If you are a student who is in class and is looking for a good NCERT solution, your search ends here. The RD Sharma class 12th exercise 25.1 is the best NCERT solutions that students can possibly find today. The book has some high-quality answers which are easy to grasp and understand by all students. The RD Sharma class 12 chapter 25 exercise 25.1 is the perfect book to keep to improve your chances of topping in boards.
RD Sharma class 12 solutions Scalar Triple Product 25.1 should be availed of by all students who have maths in their board exams. Chapter 25 of the NCERT is titled Scalar Triple Product and is a rather short one. RD Sharma solutions The concepts covered are basic ideas on Scalar Triple Product Formula, Volume of parallelopiped, coplanar vectors, Proof of Scalar Triple Product, and Scalar Triple Product Properties. The first exercise of this chapter, ex 25.1 consists of 27 questions along with its subparts. Students can find the solutions for this long list of questions at the RD Sharma Class 12th Exercise 25.1 reference material.
Scalar Triple Product Exercise 25.1 Question 1(i)
Answer :- 3Scalar Triple Product Exercise 25.1 Question 1(ii)
Answer :- -1Scalar Triple Product Exercise 25.1 Question 2(i)
Answer: $4$
Hint :- Use cross product & dot product
Given: $\vec{a}=2\hat{i}-3\hat{j}$
$\vec{b}=\hat{i}+\hat{j}-\hat{k}$
$\vec{b}=3\hat{i}-\hat{k}$
We Know $\left [ \vec{a}\vec{b}\vec{c} \right ]=\left ( \vec{a}\times \vec{b} \right ).\vec{c}$
$\begin{aligned} &\therefore \vec{a} \times \vec{b}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -3 & 0 \\ 1 & 1 & -1 \end{array}\right| \\\\ &=\hat{i}(3-0)-\hat{\jmath}(-2-0)+\hat{k}(2+3) \\\\ &=3 \hat{\imath}+2 \hat{\jmath}+5 \hat{k} \\ \end{aligned}$
$\begin{aligned} &\text { Now, }(\vec{a} \times \vec{b}) \cdot \vec{c}=(3 \hat{i}+2 \hat{\jmath}+5 \hat{k}) \cdot(3 \hat{i}+0 \hat{j}-\hat{k}) \\\\ &=9+0-5 \\\\ &=4 \end{aligned}$
Scalar Triple Product Exercise 25.1 Question 2(ii)
Answer :- $\left [ \vec{a}\:\: \vec{b}\:\: \vec{c} \right ]=12$Scalar Triple Product Exercise 25.1 Question 2(iii)
Answer :- -30Scalar Triple Product Exercise 25.1 Question 3(i)
Answer :- 37 cubic unitsScalar Triple Product Exercise 25.1 Question 3(ii)
Answer :- 35 cubic unitsScalar Triple Product Exercise 25.1 Question 3(iii)
Answer :- 286 cubic unitsScalar Triple Product Exercise 25.1 Question 3(iv)
Answer :- 4 cubic units∴Volume of parallelepiped,$=\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ]$
$\begin{aligned} &=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{array}\right| \\ &=1(1-2)-1(-1-1)+1(2+1) \\ &=1(-1)-1(-2)+1(3) \\ &=-1+2+3 \\ &=4 \end{aligned}$
Scalar Triple Product Exercise 25.1 Question 4(i)
Answer :- $\left [ \vec{a}\: \: \vec{b}\: \: \vec{c}\right ]=0$Scalar Triple Product Exercise 25.1 Question 4(ii)
Answer :- $\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ]=0$Scalar Triple Product Exercise 25.1 Question 4(iii)
Answer :- $\left [ \vec{a} \: \: \vec{b} \: \: \vec{c}\right ]=0$
Hint :- vectors are coplanar if scalar triple product is zero.
Given:-$\begin{aligned} &\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \\ \end{aligned}$
$\begin{aligned} &\vec{b}=-2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k} \\ &\vec{c}=\hat{\imath}-3 \hat{\jmath}+5 \hat{k} \\ \end{aligned}$
For vectors, $\hat{a}$$,\hat{b}$ &$\hat{c}$ if $\left [ \vec{a} \: \: \vec{b} \: \: \vec{c}\right ]=0$ vectors are coplanar.
$\begin{aligned} &\therefore\left[\begin{array}{ll} \vec{a}\ \vec{b} & \vec{c} \end{array}\right]=\left|\begin{array}{ccc} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{array}\right| \end{aligned}$
$=1\left ( 15-22 \right )+2\left ( -10+4 \right )+3\left ( 6-3 \right )$
$=3-12+9$
$=0$
Thus, vectors are coplanar.
Scalar Triple Product Exercise 25.1 Question 5(i)
Answer :- $\lambda =1$Scalar Triple Product Exercise 25.1 Question 5(ii)
Answer :- $\lambda =\frac{-25}{8}$Scalar Triple Product Exercise 25.1 Question 5(iii)
Answer:$\lambda =6$Scalar Triple Product Exercise 25.1 Question 5(iv)
Answer :- $\lambda =\frac{-1}{3}$Scalar Triple Product Exercise 25.1 Question 6
Answer :- $\left [ \vec{AB}\: \: \vec{AC}\: \: \vec{AD} \right ]\neq 0$Thus, the vectors so formed are not coplanar.
Scalar Triple Product Exercise 25.1 Question 7
Answer :- $\left [ \vec{AB}\: \: \vec{AC}\: \: \vec{AD} \right ]=0$Scalar Triple Product Exercise 25.1 Question 8
Answer :- $\left [ \overrightarrow{AB}\: \overrightarrow{AC}\: \overrightarrow{AD} \right ]\neq 0$Scalar Triple Product Exercise 25.1 Question 9
Answer :- $\lambda =1$Now, As vectors are given coplanar then,$\left [ \overrightarrow{AB}\overrightarrow{AC}\overrightarrow{AD} \right ]=0$
$\begin{aligned} &\therefore[\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=\left|\begin{array}{ccc} 4 & 6 & (\lambda+1) \\ 3 & 10 & 5 \\ -4 & 5 & 5 \end{array}\right| \\ \end{aligned}$
$\begin{aligned} &=4(50-25)-6(15+20)+(\lambda+1)(15+40) \\ &=100-210+55 \lambda+55 \\ &=55 \lambda+(-55) \\ &=55 \lambda-55 \\ \end{aligned}$
As vectors are coplanar
$\begin{aligned} &\therefore 55 \lambda-55=0 \\ &\therefore \lambda=1 \end{aligned}$
Scalar Triple Product Exercise 25.1 Question 10
Answer:$\left ( \vec{a}-\vec{b} \right ).\left \{ \left ( \vec{b}-\vec{c} \right )\times \left ( \vec{c}-\vec{a} \right ) \right \}=0$Scalar Triple Product Exercise 25.1 Question 11
write the ques number in proper formatIf a vector given $\left ( \vec{a}\times \vec{b} \right )+\left ( \vec{b}\times \vec{c} \right )+\left ( \vec{c}\times \vec{a} \right )$ is perpendicular to the plane of triangle ABC then its dot product with the vector $\overrightarrow{AB},\overrightarrow{BC},\overrightarrow{CA}$ must be zero
$\begin{aligned} &\overrightarrow{A B} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})]\\ &=[(\vec{b}-\vec{a}) \cdot(\vec{a} \times \vec{b})]+[(\vec{b}-\vec{a}) \cdot(\vec{b} \times \vec{c})]+[(\vec{b}-\vec{a}) \cdot(\vec{c} \times \vec{a})]\\ \end{aligned}$
$\begin{aligned} &=[(\vec{b} \cdot(\vec{a} \times \vec{b})]-[\vec{a} \cdot(\vec{a} \times \vec{b})]+[\vec{b} \cdot(\vec{b} \times \vec{c})]-[\vec{a} \cdot(\vec{b} \times \vec{c})]+[(\vec{b} \cdot(\vec{c} \times \vec{a})]-[\vec{a} \cdot(\vec{c} \times \vec{a})]\\ \end{aligned}$
$=\left[\begin{array}{lll} \vec{b} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{b} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{b} & c \end{array}\right]+\left[\begin{array}{lll} \vec{b} & \vec{c} & a \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{c} & \vec{a} \end{array}\right]$
$\begin{aligned} &=0-0+0-[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{b} \vec{c}]-0 \\ &=0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad(\because[\vec{b} \vec{c} \vec{a}]=[\vec{a} \vec{b} \vec{c}]) \end{aligned}$
$\begin{aligned} &\overrightarrow{B C} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \\\\ &=[\vec{c}-\vec{b}][(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \end{aligned}$
$=\left[\begin{array}{lll} \vec{c} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{c} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{b} & \vec{c} \end{array}\right]+\left[\begin{array}{lll} \vec{c} & \vec{c} & \vec{a} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{a} \end{array}\right]$
$=\left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]+0+0-0-0-\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ]$
$=0$ $=\left ( \because \left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]=\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ] \right )$
Similarly,
$\begin{aligned} &\overrightarrow{C A} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \\\\ &=[\vec{a}-\vec{c}][(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \end{aligned}$
$=\left[\begin{array}{lll} \vec{a} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{b} & \vec{c} \end{array}\right]+\left[\begin{array}{lll} \vec{a} \vec{c} & \vec{a} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{a} \end{array}\right]$
$=0-\left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]\left [ \vec{c}\: \vec{a}\: \vec{b} \ \right ]-0+0-0$
$=0$
As, dot product of all vectors is zero. We can say that $\left ( \vec{a}\times \vec{b} \right )+\left ( \vec{b}\times \vec{c} \right )+\left ( \vec{c}\times \vec{a} \right )$ is perpendicular to the plane of triangle ABC.
Scalar Triple Product Exercise 25.1 Question 12(i)
Answer:$c_{3}=2$$\vec{b}=\hat{i}$
$\begin{aligned} &\vec{c}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k} \\ \end{aligned}$
If c 1 = 1 & c2 = 2 then find c3 which makes $\vec{a}$ , $\vec{b}$ & $\vec{c}$ are coplanar.
$\begin{aligned} &\therefore \vec{c}=1 \vec{\imath}+2 \vec{\jmath}+\mathrm{c}_{3} \vec{k} \\ \end{aligned}$
If $\vec{a}$,$\vec{b}$,$\vec{c}$ are coplanar than $\left [ \vec{a}\: \vec{b}\: \vec{c} \right ]=0$
$\begin{aligned} &\therefore\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_{3} \end{array}\right|=0 \\ &1(0-0)-1\left(c_{3}-0\right)+1(2-0)=0 \\ &-c_{3}+2=0 \\ &\therefore-c_{3}+2=0 \\ &c_{3}=2 \end{aligned}$
Scalar Triple Product Exercise 25.1 Question 12(ii)
Answer:- no value of $c_{1}$ can make $\vec{a},\vec{b},\vec{c}$ coplanarFor $\vec{a},\vec{b},\vec{c}$to be co-planar $\left [ \vec{a},\vec{b},\vec{c} \right ]=0$
$\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & -1 & 1 \end{array}\right|$
$=1\left ( 0-0 \right )-1\left ( 1-0 \right )+1\left ( -1-0 \right )$
$=0-1-1$
$=-2$
But $=-2\neq 0$
And no value of $c_{1}$ will be enough to change the criteria. Thus no value of $c_{1}$can make$\vec{a},\vec{b},\vec{c}$ coplanar.
Scalar Triple Product Exercise 25.1 Question 13
Answer :- $\lambda =5$Scalar Triple Product Exercise 25.1 Question 14
Answer :- $x=6$Scalar Triple Product Exercise 25.1 Question 15
Answer :- 24 cubic unitsThe class 12 RD Sharma chapter 25 exercise 25.1 solution is the ideal book to use if students want to perfect their maths skills. Here are some excellent benefits of using the RD Sharma class 12th exercise 25.1:-
RD Sharma class 12th exercise 25.1 can be of great help to students when they practice at home. They can use the solutions in the book to check their own answers and correct their mistakes. Students might even find common questions in boards if they are thorough with their studies.
RD Sharma class 12 solutions chapter 25 ex 25.1 is used by teachers to give home to students. Therefore, students can use the book to answer tough homework questions.
Experts in mathematics have crafted the answers in the book with much care. They have used some unique methods of calculation which will be helpful for all students in enhancing their skills.
RD Sharma class 12th exercise 25.1 has an updated syllabus which is changed with the latest version of the NCERT maths textbooks. You will be able to download the latest version of the book from the Career360 website.
There are many expensive options in NCERT solutions which are rarely helpful. The RD Sharma class 12th exercise 25.1 is beneficial for students and comes free of cost.
RD Sharma Chapter wise Solutions
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters