differentiate w.r.t x
f(x)=1ex
Sincef(x) is increasing functionf(x)>0
1ex>01>exx<0x(,0)
Thus, the required interval is (,0)

Increasing and Decreasing Functions exercise Multiple choice question , question 2

Answer:

Correct option (c)
Hint: Iff(x) is increasing functionf(x)>0
Given:f(x)=cot1x+x
Explanation: It is given that
f(x)=cot1x+xf(x)=11+x2+1
f(x) is increasing functionf(x)>0
11+x2+1>0x21+x2>0x(,)
Thus, the required interval is (,)

Increasing and Decreasing Functions exercise Multiple choice question , question 3

Answer:

Answer: Correct option (c)
Hint: If f(x) is decreasing function f(x)<0
Given:f(x)=xx
Explanation: It is given that
f(x)=xx
Taking log on both sides,
logf(x)=logxxlogf(x)=xlogx[logab=bloga]
Differentiate w.r.t x
1f(x)f(x)=x1x+logx.1 [ by using u.v. rule]
f(x)f(x)=1+logxf(x)=xx(1+logx)[f(x)=xx]f(x)f(x)=1+logxf(x)=xx(1+logx)[f(x)=xx]
f(x) is decreasing function f(x)<0
xx(1+logx)<01+logx<0logx<1x<e1e>1e1<1
Thus the function is decreasing on (0,1e)

Increasing and Decreasing Functions exercise Multiple choice question , question 5

Answer:

Correct option (a)
Hint: If f(x) is increasing function f(x)>0
Given:f(x)=2x2kx+5
Explanation: It is given that
f(x)=2x2kx+5
Differentiate w.r.t x
f(x)=2.2xk
If f(x) is increasing function f(x)>0
4xk>0 on [1,2]k<4x
So, the minimum value of k is 4x
k<4kϵ(,4)
Thus k lies in the interval (,4)

Increasing and Decreasing Functions exercise Multiple choice question , question 6

Answer:

Correct option (c)
Hint: If f(x) is increasing function f(x)>0
Given: f(x)=x3+ax2+bx+5sin2x
Explanation: It is given that
f(x)=x3+ax2+bx+5sin2x
Differentiate w.r.t x
f(x)=3x2+2ax+b+5sinxcosx=3x2+2ax+b+5sin2x[sin2x=2sinxcosx]
If f(x) is increasing f(x)>0
3x2+2ax+b+5sin2x>0
For the quadratic equation
Discriminant is
(2a)24×3(b+5sin2x)<04a212b60sin2x<0a23b15sin2x<0
Minimum value of sin2x=1
So, a23b15(1)<0
Thus, a23b+15<0
So, a & b satisfy equation a23b+15<0

Increasing and Decreasing Functions exercise Multiple choice question , question 7

Answer:

Correct option (b)
Hint: Use that, a function f(x) is odd if f(x)=f(x) & even if f(x)=f(x)
& If f(x) is increasing function f(x)>0 , decreasing if f(x)<0 .
Given: f(x)=loge(x3+x6+1)
Explanation: It is given that
f(x)=loge(x3+x6+1)..(i)
So, f(x)=loge((x)3+(x)6+1)
f(x)=loge((x)3+x6+1)=loge[(x3+x6+1)(x3+x6+1)×(x3+x6+1)]
=loge[1(x3+x6+1)]=loge(x3+x6+1)=f(x)f(x)=f(x)
So, f(x) is odd function
Now,Differentiate (i) w.r.t x
f(x)=1(x3+x6+1)×(3x2+12x6+1×6x5)
=1(x3+x6+1)×3x2(x6+1x6+1+x3)f(x)=3x2x6+1
Here x2 & x6 are even power of x
So, f(x)=3x2x6+1>0
Thus,f(x) is odd and increasing function.

Increasing and Decreasing Functions exercise Multiple choice question , question 8

Answer:

Correct option (c)
Hint: Iff(x) is increasing functionf(x)>0
Given: f(x)=2tanx+(2a+1)loge|secx|+(a2)
Explanation: It is given that
f(x)=2tanx+(2a+1)loge|secx|+(a2) ………(i)
Case i:
If secx>0
Now,Differentiate (i) w.r.t x
f(x)=2sec2x+(2a+1)1secxsecxtanx+(a2)f(x)=2sec2x+(2a+1)tanx+(a2)
f(x) is increasing, f(x)>0
2sec2x+(2a+1)tanx+(a2)>02(tan2x+1)+(2a+1)tanx+(a2)>0
2tan2x+(2a+1)tanx+(a2)>0
The above equation is quadratic in tanx
Its discriminant is
(2a+1)24×2a<0
(2a1)2<0 , which is impossible.
Thus, if secx<0 then |secx|=secx
2sec2x(2a+1)tanx+(a2)0
(2a1)20 , which is not possible
(2a1)2=0a=12

Increasing and decreasing functions exercise multiple choice quection, question 10

Answer:

Correct option (c)
Hint: Differentiate the given function w.r.t x then check the given conditions
Given:f(x)=x36x2+15x+3
Explanation: It is given that
f(x)=x36x2+15x+3
Now,Differentiate (i) w.r.t x
f(x)=3x212x+15f(x)=3(x24x+5)f(x)=3[(x2)2+1]>0
Since f(x)>0 , so f(x) is increasing function.
As f(x) is increasing, it is invertible
Thus, f(x) is invertible function.

Increasing and decreasing functions exercise multiple choice quection, question 11

Answer:

Correct option (b)
Hint: If f(x) is increasing function f(x)>0
Given: f(x)=x2ex
Explanation: It is given that
f(x)=x2ex
Differentiate (i) w.r.t x
f(x)=x2ex+xexf(x)=exx(x2)
f(x) is monotonically increasing,f(x)>0
exx(x2)>0x(x2)>0
So, 0<x<2
Thus, f(x) is monotonically increasing 0<x<2

Increasing and decreasing functions exercise multiple choice quection, question 12

Answer:

Correct option (a)
Hint: If f(x) is decreasing function f(x)<0
Given:f(x)=cosx2λx
Explanation: It is given that
f(x)=cosx2λx …….(i)
Differentiate (i) w.r.t x
f(x)=sinx2λ
f(x) is decreasing f(x)<0
sinx2λ<0sinx<2λsinx2<λ
12<λ
Thus, f(x) is monotonically decreasing when 12>λ

Increasing and decreasing functions exercise multiple choice quection, question 13

Answer:

Correct option (b)
Hint: Use the condition for f(x),
f(x)>0 , f(x) is increasing
f(x)<0 ,f(x) is decreasing
Given:f(x)=2|x1|+3|x2|
Explanation: We need to checkf(x) in interval (1,2)
Here, f(x)=2|x1|+3|x2|
xϵ(1,2) So, x>1 & x<2
x1>0&x2<0f(x)=2|x1|+3|x2|f(x)=2(x1)+3(x2)f(x)=2x23x+6f(x)=x+4f(x)=1<0
Thus, f(x) is monotonically decreasing in the interval (1,2)

Increasing and decreasing functions exercise multiple choice quection, question 14

Answer:

Correct option (d)
Hint: If f(x) is monotonically increasing functionf(x)0
Given: f(x)=x327x+5
Explanation: It is given that
f(x)=x327x+5 …..(i)
Differentiate (i) w.r.t x
f(x)=3x227f(x)=3(x29)
f(x) is increasing f(x)0
3(x29)0x290x29|x|3
Thus,f(x) is increasing when |x|3

Increasing and decreasing functions exercise multiple choice quection, question 15

Answer:

Correct option (d)
Hint: If f(x) is decreasing function f(x)<0
Given: f(x)=2x39x2+12x+29
Explanation:It is given that
f(x)=2x39x2+12x+29 …..(i)
Differentiate (i) w.r.t x
f(x)=6x218x+12
f(x) is decreasing f(x)<0
6x218x+12<06(x23x+2)<0x23x+2<0(x1)(x2)<01<x<2
Thus, the function is monotonically decreasing when 1<x<2

Increasing and decreasing functions exercise multiple choice quection, question 16

Answer:

Correct option (c)
Hint: If f(x) is increasing function f(x)>0
Given: f(x)=kx39x2+9x+3
Explanation:It is given that
f(x)=kx39x2+9x+3 …..(i)
Differentiate (i) w.r.t x
f(x)=3kx218x+9
f(x) is increasing f(x)>0
3kx218x+9>0kx26x+3>0
If a>0b24ac<0
So, (6)24.k.3<0
3612k<03k<0k>3
Thus, the function is monotonic increasing if k>3


Increasing and decreasing functions exercise multiple choice quection, question 17

Answer:

Correct option (c)
Hint: If f(x) is monotonic increasing function then f(x)>0
Given: f(x)=2xtan1log(x+x2+1)
Explanation:It is given that
f(x)=2xtan1log(x+x2+1) …..(i)
Differentiate (i) w.r.t x
f(x)=211+x21x+x2+1(1+2x2x2+1)f(x)=211+x21x2+1
f(x)=1+2x21+x21x2+1f(x)=1+2x2x2+11+x2
f(x) is monotonic increasing then f(x)>0
1+2x2x2+11+x2>01+2x2x2+1>01+2x2>x2+1
Squaring on both sides, we get
(1+2x2)2>x2+1
1+4x2+4x4>x2+13x2+4x4>0xR
Thus, the function is monotonically increasing when xR


Increasing and decreasing functions exercise multiple choice quection, question 18

Answer:

Correct option (d)
Hint: Take 3 conditions x<0,x>1&0<x<1 and check whether the function is increasing
Given:f(x)=|x||x1|
Explanation:It is given that
f(x)=|x||x1|
Case (i): If x<0
|x|=x&|x1|=(x1)f(x)=x+x1=1f(x)=0
So, the function is not monotonically increasing when x<0
Case (ii): If x>1
So,
f(x)=1f(x)=0
Thus,f(x) is not increasing when x>1
Case (iii): If 0<x<1
If 0<x<1 then |x|=x&|x1|=(x1)
f(x)=x+x1=2x1f(x)=2
So, the function is monotonically increasing when 0<x<1

Increasing and Decreasing functions exercise Multiple choice question, question 19

Answer:

Correct option (a)
Hint: If f(x) is invertible function f(x)>0
Given: Every invertible function is
Explanation: We know,
A function is invertible in a given domain,
If it is continuous & one-one in the domain.
And if the function is one-one in the domain,
It has to be strictly monotonic .
Hence, every invertible function is monotonic.

Increasing and Decreasing functions exercise Multiple choice question, question 21

Answer:

Correct option (c)
Hint: If f(x) is increasing function f(x)0
Given: f(x)=cos|x|2ax+b
Explanation:It is given that
f(x)=cos|x|2ax+b …..(i)
Differentiate (i) w.r.t x
f(x)=sinx+2a
f(x) is increasing function, f(x)0
sinx+2a0sinx2a
Minimum value sinx of is -1
12a

Increasing and Decreasing functions exercise Multiple choice question, question 22

Answer:

Correct option (a)
Hint: Take two conditions, x<0,x>0 to identify the type of function.
Given:f(x)=x1+|x|
Explanation:It is given that
f(x)=x1+|x|
Case (i):
If x<0
|x|=xf(x)=(x1x)
Differentiate (i) w.r.t x
f(x)=(x1x)2>0
So, function is increasing.
Case (ii):
If x>0
|x|=xf(x)=(x1+x)f(x)=(x1+x)2>0
So, function is increasing .
Hence, the given function is strictly increasing.

Increasing and Decreasing functions exercise Multiple choice question, question 23

Answer:

Correct option (d)
Hint: If f(x) is increasing function f(x)>0
Given: f(x)=λsinx+2cosxsinx+cosx

Explanation:It is given that
f(x)=λsinx+2cosxsinx+cosx …..(i)
Differentiate (i) w.r.t x
f(x)=(λ2)sin2x+(λ2)cos2x>0f(x)=(λ2)(sin2x+cos2x)f(x)=(λ2)>0λ>2
So, the function is increasing ifλ>2

Increasing and Decreasing functions exercise Multiple choice question, question 25

Answer:

Correct option (b)
Hint: If f(x) is increasing functionf(x)>0
Given: f(x)=logax
Explanation:It is given that
f(x)=logax
af(x)=x …..(i)
Differentiate (i) w.r.t x
af(x)logaf(x)=1f(x)=1af(x)logaf(x)=1xloga

Since the function is increasing on R

1xloga>0a>1
Thus the function is increasing if a>1

Increasing and Decreasing functions exercise Multiple choice question, question 26

Correct option (b)
Hint: First differentiate Q(x) w.r.to then using the relation between fx & f(2ax)identify type of Q(x)
Given:Q(x)=f(x)+f(2ax)
Explanation:It is given that
Q(x)=f(x)+f(2ax) …..(i)
Differentiate (i) w.r.t x
Q(x)=f(x)f(2ax)
Since f(x)>0f(x)>0
Here xϵ[0,a]
x2axf(x)f(2ax)
Also, Q(x)=f(x)f(2ax)
Q(x) is decreasing on [0,a]

Increasing and Decreasing functions exercise Multiple choice question, question 27

Answer:

Correct option (b)
Hint: Iff(x) is increasing functionf(x)>0
Given:f(x)=x2kx+5
Explanation:It is given that
f(x)=x2kx+5 …..(i)
Differentiate (i) w.r.t x
f(x)=2xk
f(x) is increasing,f(x)>0
2xk>02x>kx[2,4]
So, Maximum value of k is 4
k(,4)
Thus if the function is increasing then k(,4)


Increasing and decreasing function exercise multiple choice question, question 28

Answer:

Correct option (a)
Hint: Iff(x) is increasing functionf(x)>0
And if f(x) is increasing function then f(x)<0
Given: f(x)=x2+sinx
Explanation:It is given that
f(x)=x2+sinx …..(i)
Differentiate (i) w.r.t x
f(x)=12+cosx
Since x[π3,π3]
f(x)>012+cosx>0
Thus function is increasing.

Increasing and decreasing function exercise multiple choice question, question 29

Answer:

Correct option (a)
Hint: Iff(x) is increasing function f(x)>0
Given:f(x)=x39kx2+27x+30
Explanation:It is given that
f(x)=x39kx2+27x+30 …..(i)
Differentiate (i) w.r.t x
f(x)=3x29k2x+27f(x)=3(x26kx+9)
f(x) is increasing
3(x26kx+9)>0x26kx+9>0
In ax2+bx+c=0 , if a>0 thenb24ac<0
(6k)24×1×9<036k236<0k21<0(k+1)(k1)<01<k<1
Thus , if f(x) is increasing function then 1k<1
Note:- option (a) has to be 1k<1


Increasing and decreasing function exercise multiple choice question, question 30

Answer:

Correct option (a)
Hint: Iff(x) is increasing functionf(x)>0
Given:f(x)=x9+3x7+64
Explanation:It is given that
f(x)=x9+3x7+64 …..(i)
Differentiate (i) w.r.t x
f(x)=9x8+21x6f(x)=3x6(3x2+7)
f(x) is increasing
3x6(3x2+7)>0
Thus, the given function is increasing on R

Increasing and decreasing function exercise multiple choice question, question 31

Answer:

[2,1] , Correct option (b)
Hints: Take a derivative of given equation
Given: The interval on which f(x)=2x3+9x2+12x1 is decreasing, is
Solution:
We have,
f(x)=2x3+9x2+12x1
f(x)=6x2+18x+12=6(x2+3x+2)=6(x+2)(x+1)
f(x) decreases when f(x)0

∴ f’(x) =
From the sign scheme f(x)0
When xϵ[2,1]


Increasing and decreasing function exercise multiple choice question, question 32

Answer:

1<x<3, Option (a)
Hint: Take a derivative of given equation
Given: y=x(x3)2 decreases for the values
Solution: We have, y=x(x3)2
y=x(x26x+9)y=x36x2+9x
dydx=3x212x+9dydx=3(x24x+3)=3(x3)(x1)
Y = f(x) decreases when dydx<0
The sign scheme of dydx is shown,

∴ f’(x) =
From the sign scheme dydx<0
For xϵ(1,3)
y=x(x3)2 decreases when xϵ1<x<3

Increasing and decreasing function exercise multiple choice question, question 33

Answer:

decreasing in (π2,π)
Hints: Find the derivative of given equation.
Given: f(x)=4sin3x6sin2x+12sinx+100
Solution: We have,
f(x)=4sin3x6sin2x+12sinx+100
f(x)=12sin2xcosx12sinxcosx+12cosx=12cosx[sin2xsinx+1]=12cosx[sin2x+(1sinx)]

Now 1sinx0 and sin2x0
sin2x+1sinx0
Hence, fx>0 when cosx>0 , i.e., xϵ(π2,π2)
So, f(x) is increasing when xϵ(π2,π2)
fx<0 , when cosx>0 , i.e., xϵ(π2,3π2)
Hence, f(x) is decreasing when xϵ(π2,3π2)
f(x) is decreasing in xϵ(π2,π)

Increasing and decreasing function exercise multiple choice question, question 34

Answer:

cosx , Option (c)
Hints: Check all the options and choose is satisfies
Given: Function is decreasing in (0,π2)
Solution:
Option (A)
f(x)=sin2xf(x)=2cos2x
f(x) increases from ‘0’ to ‘1’ in (0,π2)
Option (B)
f(x)=tanxf(x)=sec2x
In interval (0,π2) , f(x)=sinx<0
f(x)=cosx is strictly increasing in interval (0,π2)
Option (C)
f(x)=cosxf(x)=sinx
In interval (0,π2),f(x)=sinx<0
f(x)=cosx is strictly decreasing in (0,π2)
Option (D)
f(x)=cos3xf(x)=3sin3x
Now,
f(x)=0sin3x=03x=π
As xϵ(0,π2)
x=π3
f(x)=cos3x is decreases only when 3x(0,π2)
And x(0,π6)
Therefore, Option (C) =cos x satisfies because f(x)=cosx is strictly decreasing in (0,π2)


Increasing and decreasing function exercise multiple choice question, question 35

Answer:

Always increases (Option a)
Hints: Find the derivative of functions
Given: f(x)=tanxx
Solution:
We have, f(x)=tanxxf(x)=sec2x1>0
Or
sec2x>1
Now
cosx[1,1]secx(,1][1,)
Thus,
sec2x[1,)
Hence,
f(x)>0x
Function f(x)=tanxx is always increasing.


This chapter of RD Sharma class 12th exercise MCQ Increasing and Decreasing Functions essentially bases on the possibility of soundness. Students can download RD Sharma class 12 solutions Increasing and Decreasing Functions exercise MCQ.

Separation to look into this topic. This chapter explains congruity and its applications comprehensively with handled examples. RD Sharma class 12th exercise MCQ has around 30 inquiries.

The class 12 RD Sharma chapter 16 exercise MCQ Increasing and Decreasing Functions game plan is particularly trusted and proposed by students and teachers across the entire country. The fitting reactions are given in the RD Sharma class 12th exercise MCQ are handpicked and made by subject matter experts, making them exact and sensible enough for students. Additionally, in RD Sharma class 12 solutions MCQ chapter 16, the experts offer response keys and some excellent tips in the book that the students likely will not find somewhere else.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Are RD Sharma class 12 solutions chapter 16 MCQ Increasing and Decreasing Functions good enough for exam preparations?

RD Sharma class 12th exercise MCQ is created by experts and professionals from all over the country. Many students and teachers have also attested to its benefits and recommend using the free PDF to study for school and board exams.

2. How can one download the RD Sharma Solutions Class 12 Maths Chapter 16 MCQ?

The RD Sharma Solutions can be found at the site CAREER360. The free copy is provided to all individuals to study for their exams.

3. What solutions are offered in the RD Sharma Class 12 Solutions Chapter 16 MCQ?

The RD Sharma Class 12 Solutions Chapter 16 MCQ will have solutions to all the questions that are provided in the exercise MCQ of the 16th chapter in the NCERT maths book

4. How can students use the RD Sharma solutions 12 exercise MCQ Chapter 16 to prepare for JEE mains exam?

Students can try to understand all the critical concepts and strategies to solve questions by using the RD Sharma solutions. Students need to focus on the chapters and practice the questions to increase their chances of finding common questions in exams. 



5. How many solutions are provided in RD Sharma Solutions Class 12 Maths Chapter 16 MCQ?

There are 30 solutions that correspond to the questions in chapter 16 of the NCERT maths book. The RD Sharma Solutions Class 12 RD Sharma chapter 16 exercise MCQ will only have answers to the MCQ exercise of chapter 16.



Articles

Upcoming School Exams

Application Date:24 March,2025 - 23 April,2025

Admit Card Date:25 March,2025 - 21 April,2025

Admit Card Date:25 March,2025 - 17 April,2025

View All School Exams
Get answers from students and experts
Back to top