Careers360 Logo
RD Sharma Class 12 Exercise 21.10 Differential Equation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 21.10 Differential Equation Solutions Maths - Download PDF Free Online

Updated on Jan 24, 2022 04:19 PM IST

Most of the class 12 students worry about the board exams. However, there is nothing to be worried about; all they need is proper guidance to score marks in the public exam. Most importantly, students require an excellent solution book to refer to the sums given in the RD Sharma Class 12th Exercise 21.10 part. Even though the differential equation is a challenging portion, this book will lend a helping hand to the class 12 students.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter21 Differential Equation - Other Exercise
  2. 21.10
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter21 Differential Equation - Other Exercise

21.10

Differential Equation Exercise 21.10 Question 1

Answer: y=15e3x+Ce2x
Hint: To solve this equation we use formula
Give:dydx+2y=e3x
Solution: dydx+Py=Q
p=2,Q=e3x
 If epdx
=exdx
=e2x
ye2x=e3xe2xdx+C
y×If=Q×Ifdx+C
=e5x
=ye2x=e5x5+C
=y=1e2x[e5x5+C]
=y=e3x5+Ce2x

Differential Equation Exercise 21.10 Question 2

Answer: y=54e3x+Ce2x
Hint: To solve this equation we use efxdx formula
Give:4dydx+8y=5e3x
Solution:dydx+2y=54e3x
P(x)=2,Q(x)=54e3x
If=ef(x)dx
=e2dx
=e2x
=ye2x=e2x×54e3xdx+C
=ye2x=54exdx+C
=y=54e3x+Ce2x

Differential Equation Exercise 21.10 Question 3

Answer: ye2x=2e3x+C
Hint: To solve this equation we use dydx+Py=Q formula
Give:dydx+2y=6ex
Solution: dydx+2y=6ex(i)
dydx+Py=Q
P=2,Q=6ex
If=efdx
=e2dx
=e2x
=y×If=(If×Q)dx
=y×e2x=e2x×6exdx
=ye2x=6e3xdx
=ye2x=63ex+C
=ye2x=2ex+C

Differential Equation Excercise 21.10 Question 4

Answer: y=e2x+Cex
Hint: To solve this equation we use ylf formula
Give: dydx+y=e2x
Solution: dydx+Py=Q
P=1,Q=e2x
If=ePdx=edx=ex
y×If=Q×Ifdx+C
y×ex=e2xexdx+C
yex=exdx+C
yex=ex+C
y=exex+Cex
y=e2x+Cex

Differential Equation Excercise 21.10 Question 5

Answer: yx=log|x|+C
Hint: To solve this equation we use
Give: xdydx=x+y
Solution: dydx=1+yx
dydx1xy=1
dydx1xy=1
dydx+Py=Q
P=1xQ=1
 If =ePdx
=e1xdx
=elogx
=x1
=1x
y×1x=1×1xdx+C
yx=logx+C
yx=log|x|+C

Differential Equation Excercise 21.10 Question 6

Answer: y=(2x1)+Ce2x
Hint: To solve this equation we will use differentiate different.
Give: dydx+2y=4x
Solution: dydx+Py=Q
P=2,Q=4x
If=ePdx
=e2dx
=e2x
ye2x=4xe2xdx+C
ye2x=4xe2xdx+C
ye2x=4[xe2x2][e2x2dx]+C
ye2x=2xe22e2x2+C
y=(2x1)+Ce2x
y×If=Q×Ifdx+C

Differential Equation Exercise 21.10 Question 7

Answer: y=(x1x)ex+Cx
Hint: To solve this equation we will use differentiate different.
Give: xdydx+y=xex
Solution: dydx+Py=Q
P=1xf=ex
If=ePdx
=e1xdx
=elogex
=x
yIf=fIf
yx=exx
yx=xex+ex+C
yx=(x+1)ex+C
y=y(x1)xex+Cx

Differential Equation Exercise 21.10 Question 8

Answer: y(x2+1)2=x+C
Hint: To solve this equation we will use differentiate both terms.
Give: dydx+4xx2+1y+1(x2+1)2=0
Solution: dydx+4xx2+1y=1(x2+1)2
dydx+Py=Q
If=ePdx
=e4xx2+1dx [ Let x2+1=u,2xdx=du
=2eduu
=e2ln|x2+1|
=(x2+1)2
yIf=QIfdx
y(x2+1)2=1(x2+1)2(x2+1)2dx
y=dx
y(x2+1)2=x+C

Differential Equation Exercise 21.10 Question 9

Answer: 4xy=2x2log|x|x2+C
Hint: To solve this equation we will use differentiation method.
Give: dydx+yx=logx
Solution: dydx+yx=logx
dydx+Py=Q
P=1xQ=logx
If=e1xdx
=elogx
=x
yIf=QIfdx
yx=xlogxdx+C
=logxx221xx22dx+C
xy=x2logx2x2dx+C
=x2logx2x24+C
=y=xlogx2x4+Cx
=4xy=2x2logxx+C

Differential Equation exercise 21.10 question 10

Answer: y=ex+Cx
Hint: To solve this equation we will use differentiate separately.
Give: xdydxy=(x1)ex
Solution: dydx1xy(x1)exx
dydx+Py=Q
P=1x,Q=(x1)exx
If=ePdx
=e1xdx
=elogx1
=x1
yIf=QIf+C
=y1x=(x1)ex1xdx+C
=yx=xexx2dxexx2dx+C
=1xex1x2exdx1x2exdx
=1xex
=yx=exx+C
=y=ex+Cx

Differential Equation exercise 21.10 question 11

Answer: 5xy=e5+C
Hint: To solve this equation we use ePdx formula.
Give: xdydx+yx=x3
Solution: dydx+Py=Q
P=1xQ=x3
If=ePdx
=e1xdx
=elogx
=x
yIf=QIf+C
=yx=x3xdx+C
=yx=x4dx+C[xndx=xn+1n+1]
=xy=x55+C
=y=x45+Cx
=5xy=x5+C

Differential Equation exercise 21.10 question 12

Answer: y=Cex+12(sinxcosx)
Hint: To solve this equation we use uvdx formula.
Give: dydx+y=sinx
Solution: dydx+Py=Q
P=1,Q=sinx
 If =ePdx
=e1dx
=ex
yIf=QIfdx+C
yex=sinxexdx+C
=I=sinexddxsinxexdxdx
=I=sinexcosxexdx
=I=sinexcosxexdx+sinxexdx
=I=ex[sinxcosx]I
=2I=ex(sinxcosx)
=I=ex2(sinxcosx)
Put in original equation
yex=ex2(sinxcosx)+C
y=cex+12(sinxcosx)

Differential Equation Exercise 21.10 Question 13

Answer: y=12(cosxsinx)+Cex
Hint: To solve this equation we use ePdx formula.
Give:dydx+y=cosx
Solution: dydx+P(x)y=Q(x)
 If =eP(x)dx
y If =Q(x) If dx
dydx+y=cosx
P(x)=1,Q(x)=cosx
=e1dx
=ex
yex=cosxexdx(i)
yIf=Q(x)Ifdx
Suppose I=cosxexdx
=cosex(sinx)exdx
=cosxex+sinxexdx
=I=cosxex+sinxexcosxexdx
=I=ex(cosx+sinx)I
=2I=ex(cosx+sinx)
=I=ex2(cosx+sinx)(ii)
=yex=ex2(cosx+sinx)+C

Differential Equation Exercise 21.10 Question 14

Answer: y=Cex+15(2sinxcosx)
Hint: To solve this equation we use ePdx formula.
Give: dydx+Py=Q
Solution: P=2,Q=sinx
If=efdx
=e1dx
=ex
=yIf=QIfdx+C
=yex=e2xsinxdx+C
=eaxsinbx=eaxa2+b2(asinbxbcosbx)
=ye2x=e2x5(2sinxcosx)+C
=y=2sinxcosx5+Ce2x

Differential Equation Exercise 21.10 Question 15

Answer: 2ycosx=cos2x+C
Hint: To solve this equation we use efdx formula.
Give: dydx=ytanx2sinx
Solution: dydxytanx=2sinx
=dydx+Py=Q
P=tanx,Q=2sinx
If=ePdx
=e1dx
=ex
=yIf=QIfdx+C
=ycosx=2sinxcosxdx+C
=ycosx=sin2xdx+C
=ycosx=cos2x2+C
=2ycosx=cos2x+C

Differential Equation Exercise 21.10 question 16

Answer:y=tan1x1+Cetan1x
Hint: To solve this equation we use efdx formula.
Give: (1+x2)dydx+y=tan1x
Solution: (1+x2)dydx+y=tan1x
=dydx+y(1+x2)=tan1x1+x2(i)
P=11+x2,cosx=tan1x1+x2
If=ePdx
=e11+x2dx
=etan1x
=If=etan1x
=4etan1x=etan1xtan1x1+x2dx+C
Put tan1x=t
=11+x2dx=dt
=yetan1x=ettdt
=yetan1x=tetdtddt(t)etdtdx+C
=tetetdt+C
=yetan1x=tetet+C
=yetan1x=et(t1)+C
=yetan1x=et(t1)+C
=yetan1x=etan1x(tan1x1)+C
=y=tan1x1+Ctan1x
=y=tan1x1+Cetan1x

Differential Equation exercise 21.10 question 17

Answer: ysecx=x+C
Hint: To solve this equation we use ePdx formula.
Give:dydx+ytanx=cosx
Solution: dydx+Py=Q
P=tanx,Q=cosx
 If =ePdx
=etanxdx
=elogsecx
=secx
=yIf=QIfdx+C=ysecx=secxcosxdx=ysecx=1cosxcosxdx=ysecx=1dx=ysecx=x+C

Differential Equation exercise 21.10 question 22

Answer: 2xetan1x=e2tan1y+C
Hint: To solve this equation we use ef(x)dx formula.
Give: (1+y2)+(xe2tan1y)dydx=0
Solution: xetan1ydydx=(1+y2)
=(etan1yx)dydx=1+y2
=(etan1yx)dy=(1+y2)dx
Put tan1y=t
=11+y2dy=dt
=(etx)dt=dx
=dxdt=etx
=dxdt+x=et
=dydx+P(x)y=Qx
=dxdt+P(t)t=Q(x)
P(t)=1,Qt=et
If=eP(t)dx
=e1dt
=et
=xet=etetdt+C
=xetan1y=e2tan1y2+C
=2xetan1y=e2tan1y+C



Differential Equation Exercise 21.10 Question 18

Answer: ysinx=x2sinx+C
Hint: To solve this we convert cotx to cosxsinx formula.
Give: dydx+cotxy=x2cotx+2x
Solution: dydx+Py=Q
P=cotx,Q=x2cotx+2x
If=ePdx
=ecotxdx
=elogsinx
=sinx
=yIf=QIfdx+C
=ysinx=(x2cotx+2x)sinxdx+C
=ysinx=x2cosxsinxsinx+2xsinxdx+C
=ysinx=x2cosxdx+2xsinxdx+C
=x2cosxdxddxx2cosxdx+2xsinxdx+C
[uvdx=uvdxdydxvdxdx]
=x2sinx2xsinxdx+2xsinxdx+C
=ysinx=x2sinx+C

Differential Equation Exercise 21.10 Question 19

Answer: ysecx=x2sinx+2xcosx2sinx+C
Hint: To solve this we convert cotx to cosxsinx formula.
Give: dydx+ytanx=x2cos2x
Solution: dydx+Py=Q
P=tanx,Q=x2cos2x
If=ePdx
=etanxdx
=elogsecx
=secx
=yIf=QIfdx+C=ysecx=x2cos2x(secx)dx+C=ysecx=x2cos2x(1/cosx)dx+C=ysecx=x2cosxdx+C=ysecx=x2cosxdx(2xcosxdx)dx+C
Using integration by parts
=ysecx=x2sinx2x2sinxdx+C=ysecx=x2sinx2xsinxdx(sinxdx)dx+C=ysecx=x2sinx2xsinxdx(sinxdx)dx+C=ysecx=x2sinx+2xcosx2sinx+C

Differential Equation Exercise 21.10 Question 20

Answer: 2yetan1x=e2tan1y+C
Hint: To solve this equation we use If(x)dx formula.
Give: $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x} $
Solution: (1+x2)dydx+y=etan1x
=dydx+y(1+x2)=etan1x1+x2(i)=dydx+P(x)y=Qx
P=11+x2,Q=etan1x1+x2If=ePdx=e11+x2dx=etan1x(ii)
=etan1xdydx+etan1xy1+x2=(etan1x)21+x2=ddx[yetan1x]=(etan1x)21+x2

=d(yetan1x)=etan1x21+x2dx

=yetan1x=etan1x21+x2dx+C

Differential Equation Exercise 21.10 Question 21

Answer:y=x4+x2logx+Cx2
Hint: To solve this we convert formula.
Give: xdy=(2y+2x4+x2)dx
Solution:dydx=2y+2x4+x2x
=dydx=2yx+2x3+x=dydx2yx=2x3+xdydx+Py=Q
P=2x,Q=2x3+xIf=ePdx=e2xdx=e=2logx=elogx2=x2=1x2[elogx=x]
=yIf=QIfdx+C=yx2=2x3+xx2dx+C=yx2=2x+1xdx+C=yx2=x2+logx+C=y=x4+x2logx+Cx2

Differential Equation Exercise 21.10 Question 23

Answer: y=(y+1y)+Ce1y
Hint: To solve this equation we use formula.
Give: y2dxdy+x1y=0
Solution: 1y2[y2(dxdy)+x1y]=0
=dydx+x2y21y3=0
=dydx+x2y2=1y3
=dxdy+P(x)=Q
P=1yQ=1y3
If=ePdy
=xIf=IfQdy
dxdy+xy2=1y3
=If=e1y2dy
=e1y
=xe1y=e1y1y3dy
=1ye1y1y2dy
=1y=t
=1y2dy=dt
=dy=y2dt
tetdt
=xe1y=[tetet]+C
=xe1y=tet+et+C
=xe1y=1ye1y+e1y+C
=xe1y=e1y(1y+1+Ce1y)
=x=1+yy+Ce15

Differential Equation Exercise 21.10 Question 24

Answer: x=2y3+Cy2
Hint: To solve this equation we use formula.
Give: (2x10y3)dydx+y=0
Solution: dydx=y2x10y3
=dydx=(2x10y3)y
=dydx=2xy+10y3y
=dxdy+2xy=10y2
=dxdy+Rx=S
R=2xy,S=10y2
If=eRdy
=e21ydy
=e2logy
=y2
=xIf=SIf+C
=xy2=SIf+C
=xy2=10y2y2+C
=xy2=10y4+C=xy2=10y55+C
=xy2=2y5+C
=x=2y3+Cy2
=x=2y3+Cy2

Differential Equation Exercise 21.10 Question 25

Answer: x=tany+Ctany
Hint: To solve this equation we use tanx and convert it to sinx and cosx
Give: (x+tany)dy=sin2ydx
Solution: (x+tany)dy=sin2ydx
=dxdy=(x+tany)sin2y=dxdy=xsin2y+tanysin2y=dxdy=xcosec2y+sinycosy2sinycosy=dxdy=xcosec2y+sinycosy2sinycosy
=dxdy=xcosec2y+12cos2y=dxdy=xcosec2y+12sec2y=dxdy+Rx=S
R=cosec2y,S=12sec2y
 If =eRdy
=e(cosec2y)dy
=elog|cosec2ycot2y|
=cosec2ycot2y
=1sin2ycos2ysin2y
=1cos2ysin2y
=2sin2y2sinycosy
=sinycosy
=tany
=elog|tany|
=elog|coty|
=coty
=xIf=SIf+C=xcoty=12sec2ycotydy+C=xcoty=12cos2ycosysinydy+C=xcoty=12cosy1sinydy+C=xcoty=1sin2ydy+C=xcoty=12log|cosec2ycot2y|+C

Differential Equation Excercise 21.10 Question 26

Answer: x=(tany+C)ey
Hint: To solve this equation we use where are constants.
Give: dx+xdy=eysec2ydy
Solution: dx=eysec2ydyxdy
=dxdy+x=eysec2y
First order linear differential equation form
=dxdy=PxQP=1 and eysec2y
If of differential equation is

If=eRdy
=e1dy
dy=y+C
=If=ey [elogx=x]
=x(If)=QIFdy+C
=xey=eysec2yeydy+C
=xey=sec2ydy+C
=xey×1ey=(tany+C)×1ey [sec2ydy=tanx+C]
=x=(tany+C)ey

Differential Equation Excercise 21.10 Question 27

Answer: 2ycosx=cos2x+C
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: dydx=ytanx2sinx
Solution: dx=dydxytanx=2sinx
=dxdy+Py=QP=tanx and Q=2sinx
If of differential equation is

If=ePdx
=etanxdx
=elogcosx
=cosx[elogx=x]
yIf= QIf dx+C
=ycosx=2sinxcosxdx+C
=ycosx=sin2xdx+C
=ycosx=cos2x2+C
=2ycosx=cos2x+C



Differential Equation Excercise 21.10 Question 28

Answer:yesinx=(sinx1)esinx+C
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: dydx+ycosx=sinxcosx
Solution:dydx+ycosx=sinxcosx
=dxdy+Py=QP=cosx and Q=sinxcosx
If of differential equation is

If=ePdx
=ecosxdx
=esinx
=sinx[esinx=sinx]
yIf= QIf dx+C
yesinx=sinxcosxesinxdx[sinx=t,cosxdx=dt]
=tetdt
=tetet+C
=tetet+C
=et(t1)+C
=yesinx=(sinx1)esinx+C

Differential Equation exercise 21.10 question 29

Answer: y=(1+x2)(x+tan1x+C)
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: (1+x2)dydx2xy=(x2+2)(x2+1)
Solution: dydx+(2xy1+x2)=(x2+2)(x2+1)1+x2
dydx+(2x1+x2)y=x2+2=dxdy+Py=QP=2x1+x2,Q=x2+2
If of differential equation is

 If =e2x1+x2dx[1+x2=t,2xdx=dt]
=edtt
=elnt
=eln(t1)
=t1
=1t
=11+x2
y If = QIf dx+C
y11+x2=(x2+2)1x2+1dx+C
=x2+1+1x2+1dx+C
=x2+1x2+1dx+1x2+1dx+C
=dx+tan1x+C
=x+tan1x+C
=y=(1+x2)(x+tan1x+C)

Differential Equation exercise 21.10 question 30

Answer: ysinx=23sin3x+C
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: (sinx)dydx+ycosx=2sin2xcosx
Solution: sinxdydx+ycosx=2sin2xcosx
=dydx+ycosxsinx=2sin2xcosxsinx
=dydx+ycotx=2sinxcosx(i)
=dydx+Py=Q
P=cotx,Q=2sinxcosx
If of differential equation is
 If =ePdx
=ecotxdx
=elog|sinx|
=sinx
y If = QIf dx+C
=ysinx=2sin2xcosxdx
=2sin2xcosxdx [sinx=t,cosxdx=dt]
=2t2dt
=2[t33]+C
=23t3+C
=23sin3x+C
ysinx=23sin3x+C

Differential Equation exercise 21.10 question 31

Answer: y(x1)3x+1(x26x+8log|x+1|)+C
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: (x21)dydx+2(x+2)y=2(x+1)
Solution: dydx+2(x+2)x21y=2x1
=dydx+Py=Q
P=2(x+2)x21,Q=2x1
If of differential equation is
If=e2(x+2)x21dx
=e(2xx21+4x21)dx
=eln|x21|+4×12ln|x1x+1|
=eln|x21|+2ln|x1x+1|
=eln|x21|+ln|(x1)2(x+1)2|
=eln(x21)(x1)2(x+1)2
=eln(x+1)(x1)(x1)2(x+1)2=eln(x1)(x1)2(x+1)=eln(x1)3(x+1)=(x1)3x+1y If = QIf dx+C
=y(x1)3x+1=(2x1)(x1)3x+1dx+C
=2(x1)3x+1dx+C[x+1=t,dx=dt]
=2(t2+44t)tdt
=2[t22]+8log|t|8t+C
=t2+8log|t|8t+C
=(x+1)2+8log|x+1|8(x+1)+C
=x2+2x+1+8log|x+1|8x8+C
=y(x1)3(x+1)(x26x+8log|x+1|)+C

Differential Equation exercise 21.10 question 32

Answer: y=sinx+2cosxx2sinxx+cx2
Hint: To solve this equation we use dydx+Py=Q where P,Q+ are constants.
Give: xdydx+2y=xcosx
Solution: dydx+2yx=xcosxx
=dydx+2xy=cosx
=dydx+Py=Q
P=2xQ=cosx
If of differential equation is
If=ePdx
=e2xdx
=e2logx
=elogx2
=x2
yIf= QIf dx+C
=yx2=cosxx2dx+C
=x2(sinx)2sinxdx+C
=x2(sinx)2[x(cosx)1(cosx)dx+C]
=x2(sinx)2x(cosx)+2cosxdx+C
=x2(sinx)2x(cosx)2sinx+C
=yx2=x2(sinx)2x(cosx)2sinx+C
=y=x2(sinx)x22x(cosx)x22sinxx2+Cx2
=y=(sinx)2(cosx)x2sinxx2+Cx2

Differential Equation Exercise 21.10 Question 33

Answer: y=(x22+C)ex
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give:dydxy=xex
Solution: dydx+(1)y=xex
=dydx+Py=QP=1,Q=xex
If of differential equation is

If=ePdx
=e1dx
=edx
=ex
yIf=QIfdx+C
=y(ex)=xexexdx+C
=y(ex)=xexxdx+C
=y(ex)=xe0dx+C
=y(ex)=xdx+C
=y(ex)=x1+11+1+C
=y(ex)=x22+C
=y(ex)ex=ex(x22+C)
=y(ex+x)=ex(x22+C)
=y(e0)=ex(x22+C)
=y=ex(x22+C)

Differential Equation Exercise 21.10 Question 34

Answer: y=xe4x6136e4x+Ce2x
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: dydx+2y=xe4x
Solution: dydx+(2)y=xe4x
=dydx+Py=QP=2,Q=xe4x
If of differential equation is

 If =ePdx
=e2dx
=e2dx
=e2x
yIf= QIf dx+C
=y(e2x)=xe4xe2xdx+C
=ye2x=xe6xdx+C
=ye2x=xe6xdx+C[f(x)g(x)dc=f(x)[g(x)dx]f(x)[g(x)dx]dx]
=ye2x=x(e6xdx)ddx(x)(e6xdx)dx+C
=ye2x=x(e6x6)1(e6x6)dx+C
=ye2x=x(e6x6)16(e6x6)+C
=ye2x=e6x(x6)136(e6x)+C
=ye2xe2x=e2x[e6x(x6)136(e6x)+C]
=ye2x2x=e2xe6x(x6)e2x136(e6x)+Ce2x
=ye0=e6x2x(x6)e6x2x136+Ce2x
=y=e4x(x6)e4x136+Ce2x

Differential Equation Exercise 21.10 Question 35

Answer: xy1=2y+C,C=0
Hint: To solve this equation we use dydx+Py=Q where P,Q are constants.
Give: (x+2y2)dydx=y when x=2,y=1
Solution: dxdyy=x+2y2
=dxdy=x+2y2y
=dxdy=xy+2y2y
=dxdyxy=2y
=dydx+Py=Q
P=1yQ=2y
If of differential equation is
If=ePdy
=e1ydy
=elogy
=15
xIf= QIf dx+C
=x(1y)=2y(1y)dy+C
=xy=2dy+C
=xy=2y+C
=x=y(2y+C)
=x=2y2+C
 When x=2,y=1
=2=2+C
=C=22=0



Differential Equation exercise 21 point 10 question 36 (i)

Answer:y={(x+C)c3x,m=3emxm+3+Ce3x, otherwise  ,otherwise
Give:dydx+3y=emx,m is a given real number.
Hint: Use exdx
Explanation: dydx+3y=emx
=dydx+(3)y=emx
This is a first order linear differential equation of the form
=dydx+Py=Q
Here P=3 and Q=emx
The integrating factor If of the differential equation is
If=ePdx=e3dx=e3dx=e3x[dc=x+C]
Hence, the solution of differential equation is
y(If)=QIfdx+C=y(e3x)=emxe3xdx+C=y(e3x)=emx+3xdx+C=y(e3x)=ex(m+3)dx+C
Case 1: m+3=0 or m=3
When m+3=0 , we have ex(m+3)
=e0=1
ye3x=dx+C
ye3x=x+C
ye3xe3x=(x+C)e3x
ye3x3x=(x+C)e3x
y=(x+C)e3x[e3x3x=e0=1]
Case 2: m+30 or m3
When m+30 we have
ye3x=ex(m+3)dx+C
ye3x=e(m+3)xm+3+C
ye3xe3x=(e(m+3)xm+3+C)e3x
ye3xe3x=(emxe3x)e3xm+3+Ce3x
y=emxm+3+Ce3x
Thus the solution of the given differential equation is
y={(x+C)c3x,m=3emxm+3+Ce3x, otherwise 

Differential Equation exercise 21.10 question 36 subquetsion (ii)

Answer:y=15(2sin2xcos2x)+Cex
Give: dydxy=cos2x
Hint: Using integration by parts
Explanation: dydxy=cos2x
dydx+(1)y=cos2x
This is a first order linear differential equation of the form
dydx+Py=QP=1 and Q=cos2x
The integrating factor If of this differential equation is
If=ePdx
=e1dx
=e1dx[dc=x+C]
=ex
Hence, the solution of differential equation is
y(If)=QIfdx+C
y(ex)=(cos2x)exdx+C
yex=excos2xdx+C
yex=(ex)(cos2x)dx+C
 Let I=(ex)(cos2x)dx+C
I=excos2xdxddx(ex)(cos2xdx)dx+C
I=ex(sin2x2)ex(sin2x2)dx+C
I=12exsin2x+12exsin2xdx+C
I=12exsin2x+12{[ex(sin2xdx)]ddxex(sin2xdx)dx+C}
I=12exsin2x+12{[ex(cos2x2)]ex(cos2x2)dx+c}
I=12exsin2x+12{[12excos2x]12ex(cos2x)dx+C}
I=12exsin2x+12{[12excos2x]12excos2xdx+c}
I=12exsin2x+12{[12excos2x]12I}
I=12exsin2x+12(12excos2x)+12(12I)
I=12exsin2x14excos2x14I
I+14I=12exsin2x14excos2x
I+14I=12exsin2x14excos2x
54I=142exsin2x14excos2x
54I=14ex(2sin2xcos2x)
5I=ex(2sin2xcos2x)
I=ex5(2sin2xcos2x)
By substituting the value of in the original integral we get
yex=ex5(2sin2xcos2x)+C
yexex=ex[ex5(2sin2xcos2x)+C]
yexex=exx5(2sin2xcos2x)+Cex
y=15(2sin2xcos2x)+Cex



Differential Equation exercise 21.10 question 36 (iii)

Answer: y=ex+Cx
Give: xdydxy=(x+1)ex
Hint: Using 1xdx
Explanation: xdydxy=(x+1)ex
Divide by x
dydxyx=(x+1)exxdydx+(1x)y=(x+1)exx
This is a first order linear differential equation of the form
dydx+Py=QP=1x and Q=(x+1)exx
The integrating factor of this differential equation is
 If =ePdx=e1xdx=ex1dx[dc=x+C]=ex=x1=1x
Hence, the solution of differential equation is
y(If)=QIfdx+Cy(ex)=(x+1)exx(1x)dx+C
y(ex)=(x+1)exx2dx+C=y(ex)=I1+C(i)=I1=(x+1)exx2dx=I1=(x)exx2dx+(1)exx2dx=I1=exxdx+exx2dx
=I1=1xex(1)(1x2)ex1dx+1x2exdx=I1=exxexx2dx+exx2dx=I1=exx
By yx=exx+C
Multiplying by x we get
y=ex+Cx

Differential Equation exercise 21.10 question 36 (iv)

Answer: 15x4+cx
Give: xdydx+y=x4
Hint: Using xndx
Explanation: xdydx+y=x4
Divide by x
dydx+yx=x4xdydx+(1x)y=x3

This is a first order linear differential equation of the form
dydx+Py=QP=1x and Q=x3


The integrating factor If of this differential equation is

If=ePdx
=e1xdx=elogx[1xdc=log|x|+C]=x
Hence, the solution of differential equation is
y(If)=QIfdx+C=yx=x3xdx+C=yx=x4dx+C=yx=x55+C
Divide by x, we get
=y=x45+Cx



Differential Equation Exercise 21.10 Question 36 (v)

Answer: y=12logx+clogx
Give:xlogx)dydx+y=logx
Hint: Using 1xdx
Explanation:(xlogx)dydx+y=logx
Divide by xlogx
dydx+yxlogx=1x
This is a first order linear differential equation of the form
dydx+Py=QP=1xlogx and Q=1x

The integrating factor If of this differential equation is

If=ePdx=e1xlogxdx[logx=t,1xdx=dt]=e1tdt=elogt
=elog(logx)[elogx=x]=logx
Hence, the solution of the differential equation is
y(If)= QIfd x+C=ylogx=1xlogxdx+C=ylogx=log2xx+C[xdx=x22]=y=1logx(log2x2+C)=y=log2x2logx+Clogx=y=logx2+Clogx



Differential Equation Exercise 21.10 Question 36 (vi)

Answer: (1+x2)(x+tan1x+C)
Give: dydx2xy1+x2=x2+2
Hint: Using 11+x2dx
Explanation:dydx2xy1+x2=x2+2
=dydx(2x1+x2)y=x2+2
This is a first order linear differential equation of the form
dydx+Py=QP=2x1+x2 and Q=x2+2
The integrating factor If of this differential equation is
If=ePdx=e2x1+x2dx=e2x1+x2dx=elog|1+x2|[1xdx=log|x|+C]=elog|1+x2|1=(1+x2)1
=11+x2
Hence, the solution of different equation is
yIf=QIfdx+C=y(11+x2)=(x2+2)1x2+1dx+C=y1+x2=x2+1+1x2+1dx+C=y1+x2=x2+1x2+1+1x2+1dx+C
=y1+x2=1+1x2+1dx+C=y1+x2=1dx+1x2+1dx+C=y1+x2=x+tan1x+C[1x2+1dx=tan1x]=y=(1+x2)(x+tan1x+C)



Differential Equation Exercise 21.10 Question 36 (vii)

Answer: y=12esinx+cesinx
Give: dydx+ycosx=esinxcosx
Hint: Using cosxdx
Explanation: dydx+cosxy=esinxcosx
This is a first order linear differential equation of the form
dydx+Py=QP=cosx and Q=esinxcosx

The integrating factor If of this differential equation is
If=ecosxdx=esinx[sinxdx=cosx+C]


Hence, the solution of different equation is

yIf=QIfdx+C=yesinx=esinxcosxesinxdx+C
=yesinx=e2sinxcosxdx+C=yesinx=e2tdt+C[sinx=t,cosxdx=dt]=yesinx=[e2t2]+C
=yesinx=e2sinx2+C=y=e2sinx2esinx+Cesinx=y=esinx2+Cesinx



Differential Equation Exercise 21.10 Question 36 (viii)

Answer: x+y1=Cey
Give: (x+y)dydx=1
Hint: Using integration by parts.
Explanation: (x+y)dydx=1
=dxdy=x+y
=dxdyx=y
This is a first order linear differential equation of the form
dydx+Py=QP=1 and Q=y
The integrating factor If of this differential equation is
If=ePdy=e1dy=edy=ey[dy=y+C]
Hence, the solution of different equation is
yIf=QIfdx+C=yey=yeydy+C(i)
Using integration by parts we have
=yeydy=yey1(1)eydy+C=yeyey1+C=yey+ey+C
From i

=xey=yey+ey+C
Divide by ey
=x=y+1+Cey=x=y+1+Cey



Differential Equation Exercise 21.10 Question 36 (ix)

Answer: y=tanx1+cetanx
Give: dydxcos2x=tanxy
Hint: Using integration by parts.
Explanation: dydxcos2x=tanxy
=dxdycos2x+y=tanx
Divide by cos2x
=dydx+ycos2x=tanxcos2x=dydx+(1cos2x)y=tanxcos2x
This is a first order linear differential equation of the form
dydx+Py=QP=1cos2xandQ=tanxcos2x
The integrating factor If of this differential equation is
If=ePdx=e1cos2xdx=esec2xdx=etanx[sec2xdx=tanx+C]
Hence, the solution of different equation is
yIf= QIfd x+C=yetanx=tanxcos2xetanxdx+C(i)
Using integration by parts,

=tanxsec2xetanxdx+C
Put tanx=t,sec2xdx=dt
=tetdt+C=tet(1)etdt=tetet+C=tanxetanxetanx+C
Put in (i)
=yetanx=tanxetanxetanx+C
Divide by etanx
=y=tanx1+Cetanx




Differential Equation Exercise 21.10 Question 36 (x)

Answer: xey=tany+C
Give: eysec2ydy=dx+xdy
Hint: Using sec2xdx
Explanation: eysec2ydy=dx+xdy
=eysec2ydyxdy=dx=(eysec2yx)dy=dx=dxdy=eysec2yx=dydx+x=eysec2y
This is a first order linear differential equation of the form
dydx+Px=QP=1 and Q=eysec2y
The integrating factor If of this differential equation is
If=e1dy=edy=ey[dy=y+C]
Hence, the solution of different equation is
xIf=QIfdy+C=xey=eysec2yeydy+C=xey=sec2ydy+C[eyey=ey+y=e0=1]=xey=tany+C[sec2xdx=tanx+C]



Differential Equation Exercise 21.10 Question 36 (xi)

Answer: y=logx+clogx
Give: xlogxdydx+y=2logx
Hint: Using 1xdx
Explanation: xlogxdydx+y=2logx
Divide by xlogx
=dydx+(1xlogx)y=2x
This is a first order linear differential equation of the form
dydx+Px=QP=1xlogx and Q=2x
The integrating factor If of this differential equation is
 If f=e1xlogxdx=elog|logx|=logx[elogex=x]
Hence, the solution of different equation is
yIf=QIfdx+C=ylogx=(2xlogx)dx+C
=ylogx=2(1xlogx)dx+C=ylogx=2(logx)22+C[xdx=x22+C]=ylogx=(logx)2+C
Divide by logx , we get
=ylogxlogx=(logx)2logx+Clogx=y=logx+Clogx



Differential Equation Exercise 21.10 Question 36 (xii)

Answer: y=x24+x216+C
Give: xdydx+2y=x2logx
Hint: Using integration by parts and 1xdx
Explanation: xdydx+2y=x2logx
Divide by x
=dydx+(2x)y=xlogx
This is a first order linear differential equation of the form
dydx+Px=QP=2x and Q=xlogx
The integrating factor If of this differential equation is
If=ePdx=e2x2dx=e21xdx[1xdx=log|x|+C]=e2log|x|=elog|x2|=x2[elogex=x]
Hence, the solution of different equation is
yIf=QIfdx+C
=yx2=xlogxx2dx+C=yx2=x3logxdx+C(i)
We have x3logxdx=logxx441xx44dx+C
=logxx4414x3dx+C=logxx4414x44+C=logxx44x416+C
From i
=yx2=logxx44x416+C
Divide by x2
=y=1x2logxx441x2x416+C=y=x24logxx216+C



Differential Equation Exercise 21.10 Question 37 (i)

Answer: y=ex2
Give: y+y=ex
Hint: Using integration
Explanation: dydx+y=ex
This is a first order linear differential equation of the form
dydx+Px=QP=1 and Q=ex
The integrating factor If of this differential equation is
If=ePdx=e1dx[1xdx=log|x|+C]=edx=ex
Hence, the solution of different equation is
yIf= QIfd x+C=yex=exexdx+C=yex=e2xdx+C=yex=e2x2+C[e2x=e2x2+C]
Divide by
=y=1exe2x2+1exC=y=ex2+Cex
Given when y(0)=12, when x=0,y=12
=12=e02+Ce0=12=12+C=C=0
By y=ex2+0ex
=y=ex2



Differential Equation Exercise 21.10 Question 37 (ii)

Answer: x+y+logx=1
Give: xdydxy=logx,y(1)=0
Hint: Using 1xdx
Explanation: xdydxy=logx
Divide by x
=dydx+(1x)y=logxx
This is a first order linear differential equation of the form
dydx+Px=Q
P=1x and Q=logxx
The integrating factor If of this differential equation is
If=ePdx=e1xdx=e1xdx[1xdx=log|x|+C]=elogx=elogx1=x1[elogex=x]=1x
Hence, the solution of different equation is
yIf=QIfdx+C=y1x=logxx1xdx+C=yx=logxx1xdx+C(i)
We have logxx1xdx
Put x=tx=et
Using integration by parts
=tet1(1)et1dt=tet+et+C=tet+1et+C=logxx+1x+C
Substituting in i
=yx=logxx+1x+C
Multiplying by x
=y=1logx+C(ii)
Given y(1)=0
 When x=1,y=0=0=10+C[log0=1]=C=1
Substituting in ii
=y=1logx1x=y=1logxx=y++logx=1




Differential Equation Exercise 21.10 Question 37 (iii)

Answer: cosx+ye2x=1
Give: dydx+2y=e2xsinx,y(0)=0
Hint: Using integrating factor
Explanation: dydx+2y=e2xsinx
This is a linear differential equation of the form
dydx+Px=QP=2 and Q=e2xsinx
The integrating factor If of this differential equation is
If=ePdx=e2dx=e2dx=e2x[dx=x+C]
Hence, the solution is

yIf= QIf dx+C=y(e2x)=e2xsinxe2xdx+C=ye2x=sinxdx+C[e2xe2x=e2x+2x=e0=1]=ye2x=cosx+C(i)
Now y(0)=0, When x=0,y=0
=0e2(0)=cos0+C
=0=1+C=C=1
By i
=ye2x=cosx+1
=cosx+ye2x=1



Differential Equation exercise 21.10 question 37 (iv)

Answer: y=ex+xe
Give: xdydxy=(x+1)e2x,y(1)=0
Hint: Using integration by parts and 1xdx
Explanation: xdydxy=(x+1)ex
Divide by x , we get
=dydxy(1x)=(x+1)xex=dydx+y(1x)=(x+1)xex
This is a linear differential equation of the form
dydx+Px=QP=1x and Q=(x+1)xex
The integrating factor of this differential equation is
If=ePdx=e1xdx=e1xdx=elog|x|[1xdx=logx+C]
Hence, the solution is
yIf= QIf dx+C=y(1x)=(x+1)xex1xdx+C=yx=(x+1)xex1xdx+C
=yx=I+C(i)=I1=(x+1)xex1xdx+C=1xexx(1x2)ex1dx+exx2dx=exxexx2dx+exx2dx=exx
By yx=exx+C
Multiply by x
=y=ex+Cx(ii)
Now y(1)=0 when x=1,y=0
=0=e1+C(1)=0=1e+C=C=1e
Put in (ii)
=y=ex+1ex=y=e+xe



Differential Equation exercise 21.10 question 37 (v)

Answer: xetan1y=tan1y
Give: (1+y2)dx+(xetan1y)dy=0
Hint: Using 11+x2dx
Explanation: (1+y2)dx+(xetan1y)dy=0
=(xetan1y)dy=(1+y2)dx
=xetan1y=(1+y2)dxdy

=xetan1y1+y2=dxdy
=x1+y2etan1y1+y2+dxdy=0
=dxdy+(11+y2)x=etan1y1+y2
This is a linear differential equation of the form
dxdy+Px=QP=11+y2 and Q=etan1y1+y2
The integrating factor If of this differential equation is
 If =ePdx=e11+y2dx=etan1y[11+x2dx=tan1x+C]
Hence, the solution is
xIf=QIfdy+C=x(etan1y)=etan1y1+y2etan1ydy+C=xetan1y=11+y2dy+C [etan1y+tan1y=e0=1]
=xetan1y=tan1y+C (i) 
[11+y2dy=tan1y]
Now y(0)=0
=0etan1(0)=tan1(0)+C
=C=0
Substituting in (i)
=xetan1y=tan1y+0=xetan1y=tan1y




Differential Equation exercise 21.10 question 37 (vi)

Answer: y=x2+cosx
Give:dydx+ytanx=2x+x2tanx
Hint: Using 11+x2dx
Explanation: dydx+ytanx=2x+x2tanx
=dxdy+(tanx)y=2x+x2tanx
This is a linear differential equation of the form
dxdy+Px=QP=tanx and Q=2x+x2tanx
The integrating factor If of this differential equation is
If=ePdx=etanxdx=elog|secx| [tanxdx=secx+C]
=secx[elogex=x]
Hence, the solution is
yIf= QIf dx+C=ysecx=(2x+x2tanx)secxdx+C=ysecx=I+C(i)=I=(2x+x2tanx)secxdx=2xsecxdx+x2tanxsecxdx
=2(x22secxx22(tanxsecx)dx)+x2tanxsecxdx+C=2x22secx2x22(tanxsecx)dx+x2tanxsecxdx+C=x2secxx2tanxsecxdx+x2tanxsecxdx+c=x2secx+C
Substituting in (i)

=ysecx=x2secx+C
Dividing by secx
=y=x2+Csecx=y=x2+Ccosx(ii)
Now y(0)=1 when x=0,y=1

=1=02+Ccos(0)
=1=+C(1)[cos0=1]
=C=1
Substituting in (ii)
=y=x2+(1)cosx=y=x2+cosx




Differential Equation exercise 21.10 question 37 (vii)

Answer: y=sinx
Give: xdydx+y=xcosx+sinx,y(π2)=1
Hint: Using integration by parts 11+x2dx
Explanation: xdydx+y=xcosx+sinx
Divide by x
=dxdy+yx=cosx+sinxx=dxdy+(1x)y=cosx+sinxx
This is a linear differential equation of the form
dxdy+Py=QP=1x and Q=cosx+sinxx
The integrating factor If of this differential equation is
If=ePdx
=e1xdx
=elog|x| [1xdx=log|x|+C]
=x [elogex=x]
Hence, the solution is
yIf=QIfdx+C=y(x)=(cosx+sinxx)xdx+C
=yx=(xcosx+sinx)dx+C=yx=xcosxdx+sinxdx+C(i)
Using integration by parts
xcosxdx=xsinxsinxdx
Substituting in (i)
=yx=xsinxsinxdx+sinxdx+C=yx=xsinx+C
Divide by x

=y=sinx+Cx(ii)
Now y(π2)=1 when x=π2,y=1
=1=sinπ2+Cπ2
=1=1+2Cπ[sinπ2=1]
=2Cπ=0
=C=0
Substituting in (ii)
=y=sinx+(0)1x
=y=sinx+0
=y=sinx



Differential Equation Excercise 21.10 Question 37 (viii)

Answer:ysinx=2x2π22
Give:dydx+ycotx=4xcosecx,y(π2)=0
Hint: Using cotxdx and xdx
Explanation: dydx+ycotx=4xcosecx
dydx+(cotx)y=4xcosecx
This is a linear differential equation of the form
dxdy+Py=QP=cotx and Q=4xcosecx
The integrating factor If of this differential equation is
If=ePdx
=ecotxdx
x=elog|sinx| [cotxdx=log|sinx|+C]
=sinx [elogex=x]
Hence, the solution is
yIf= QIf dx+C=y(sinx)=(4xcosecx)sinxdx+C=ysinx=4x1sinxsinxdx+C[cosecx=1sinx]
=ysinx=4xdx+C=ysinx=4(x22)+C=ysinx=2x2+C(i)
Now y(π2)=0 when x=π2,y=0
=0sinx=2(π2)2+C
=0=2π24+C
=C=π22
Substituting in (i)
=ysinx=2x2π22



Differential Equation Excercise 21.10 Question 37 (ix)

Answer: y=cosx2cos2x
Give: dydx+2ytanx=sinx,y=0 when x=π3
Hint: Using tanxdx
Explanation: dydx+ycotx=4xcosecx
dydx+2ytanx=sinx=dydx+(2tanx)y=sinx
This is a linear differential equation of the form
dxdy+Py=QP=2tanx and Q=sinx
The integrating factor If of this differential equation is
If=ePdx=e2tanxdx=e2tanxdx
=e2log|secx|[tanxdx=log|secx|+C]=elogsec2x=sec2x[elogex=x]
Hence, the solution is
yIf=QIfdx+C=ysec2x=(sinxsec2x)dx+C=ysec2x=sinx1cos2xdx+C
=ysec2x=sinxcosx1cosxdx+C=ysec2x=tanxsecxdx+C[tanx=sinxcosx]=ysec2x=secx+C[tanxsecxdx=secx+C]
Divide by secx
=ysecx=1+Csecx=ysecx=1+Ccosx(i)
Now y=0 when x=π3
=0secx=1+Ccosπ3
=0=1+C(12)[cosπ3=12]=C2=1=C=2
Substituting in (i)
=ysecx=12cosx
Divide by secx
=y=1secx2cosxsecx=y=cosx2cosxcosx[1secx=cosx]=y=cosx2cos2x



Differential Equation Excercise 21.10 Question 37 (x)

Answer: ycosec2x=4sinx2
Give: dydx3ycotx=sin2x,y=2 when x=π2
Hint: Using cosecxcotxdx
Explanation: dydx3ycotx=sin2x
dydx+(3cotx)y=sin2x
This is a linear differential equation of the form
dxdy+Py=QP=3cotx and Q=sin2x
The integrating factor If of this differential equation is
If=ePdx=e3cotxdx=e3cotxdx=e3log|sinx|[cotxdx=log|sinx|+C]
=elogsin3x
=sin3x[elogex=x]
=1sin3x=cosec3x
Hence, the solution is
yIf=QIfdx+C=ycosec3x=(sin2xcosec3x)dx+C=ycosec3x=(2sinxcosx1sin3x)dx+C
=ycosec3x=2(cosx1sin2x)dx+C=ycosec3x=2(cosxsinx1sinx)dx+C=ycosec3x=2cotxcosecxdx+C[cosxsinx=cotx,1sinx=cosecx]=ycosec3x=2(cosecx)+C[cotxcosecxdx=cosecx]
Divide by cosecx
=ycosec2x=2+Ccosecx=ycosec2x=2+Csinx(i)[1cosecx=sinx]
Now y=2 when x=π2

=2cosec2(π2)=2+Csinπ2
=2(1)2=2+C(1)[cosecπ2=1sinπ2=11=1]=2=2+C=C=4
Substituting in (i)
=ycosec2x=+4sinx2



Differential Equation Excercise 21.10 Question 37 (xi)

Answer: ysinx+cos2x=0
Give: dydx+ycotx=2cosx,y(π2)=0
Hint: Using cotxdx
Explanation: dydx+(cotx)y=2cosx
This is a linear differential equation of the form
dxdy+Py=QP=cotx and Q=2cosx
The integrating factor If of this differential equation is
If=ePdx=ecotxdx=elog|sinx|[cotxdx=log|sinx|+C]=sinx[elogex=x]
Hence, the solution is
yIf=QIfdx+C=y(sinx)=2cosxsinxdx+C=ysinx=sin2xdx+C[2cosxsinx=sin2x]=ysinx=cos2x2+C(i)
We have y(π2)=0 when x=π2,y=0
=(0)sinπ2=cos2(π2)2+C
=C=cosπ2=C=(1)2[cosπ=1]=C=12
Substituting in (i)

=ysinx=cos2x212
=ysinx=12(cos2x+1)
=2ysinx=(cos2x+1)=2ysinx=cos2x1=2ysinx+cos2x+1=0=2ysinx+cos2x=0[1+cos2x=2cos2x]



Differential Equation exercise 21.10 question 37 (xii)

Answer: ysinx=cos2x2+C
Give: dy=cosx(2ycosecx)dx
Hint: Using cotxdx
Explanation: dy=cosx(2ycosecx)dx
=dydx=cosx(2ycosecx)
=dydx=2cosxycosx1sinx[cosecx=1sinx]=dydx=2cosxycotx[cosxsinx=cotx]=dydx+(cotx)y=2cosx
This is a linear differential equation of the form
dxdy+Py=QP=cotxandQ=2cosx
The integrating factor If of this differential equation is
 If f=ePdx=ecotxdx=elog|sinx|[cotxdx=log|sinx|+C]=sinx[elogex=x]
Hence, the solution is
yIf=QIfdx+C=y(sinx)=2cosxsinxdx+C=ysinx=sin2xdx+C[2cosxsinx=sin2x]=ysinx=cos2x2+C



Differential Equation exercise 21.10 question 37 (xiii)

Answer: y=x2π4cosecx+C
Give: tanxdydx=2xtanx+x2y,tanx0,y=0 when x=π2
Hint: Using integration by parts and cotxdx
Explanation: tanxdydx=2xtanx+x2y
Divide by tanx
=dydx=2x+x2tanxytanx
=dydx=2x+cotxx2ycotx[1tanx=cotx]=dydx+ycotx=2x+cotxx2=dydx+(cotx)y=2x+cotxx2
This is a linear differential equation of the form
dxdy+Py=QP=cotx and Q=2x+cotxx2

The integrating factor If of this differential equation is
If=ePdx=ecotxdx=elog|sinx|[cotxdx=log|sinx|+C]=sinx[elogex=x]


Hence, the solution is
yIf=QIfdx+C=ysinx=(2x+x2cotx)sinxdx+C=ysinx=2xsinx+x2cotxsinxdx+C
=ysinx=2xsinxdx+x2cotxsinxdx+C=ysinx=2[x22sinxcosxx22dx]+cosxsinxsinxx2dx+C[cotx=cosxsinx]=ysinx=x2sinxcosxx2dx+cosxx2dx+C=ysinx=x2sinx+C

Divide by sinx
=y=x2+Csinx=y=x2+Ccosecx(i)
Now y=0 when x=π2
=0=(π2)2+Ccosecπ2=0=π24+C(1)[cosecπ2=1]=C=π24
Substituting in (i)
=y=x2π24cosecx



Differential Equation Exercise 21.10 Question 38

Answer: y=x24+cx2
Give: tanxdydx+2y=x2
Hint: Using 1xdx and elogex=x
Explanation: tanxdydx+2y=x2
Divide by x
=dydx+2yx=x=dydx=(2x)y=x
This is a linear differential equation of the form
dxdy+Py=QP=2x and Q=x
The integrating factor If of this differential equation is
 If =ePdx=e2xdx=e21xdx=e2logx[1xdx=logx+C]=elogx2=x2[elogex=x]
Hence, the solution is
yIf=QIfdx+C=yx2=xx2dx+C=yx2=x3dx+C=yx2=x44+C[xndx=xn+1n+1+C]
Divide by x2

=y=x24+cx2



Differential Equation Exercise 21.10 Question 39

Answer: y=12(sinxcosx)+cex
Give: dydxy=cosx
Hint: Using integrating factor and integration by parts
Explanation: dydxy=cosx
=dydx+(1)y=cosx
This is a linear differential equation of the form
dxdy+Py=QP=1 and Q=cosx
The integrating factor If of this differential equation is
If=ePdx=e1dx=edx=ex[dx=x+C]
Hence, the solution is
yIf=QIfdx+C=y(ex)=cosxexdx+C(i)
Using integration by parts
I=cosxexdx=cosxex1sinxex1dx+C
=I=cosxex[sinxex1cosxex1dx]=I=cosxex+sinxexcosxexdx
=I=cosxex+sinxexI=2I=cosxex+sinxex=2I=ex(sinxcosx)=I=12ex(sinxcosx)
Substituting in (i)
=yex=12ex(sinxcosx)+C
Divide by ex
=y=12(sinxcosx)+Cex



Differential Equation Exercise 21.10 Question 40

Answer: y=3x2+Cx
Give:(y+3x2)dxdy=x
Hint: Using 1xdx
Explanation: (y+3x2)dxdy=x
=xdydx=y+3x2
Divide by x
=dydx=y+3x2x=dydx=yx+3x2x
=dydx=yx+3x=dydxyx=3x=dydx+(1x)y=3x
This is a linear differential equation of the form
dxdy+Px=Q
P=1x and Q=3x
The integrating factor If of this differential equation is
If=ePdx=e1xdx=e1xdx
=elogx[1xdx=logx+C]=elogx1=x1[elogex=x]=1x
Hence, the solution is

yIf=QIfdx+C=y(1x)=3x(1x)dx+C
=yx=3dx+C=yx=3dx+C=yx=3x+C[dx=x+C]
Multiply by x

=y=3x2+Cx



Differential Equation Exercise 21.10 Question 41

Answer: x=y2π24cosecy
Give: dxdy+xcoty=2y+y2coty,y0,x=0 when y=π2
Hint: Using integration by parts and xndx
Explanation: dxdy+xcoty=2y+y2coty
=dxdy+(coty)x=2y+y2coty
This is a linear differential equation of the form
dxdy+Px=Q
P=cotx and Q=2y+y2coty
The integrating factor If of this differential equation is
If=ePdx=ecotydx=elog|siny|[cotxdx=log|sinx|+C]=siny[elogex=x]
Hence, the solution is
xIf=QIfdy+C=x(siny)=(2y+y2coty)sinydy+C=xsiny=2ysiny+y2cotysinydy+C
=xsiny=2ysiny+y2cosysinysinydy+C=xsiny=2ysinydy+y2cosydy+C=xsiny=2ysinydy+y2cosydy+C(i)
Using integration by parts
=2ysinydy=2[sinyy22cosyy22dy]=sinyy2cosyy2dy
Substituting on (i)
=xsiny=sinyy2cosyy2dy+y2cosydy+C=xsiny=sinyy2+C
Divide by siny

=x=y2+Csiny=x=y2+Ccosecy(ii)[1siny=cosecy]
Now x=0 when y=π2
=0=(π2)2+Ccosecπ2
=0=π24+C(1)[cosecπ2=1]=C=π24
Substituting in (ii)
=x=y2π24cosecy

Differential Equation Exercise 21.10 Question 42

Answer: x+cot1y=1+Cetan1y
Give: (cot1y+x)dy=(1+y2)dx
Hint: Using integration by parts and 11+x2dx
Explanation: (cot1y+x)dy=(1+y2)dx
=dxdy=cot1y+x1+y2=dxdy=cot1y1+y2+x1+y2
=dxdyx1+y2=cot1y1+y2=dxdy+(11+y2)x=cot1y1+y2
This is a linear differential equation of the form
dxdy+Px=QP=11+y2 and Q=cot1y1+y2
The integrating factor If of this differential equation is
If=ePdy=e11+y2dy=e11+y2dy
=etan1y[11+y2dy=tan1y+C]=ecot1y[tan1y=cot1(1y)]
Hence, the solution is
xIf=QIfdy+C
=x(ecot1y)=cot1y1+y2ecot1ydy
Put cot1y=t
=dy1+y2=dt=dy1+y2=dt
So,

=tetdt
Using integration by parts
=[tetetdt]=[tetetC]=tet+et+C=xecot1y=cot1yecot1y+ecot1y+C
Divide by ecot1y

=x=cot1y+1+cecot1y=x+cot1y=1+Cetan1y[cot1y=tan1(1y)]



In the 21st chapter of mathematics, class 12, there are eleven exercises. The tenth exercise in this Differential Equation chapter, ex 21.10, has 65 questions in the textbook. The concept in this exercise is to solve the differential equations, initial value problem, general solution, and particular solution of differential equations. Few questions have subparts, while most of the questions do not. Only Level 1 questions are present in this tenth exercise. However, even though there is no Level 2 part, the students face challenges even in the Level 1 questions as the chapter moves towards its end. Hence, the usage of RD Sharma Class 12 Chapter 21 Exercise 21.10 solution book is vital.

Most of the CBSE schools recommend the RD Sharma books to their students because it follows the NCERT syllabus. And to add another point, the RD Sharma Class 12th Exercise 21.10 book contains many practice questions for the students to work out on an extra basis. This makes the students understand the concept in-depth and prevent making mistakes in the exams.

The Class 12 RD Sharma Chapter 21 Exercise 21.10 Solution contains accurate answers from experts in the mathematical field. Begin your practice today in the presence of the RD Sharma solution materials to observe the rise in your marks. RD Sharma solutions Students who face challenges in solving the differential equation sums will soon start feeling it easy. The RD Sharma Class 12th Exercise 21.10 book has rescued many students who faced the same difficulties.

The fact that the RD Sharma Class 12 Solutions Differential Equation Ex 21.10 can be accessed and downloaded for free has received a massive response from the students. Everyone can access the website and collect a copy of it for their reference. Due to the free download option at the Career360 website, the students need not purchase any other solutions books by paying hundreds of rupees.

As the RD Sharma Class 12 Solutions Chapter 21 Ex 21.10 books are also used in preparing questionnaires for exams and tests, the students who practice with this book have an additional advantage. The experience of working out those sums while practice will make them score marks easily.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Which RD Sharma book is prescribed for the students who want to be clear about the concepts and sums in the mathematics chapter 21?

The RD Sharma Class 12th Exercise 21.10 is the most prescribed reference book for the students who wish to learn the concepts in this chapter.

2. Which is the best website to refer to the RD Sharma solution books?

All the RD Sharma solution books are available at the top educational website, Career 360. Students can access the books from this site. 

3. What concept does the class 12 mathematics chapter 21 focus on?

The central concept that the class 12 mathematics chapter 21 focuses on is Differential Integration. Therefore, most of the sums are based on this topic. 

4. What are the benefits of the practice sums present in the RD Sharma solution books?

The additional sums given in the RD Sharma Class 12th Exercise 21.10 make these students well-versed in the concept. It also makes them exam-ready effortlessly. 

5. How many exercises are there in the class 12 mathematics in chapter 21?

There are eleven exercises in the class 12 mathematics chapter 21 syllabus.

Articles

Back to top