Trigonometry Formula Sheet 2025: Essential Formulas for Classes 10 & 12
  • Trigonometry Formula Sheet 2025: Essential Formulas for Classes 10 & 12

Trigonometry Formula Sheet 2025: Essential Formulas for Classes 10 & 12

Vishal kumarUpdated on 28 Jan 2025, 02:37 PM IST

Trigonometry is one of the foundational branches of mathematics, playing very important role in everything from geometry to physics and engineering. Whether you're a student preparing for board exams or competitive exams like JEE Main, NEET or other state engineering this trigonometry formula sheet will be very useful for exam preparation. Having a comprehensive formula sheet at your fingertips can save time and simplify complex calculations.

This Story also Contains

  1. Types of Trigonometric Functions
  2. Trigonometric Identities-1 (Reciprocal ,Pythagorean ,Co-function and Even-Odd Identities)
  3. Trigonometric Identities-2 ( Double angled,half angled and Triple angled formulas)
  4. Trigonometric Identities-3 (Sum and difference identities, Sum-to-Product and Product-to-Sum Formulas)
  5. Trigonometric Ratios of Allied Angles
Trigonometry Formula Sheet 2025: Essential Formulas for Classes 10 & 12
Trigonometry formule sheet

Understanding and memorizing these trigonometric formulas is crucial for students in Classes 10, 11, and 12, as they form the foundation for advanced mathematics and competitive exams. This comprehensive guide also includes a trigonometric table and inverse trigonometric formulas to help students tackle problems with ease and confidence which will help to boost your exam preparation journey.

Types of Trigonometric Functions

Types of trigonemetric function

$\begin{aligned} & \sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}} \\ & \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}} \\ & \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{\mathrm{BC}}{\mathrm{AB}} \\ & \operatorname{cosec}=\frac{1}{\sin \theta} \\ & \sec =\frac{1}{\cos \theta} \\ & \cot =\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}\end{aligned}$

The above circle is the standard unit circle (centre at the origin and radius is equal to 1 unit)

$\begin{aligned} & \sin \theta=\frac{x}{r}=\frac{x}{1}=1 \\ & \cos \theta=\frac{y}{r}=\frac{y}{1}=1\end{aligned}$

For a standard unit circle, the value of x and y give us the values of $\cos \theta$ and $\sin \theta$ respectively.

Trigonometric Function

Graphs of trigonometric functions:

Graphs of trigonometric functions:

Trigonometric Identities-1 (Reciprocal ,Pythagorean ,Co-function and Even-Odd Identities)

Trigonometric Identities:-

  • Reciprocal Identities

$\begin{aligned} & \csc \theta=\frac{1}{\sin \theta} \\ & \sec \theta=\frac{1}{\cos \theta} \\ & \cot \theta=\frac{1}{\tan \theta}\end{aligned}$

  • Pythagorean Identities

$\begin{aligned} & \sin ^2 \theta+\cos ^2 \theta=1 \\ & \sec ^2 \theta=1+\tan ^2 \theta \\ & \csc ^2 \theta=1+\cot ^2 \theta\end{aligned}$

  • Co-function Identities

$\begin{aligned} & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\ & \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\ & \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta \\ & \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta \\ & \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta \\ & \sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta\end{aligned}$

  • Even-Odd Identities

$\begin{aligned} & \sin (-\theta)=-\sin \theta \\ & \cos (-\theta)=\cos \theta \\ & \tan (-\theta)=-\tan \theta \\ & \csc (-\theta)=-\csc \theta \\ & \sec (-\theta)=\sec \theta \\ & \cot (-\theta)=-\cot \theta\end{aligned}$

Trigonometric Identities-2 ( Double angled,half angled and Triple angled formulas)

Trigonometric Identities:-

  • Double angled formulas

$\begin{aligned} \sin 2 \theta & =2 \sin \theta \cos \theta \\ \cos 2 \theta & =\cos ^2 \theta-\sin ^2 \theta \\ & =2 \cos ^2 \theta-1 \\ & =1-2 \sin ^2 \theta \\ \tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^2 \theta}\end{aligned}$

  • Half angled formulas

$\begin{aligned} & \sin \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos \theta}{2}} \\ & \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos \theta}{2}} \\ & \tan \left(\frac{\theta}{2}\right)=\frac{1-\cos \theta}{\sin \theta}\end{aligned}$

  • Triple angled identities

$\begin{aligned} & \sin 3 x=3 \sin x-4 \sin ^3 x \\ & \cos 3 x=4 \cos ^3 x-3 \cos x \\ & \tan 3 \mathrm{x}=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\end{aligned}$

Trigonometric Identities-3 (Sum and difference identities, Sum-to-Product and Product-to-Sum Formulas)

Trigonometric Identities:-

  • Sum and difference identities

$\begin{aligned} & \sin (x+y)=\sin x \cos y+\cos x \sin y \\ & \sin (x-y)=\sin x \cos y-\cos x \sin y \\ & \cos (x+y)=\cos x \cos y-\sin x \sin y \\ & \cos (x-y)=\cos x \cos y+\sin x \sin y \\ & \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\ & \tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\end{aligned}$

  • Sum-to-Product Formulas

$\begin{aligned} & \sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\ & \sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\ & \cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\ & \cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)\end{aligned}$

  • Product-to-Sum Formulas

$\begin{aligned} \sin x \sin y & =\frac{1}{2}[\cos (x-y)-\cos (x+y)] \\ \cos x \cos y & =\frac{1}{2}[\cos (x-y)+\cos (x+y)] \\ \sin x \cos y & =\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\ \cos x \sin y & =\frac{1}{2}[\sin (x+y)-\sin (x-y)]\end{aligned}$

Trigonometric Ratios of Allied Angles

Trigonometric ratios of allied angles:

Upcoming School Exams
Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 21 Oct'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe