VMC VIQ Scholarship Test
ApplyRegister for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
There are 10 natural numbers between 1 and 10, which are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. A natural number is defined as every integer greater than 0. Natural numbers are used for counting and ordering things. Natural numbers are the most basic type of numbers, which one learns when one begins learning mathematics. We use N to denote the set of natural numbers.
Use of numerals for the representation of numbers was the first major advancement in abstraction. Ancient Egyptians developed symbols for 1 to 10 and all powers of 10 to 1 million. Babylonians even had a place value system.
Closure:- Natural numbers are closed under addition and multiplication, i.e. the result of addition and multiplication over the set of natural numbers is always a natural number. At the same time, that is not the case with division and multiplication. E.g. In the case of subtraction, any number 'a' from the set of natural numbers when subtracted by any number greater than itself results in a negative number which is not a part of the set of natural numbers, and thus, it does not follow closure property, while when a number is divided by a number greater than itself then it results in a fraction which is again not a natural number, and hence, a division is not closed for natural numbers.
Associativity:- Natural numbers are associative under addition and multiplication, which means:-
\begin{aligned}
&\text{(a+b) +c =a +(b+c)} \hspace{5mm} \text{(For Addition)}\\
\\
&(\text{a} \times \text{b}) \times \text{c} = \text{a} \times (\text{b} \times \text{c}) \hspace{5mm} \text{(For Multiplication)}
\end{aligned}
Commutativity:- Natural numbers
are commutative under addition and multiplication. Subtraction and division are not commutative as a - b does not always equal b - a similarly, a divided by b does not always equal b divided by a.
\begin{aligned}
&\text{(a-b)} \neq \text{(b-a)}\\
\\
&\hspace{4mm}\frac{\text{a}}{\text{b}} \neq \frac{\text{a}}{\text{b}}
\end{aligned}
Distributivity:- Natural numbers are distributive for multiplication over addition. This property can be seen as follows.
\begin{aligned}
& \text{a} \times \text{(b+c)}\\
&=\text{a}\times \text{b} + \text{a} \times \text{c}
\end{aligned}
Natural numbers are used to determine the countability of something. If there is a set of the thing about which we have to find whether it is countable or not, then if a bijection exists between that set and the set of natural numbers it is countable, otherwise, it is uncountable.
Natural numbers are integers from 1 and afterwards. Many mathematicians describe it as the only number to exist in nature and term other various types of numbers as made by men, for their convenience, that's why they are taught before any other numbers to make mathematics intuitive, and also to make the base strong for their further advancement in mathematics.
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 30th NOV'24! Trusted by 3,500+ universities globally
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE