Careers360 Logo

Popular Searches

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots

    Access premium articles, webinars, resources to make the best decisions for career, course, exams, scholarships, study abroad and much more with

    Plan, Prepare & Make the Best Career Choices

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots

    Edited By Ramraj Saini | Updated on Oct 09, 2023 03:25 PM IST

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots

    Squares and Square Roots Class 8 Questions And Answers provided here. These NCERT Solutions are created by expert team at craeers360 keeping the latest syllabus and pattern of CBSE 2023-23. The NCERT solutions for Class 8 Maths chapter 6 Squares and Square Roots cover questions related to squares of numbers and square roots of numbers. It contains explanation to 4 exercises with 30 questions. Practicing questions is important to score good marks in Mathematics.

    Square means a number will be multiplied 2-times by itself. For example:- If we want to calculate the square of 6, then the square will be 6×6 = 36, likewise square of 5 = 5×5 = 25. The square root is just a reverse application of square, it means when a number multiplied 2-times by itself then it will result in the square and the root number of this result is called the square root. For example- the square of 3 = 3 × 3 which is equal to 9 and similarly in the reverse manner square root of 9 is equal to 3. Here you will get the detailed NCERT Solutions for Class 8 by clicking on the link.

    Squares and Square Roots Class 8 Questions And Answers PDF Free Download

    Download PDF

    Squares and Square Roots Class 8 Solutions - Important Formulae

    Square Root Formula: If q is a natural number such that p2 = q, then √q = p and -p.

    Properties of Squares and Square Roots:

    • There are 2n non-perfect square numbers between n2 and (n+1)2.

    • If a perfect square has n digits, its square root will have n/2 digits if n is even, or (n+1)/2 digits if n is odd.

    Free download NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots for CBSE Exam.

    Squares and Square Roots Class 8 NCERT Solutions (Intext Questions and Exercise)

    Squares and square roots class 8 NCERT Solutions - Topic 6.1

    Q.1 Find the perfect square numbers between

    (i) 30 and 40

    (ii) 50 and 60

    Answer:

    (i) We know that

    5^{2} = 25, 6^{2} = 36, 7^{2} = 49

    So clearly 36 is the perfect square number between 30 and 40.


    (ii) We know

    7^{2} = 49; 8^{2} = 64; 9^{2} = 81

    So clearly it can be seen that there does not exist any perfect square number between 50 and 60

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topic 6.2

    Q.1 Can we say whether the following numbers are perfect squares? How do we know?

    (i) \; 1057

    Answer:

    We know that numbers which end with 0, 1, 4, 5, 6 or 9 at units place may be a perfect square number and all other number are not perfect square number.

    Since the given number has 7 at units place hence this number is not a perfect square.

    Q.1(ii) Can we say whether the following numbers are perfect squares? How do we know?

    23453

    Answer:

    We have 23453.

    Since this number ends with digit 3 so it cannot be a perfect square. (As we know a number must end with 0, 1, 4, 5, 6 or 9 for being a perfect square number.)

    Q.1(iii) Can we say whether the following numbers are perfect squares? How do we know?

    7928

    Answer:

    It is known that a number must end with 0, 1, 4, 5, 6 or 9 at units place for being a perfect square.

    The given number ends with 8 so it is not a perfect square.

    Q.1 (iv) Can we say whether the following numbers are perfect squares? How do we know?

    222222

    Answer:

    Given number ends with digit 2.

    We know that only a number ending with 0, 1, 4, 5, 6 or 9 at units place can be perfect square.

    Therefore 222222 is not a perfect square number.

    Q.1(v) Can we say whether the following numbers are perfect squares? How do we know?

    1069

    Answer:

    Since the units place of a given number is 9, thus it may or may not be a perfect square number.

    As we know a number ending with 0, 1, 4, 5, 6 or 9 at units place can be a perfect square number.

    Q.1 (vi) Can we say whether the following numbers are perfect squares? How do we know?

    2061

    Answer:

    It is known that the numbers that end with 0, 1, 4, 5, 6 or 9 at units place may be a perfect square.

    Given number has 1 as the last digit so it may be a perfect square number.

    Q.2 Write five numbers which you cannot decide just by looking at their units digit (or units place) whether they are square numbers or not.

    Answer:

    The five numbers can be :- 521, 655, 124, 729, 1940 etc.

    Basically, numbers ending with 0, 1, 4, 5, 6 or 9 at units place can be square numbers.

    Q. Which of 123^{2},77^{2},82^{2},161^{2},109^{2} would end with digit 1 ?

    Answer:

    It is known that if a number has 1 or 9 in the units place, then it’s square ends in 1.

    So squares of 161 and 109 would end with digit 1.

    Q. Which of the following numbers would have digit 6 at unit place.

    (i) 19^{2}

    (ii) 24^{2}

    (iii) 26^{2}

    (iv) 36^{2}

    (v) 34^{2}

    Answer:

    We know that when a square number ends in 6, the number whose square will have either 4 or 6 in unit’s place.

    So the required numbers are squares of 24, 26, 36, 34.

    Q (i). What will be the “one’s digit” in the square of the following numbers?

    1234

    Answer:

    We have 1234.

    Therefore one's digit is 6. (Since Square of digits ending with 4 gives 6 at units place.)

    Q (ii) . What will be the ones digit in the square of the following numbers

    26387

    Answer:

    We have 28367.

    So the one's digit will be 9. (Since Square of digits ending with 7 gives 9 at units place.)

    Q (iii). What will be the “one’s digit” in the square of the following numbers?

    52698

    Answer:

    We have 52698.

    Its square will end with 4. (Since square of a number ending with 8 ends with 4 at units place.)

    Q (iv). What will be the “one’s digit” in the square of the following numbers?

    99880

    Answer:

    We have 99880.

    0 will be the “one’s digit” in the square of this number. (Since the square of a number which ends with 0 will have 0 at units place.)

    Q (v). What will be the “one’s digit” in the square of the following numbers?

    21222

    Answer:

    4 will be the “one’s digit” in the square of the 21222.

    Since the square of a number ending with 2 will give 4 at units place.

    Q (vi) . What will be the “one’s digit” in the square of the following numbers?

    9106

    Answer:

    6 will be the “one’s digit” in the square of 9106.

    As we know that we get 6 at units place when we square a number ending with 6.

    Q1. The square of which of the following numbers would be an odd number/an even number? Why?

    (i) 727

    (ii) 158

    (iii) 269

    (iv) 1980

    Answer:

    We know that the squares of even numbers are even numbers and squares of odd numbers are odd numbers.

    So squares of 727 and 269 will be odd numbers, and squares of 158 and 1980 will be even numbers.

    Q2. What will be the number of zeros in the square of the following numbers?

    (i) 60

    (ii) 400

    Answer:

    Square of a number having x number of zeros will have 2x number of zeros.

    Thus, (i) 60: Number of zeros will be 2.

    (ii) 400: Number of zeros will be 4.

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topic 6.3

    Q.1 How many natural numbers lie between 9^{2} and 10^{2} ? Between 11^{2} and 12^{2} ?

    Answer:

    In general, we can say that there are 2n non-perfect square numbers between the squares of the numbers n and (n + 1).

    Thus between squares of 9 and 10, the number of natural numbers is 2(9) = 18

    Similarly, between squares of 11 and 12, the number of natural numbers is 2(11) = 22

    Q.2 How many non square numbers lie between the following pairs of numbers

    (i) 100^{2}\; and\; 101^{2}

    (ii) 90^{2}\; and\; 91^{2}

    (iii) 1000^{2}\; and\; 1001^{2}

    Answer:

    In general, we can say that there are 2n nonperfect square numbers between the squares of the numbers n and (n + 1).

    (i) The number of non-square numbers that lie between the square of 100 and 101 will be = 2(100) = 200.

    (ii) The number of non-square numbers that lie between the square of 90 and 91 will be = 2(90) = 180.

    (iii) The number of non-square numbers that lie between the square of 1000 and 1001 will be = 2(1000) = 2000.

    Q(i). Find whether each of the following numbers is a perfect square or not?

    121

    Answer:

    If it is a sum of successive odd natural numbers starting with 1, then it is a perfect square.

    So we try to express 121 in successive integers. This can also be done by subtracting successive odd natural numbers from 121.

    Applying the concept :-

    121 - 1 = 120

    120 - 3 = 117

    117 - 5 = 112

    112 - 7 = 105

    105 - 9 = 96

    96 - 11 = 85

    85 - 13 = 72

    72 - 15 = 57

    57 - 17 = 40

    40 - 19 = 21

    21 - 21 = 0

    Thus 121 is a perfect square.

    Q(ii). Find whether each of the following numbers is a perfect square or not?

    55

    Answer:

    If it is a sum of successive odd natural numbers starting with 1, then it is a perfect square.

    So we try to express 55 in successive integers. This can also be done by subtracting successive odd natural numbers from 55.


    55 - 1 = 54 ; 54 - 3 = 51 ; 51 - 5 = 46 ; 46 - 7 = 39 ; 39 - 9 = 30 ; 30 - 11 = 19 ; 19 - 13 = 6.

    Thus 55 is not a perfect square.

    Q(iii). Find whether each of the following numbers is a perfect square or not?

    81

    Answer:

    If it is a sum of successive odd natural numbers starting with 1, then it is a perfect square.

    So we try to express 81 in successive odd natural numbers. This can also be done by subtracting successive odd natural numbers from 81.

    81 - 1 = 80

    80 - 3 = 77

    77 - 5 = 72

    72 - 7 = 65

    65 - 9 = 56

    56 - 11 = 45

    45 - 13 = 32

    32 - 15 = 17

    17 - 17 = 0

    Thus 81 is a perfect square number.

    Q(iv). Find whether each of the following numbers is a perfect square or not?

    49

    Answer:

    If it is a sum of successive odd natural numbers starting with 1, then it is a perfect square.

    So we try to express 49 in successive odd natural numbers. This can also be done by subtracting successive odd natural numbers from 49.

    49 - 1 = 48

    48 - 3 = 45

    45 - 5 = 40

    40 - 7 = 33

    33 - 9 = 24

    24 - 11 = 13

    13 - 13 = 0.

    Hence 49 is a perfect square number.

    Q (v). Find whether each of the following numbers is a perfect square or not?

    69

    Answer:

    If it is a sum of successive odd natural numbers starting with 1, then it is a perfect square.

    So we try to express 69 in successive odd natural numbers. This can also be done by subtracting successive odd natural numbers from 69.

    69 - 1 = 68

    68 - 3 = 65

    65 - 5 = 60

    60 - 7 = 53

    53 - 9 = 43

    43 - 11 = 32

    32 - 13 = 19

    19 - 15 = 4

    So the given number 69 is not a perfect square.

    Q.1 Express the following as the sum of two consecutive integers.

    (i) 21^{2}

    (ii) 13^{2}

    (iii) 11^{2}

    (iv) 19^{2}

    Answer:

    (i) 21 2 = 441 => 220 + 221

    (ii) 13 2 = 169 => 84 + 85

    (iii) 11 2 = 121 => 60 + 61

    (iv) 19 2 = 361 => 180 + 181

    Q.2 Do you think the reverse is also true, i.e., is the sum of any two consecutive positive integers is perfect square of a number? Give example to support your answer.

    Answer:

    No, the reverse is not true.

    For e.g, the two consecutive number 20 and 21 gives a sum of 41. But we know that 41 is not a perfect square.

    Class 8 maths ch 6 question answer - Topic 6.4

    Q (i) . Find the squares of the following numbers containing 5 in unit’s place.

    15

    Answer:

    Assume a number with unit digit 5 = a5

    (a5)^{2} = (10a + 5)^{2} = 10a(10a + 5) + 5(10a + 5) = 100a 2 + 50a + 50a + 25

    = 100a(a + 1) + 25

    = a(a + 1) hundred + 25

    We will use this result here,

    We have a5 = 15 , So a = 1

    (15)^{2} = 1(1+1)100 + 25 = 200 + 25 = 225

    Q (ii). Find the squares of the following numbers containing 5 in unit’s place.

    95

    Answer:

    Assume a number with unit digit 5 = a5

    (a5)^{2} = (10a + 5)^{2} = 10a(10a + 5) + 5(10a + 5) = 100a 2 + 50a + 50a + 25

    = 100a(a + 1) + 25

    = a(a + 1) hundred + 25

    We are going to use this result here.

    In this question a = 9

    so, 95^{2} = 9(9+1)hundred + 25

    = 9000 + 25 = 9025

    Q (iii) . Find the squares of the following numbers containing 5 in unit’s place.

    105

    Answer:

    Assume a number with unit digit 5 = a5

    (a5)^{2} = (10a + 5)^{2} = 10a(10a + 5) + 5(10a + 5) = 100a 2 + 50a + 50a + 25

    = 100a(a + 1) + 25

    = a(a + 1) hundred + 25.

    We will use this concept here.

    a = 10; so 105^{2} = 10(10+1)hundred + 25

    = 10(11)hundred + 25

    = 11000 + 25 = 11025

    Q (iv). Find the squares of the following numbers containing 5 in unit’s place.

    205

    Answer:

    Consider a number with unit digit 5, i.e., a5

    (a5)^{2} = (10a + 5)^{2} = 10a(10a + 5) + 5(10a + 5) = 100a 2 + 50a + 50a + 25

    = 100a(a + 1) + 25

    = a(a + 1) hundred + 25.

    Here a = 20

    Hence 205^{2} = 20(20+1)hundred + 25

    = 20(21)hundred + 25 = 42000 + 25

    = 42025

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topic 6.5.1

    (-1)^{2}=1. is -1 ,a square root of 1 ?

    Answer:

    The detailed solution for the above-mentioned question is written here

    Yes, Because after squaring -1 & 1 we get 1 in both the cases.

    Since \left ( -1 \right )^{2} = 1^{2} = 1

    (-2)^{2}=4. is -2, a square root of 4 ?

    Answer:

    The solution for the above-written question is written here

    Yes, because \left ( -2 \right )^{2} = 2^{2} = 4

    (-9)^{2}=81. is -9 a square root of 81 ?

    Answer:

    The solution for the above-written question is as follow

    Yes, because \left ( -9 \right )^{2} = 9^{2} = 81

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topic 6.5.2

    By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root.

    (i) 121

    Answer:

    Consider \sqrt{81} . Then

    81 - 1 = 80

    80 - 3 = 77

    77 - 5 = 72

    72 - 7 = 65

    65 - 9 = 56

    56 - 11 = 45

    45 - 13 = 32

    32 - 15 = 17

    17 - 17 = 0.

    Since zero is obtained in the 9th step thus \sqrt{81} = 9.

    By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root.

    (ii) 55

    Answer:

    We have \sqrt{55} . Then

    55 - 1 = 54

    54 - 3 = 51

    51 - 5 = 46

    46 - 7 = 39

    39 - 9 = 30

    30 - 11 = 19

    19 - 13 = 6.

    Thus the given number is not a perfect square.

    By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root.

    (iii) 36

    Answer:

    We have \sqrt{36} . Then

    36 - 1 = 35

    35 - 3 = 32

    32 - 5 = 27

    27 - 7 = 20

    20 - 9 = 11

    11 - 11 = 0 .

    We get zero on the 6th step so \sqrt{36} = 6

    By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root.

    (iv) 49

    Answer:

    We have \sqrt{49} . Then

    49 - 1 = 48

    48 - 3 = 45

    45 - 5 = 40

    40 - 7 = 33

    33 - 9 = 24

    24 - 11 = 13

    13 - 13 = 0 .

    We get zero on the 7th step so \sqrt{49} = 7

    By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root.

    (v) 90

    Answer:

    We have \sqrt{90} , then

    90 - 1 = 89

    89 - 3 = 86

    86 - 5 = 81

    81 - 7 = 74

    74 - 9 = 65

    65 - 11 = 54

    54 - 13 = 41

    41 - 15 = 26 ;

    26 - 17 = 9.

    So from the all above calculation, we can say that the given number is not a perfect square.

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topic 6.5.4

    Q. Can we say that if a perfect square is of n -digits, then its square root will have \frac{n}{2} digits if n is even or \frac{\left ( n+1 \right )}{2} if n is odd?

    Answer:

    Solution for the above-written question is as follows,

    Yes.

    The smallest 3-digit perfect square number = 100

    which is the square of 10

    the greatest 3-digit perfect square number is 961

    which is the square of 31.

    The smallest 4-digit square number is 1024

    which is the square of 32

    The greatest 4-digit number is 9801

    which is the square of 99.

    Q (i). Without calculating square roots, find the number of digits in the square root of the following number.

    25600

    Answer:

    The solution for the above-written question is as follows,

    Since the given number has 5 digits. So the number of digits in square root :

    =\left ( \frac{n+1}{2} \right ) = \left ( \frac{5+1}{2} \right ) = 3

    Q (ii). Without calculating square roots, find the number of digits in the square root of the following numb er.

    100000000

    Answer:

    The solution for the above-written question is as follows

    Since the given number has a total of 9 digits.

    Therefore the number of digits in the square root will be :

    = \left ( \frac{n+1}{2} \right ) = \left ( \frac{9+1}{2} \right ) = 5


    Q (iii) . Without calculating square roots, find the number of digits in the square root of the following number.

    36864

    Answer:

    The solution for the above-written question is as follows

    The given number has a total of 5 digits.

    Thus the number of digits in the square root of this number

    = \left ( \frac{n + 1}{2} \right ) = \left ( \frac{5+1}{2} \right ) = 3

    NCERT Solutions for maths chapter 6 class 8 Squares and Square Root - Topic 6.7

    Q (i) . Estimate the value of the following to the nearest whole number.

    \sqrt{80}

    Answer:

    A detailed explanation of the above-written question is as follows

    We know that 8^2 = 64 and 9^2 = 81

    So the whole number closest to \sqrt{80} is 9.

    Q (ii). Estimate the value of the following to the nearest whole number.

    \sqrt{1000}

    Answer:

    The detailed explanation of the above-written question is as follows

    We know that 31^2 = 961 and 32^2 = 1024 .

    So the whole number closest to \sqrt{1000} is 32.

    Q (iii). Estimate the value of the following to the nearest whole number.

    \sqrt{350}

    Answer:

    The detailed explanation for the above-written question,

    We have \sqrt{350} .

    It is known that: and 20^2 = 400

    So the closest whole number to \sqrt{350} is 19.

    Q. Estimate the value of the following to the nearest whole number.

    (iv) \sqrt{500}

    Answer:

    The detailed explanation for the above-written question is as follows

    We have \sqrt{500} .

    We know: 22^2 = 484 and 23^2 = 529

    So the closest whole number to \sqrt{500} is 22.

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots Exercise 6.1

    Q.1 What will be the unit digit of the squares of the following numbers?

    (i) 81

    (ii) 272

    (iii) 799

    (iv) 3853

    (v) 1234

    (vi) 26387

    (vii) 52698

    (viii) 99880

    (ix) 12796

    (x) 55555

    Answer:

    The unit digit of the squares of the following numbers will be :-

    (i) 81 :- 1

    (ii) 272 :- 4

    (iii) 799 :- 1

    (iv) 3853 :- 9

    (v) 1234 :- 6

    (vi) 26387 :- 9

    (vii) 52698 :- 4

    (viii) 99880 :- 0

    (ix) 12796 :- 6

    (x) 55555 :- 5

    2. The following numbers are obviously not perfect squares. Give reason.

    (i) 1057

    (ii) 23453

    (iii) 7928

    (iv) 222222

    (v) 64000

    (vi) 89722

    (vii) 222000

    (viii) 505050

    Answer:

    We know that only the numbers that end with 0, 1, 4, 5, 6 or 9 at units place can be perfectly square numbers.

    Also, a perfectly square number has a number of zeros in multiple of 2.

    Since these numbers have either odd no. of zeros or their unit place is 2, 3, 7, 8 thus they are not perfectly square numbers.

    Q.3 The squares of which of the following would be odd numbers?

    (i) 431

    (ii) 2826

    (iii) 7779

    (iv) 82004

    Answer:

    It is known that square of an odd number is always an odd number.

    Therefore the square of 431 and 7779 will also be an odd number.

    Q.4 Observe the following pattern and find the missing digits.

    11^{2}=121

    101^{2}=10201

    1001^{2}=1002001

    100001^{2}=1...........2................1

    10000001^{2}=............................

    Answer:

    By observation, it is clear that the no. of zeros between 1 and 1 in LHS are equal to the no. of zeros between 1-2 and 2-1 in the RHS.

    So, 100001^{2} = 10000200001

    and 10000001^{2} = 100000020000001

    Q.5 Observe the following pattern and supply the missing numbers.

    11^{2} =1\; 2\; 1

    101^{2}=1\; 0\; 2\; 0\; 1

    10101^{2}=102030201

    1010101^{2}=......................\; ............

    .......^{2}=10203040504030201

    Answer:

    The solution for the above-written question is as follows

    By observation we get,

    1010101^{2} = 1020304030201

    and 101010101^{2} = 10203040504030201

    Q.6 Using the given pattern, find the missing numbers.

    1^{2}+2^{2}+2^{2}=3^{2}

    2^{2}+3^{2}+6^{2}=7^{2}

    3^{2}+4^{2}+12^{2}=13^{2}

    4^{2}+5^{2}+\;-\; ^{2} = 21^{2}

    5^{2}+-^{2}+30^{2}= 31^{2}

    6^{2}+7^{2}+-^{2}= -^{2}

    Answer:

    Patter is clearly visible.

    First two numbers and the last two numbers are the consecutive numbers.

    Moreover, the third number is obtained when the first is multiplied with the second number.

    So required numbers can be found.

    i.e., 4 \times 5 = 20 and 6 \times 7 = 42

    hence 4^{2} + 5^{2} + 20^{2} = 21^{2}

    and 5^{2} + 6^{2} + 30^{2} = 31^{2}

    and 6^{2} + 7^{2} + 42^{2} = 43^{2}

    Q.7 Without adding, find the sum.

    (i) 1+3+5+7+9

    (ii) 1+3+5+7+9+11+13+15+17+19

    (iii) 1+3+5+7+9+11+13+15+17+19+21+23

    Answer:

    It is known that sum of odd cosecutive number starting from 1 is n^{2} .

    (i) n = 5 i.e., 5^{2} = 25

    (ii) n = 10 i.e., 10^{2} = 100

    (iii) n = 12 i.e., 12^{2} = 144

    8 (i) Express 49 as the sum of 7 odd numbers.

    Answer:

    The solution for the above mentioned question is as follows:-

    The splitted form of 49 (In increasing odd numbers) :- 1 + 3 + 5 + 7 + 9 + 11 + 13

    8 (ii) Express 121 as the sum of 11 odd numbers.

    Answer:

    The splitted form of number 121 (starting with odd numbers in increasing orders) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21

    Q. 9 (i) How many numbers lie between squares of the following numbers?

    12 \; and\; 13

    Answer:

    We know that there are 2n non-perfect square numbers between the squares of the numbers n and (n + 1).

    So for this question, n = 12

    So total numbers that lie between squares of 12 and 13 are = 2(12) = 24.

    Q9 (ii) . How many numbers lie between squares of the following numbers?

    25 \; and \; 26

    Answer:

    It is known that there are 2n non-perfect square numbers between the squares of the numbers n and (n + 1).

    So total number that lie between 25 and 26 will be = 2(25) = 50

    Q.9 (iii) How many numbers lie between squares of the following numbers?

    99 \; and \; 100

    Answer:

    We know that there are 2n non-perfect square numbers between the squares of the numbers n and (n + 1).

    In this question, we have n = 99

    Thus total number that lie between 99 and 100 = 2(99) = 198

    Class 8 squares and square roots ncert solutions - exercise 6.2

    Q.1 Find the square of the following numbers.

    (i) 32

    (ii) 35

    (iii) 86

    (iv) 93

    (v) 71

    (vi) 46

    Answer:

    (i) 32^{2} = (30 + 2)^{2} = 30(30 + 2) + 2(30 + 2) = 30(32) + 2(32) = 960 + 64 = 1024


    (ii) 35^{2} = (30 + 5)^{2} = 30(30 + 5) + 5(30 + 5) = 30(35) + 5(35) = 1050 + 175 = 1225


    (iii) 86^{2} = (80 + 6)^{2} = 80(80 + 6) + 6(80 + 6) = 80(86) + 6(86) = 6880 + 516 = 7396


    (iv) 93^{2} = (90 + 3)^{2} = 90(90 + 3) + 3(90 +3) = 90(93) + 3(93) = 8370 + 279 = 8649


    (v) 71^{2} = (70 + 1)^{2} = 70(70 + 1) + 1(70 + 1) = 70(71) + 1(71) = 4970 + 71 = 5041


    (vi) 46^{2} = (40 + 6)^{2} = 40(40 + 6) + 6(40 + 6) = 40(46) + 6(46) = 1840 + 276 = 2110

    Q.2(i). Write a Pythagorean triplet whose one member is.

    6

    Answer:

    For any natural number m > 1, 2m, m^{2} - 1 and m^{2} + 1 forms a Pythagorean triplet.

    So if we take, m^{2} - 1 = 6

    m^{2} = 6 + 1 = 7

    But value of m will not be an integer.

    Now we take, m^{2} + 1 = 6

    m^{2} = 6 - 1 = 5

    but the value of m will not be an integer.

    If we take 2m = 6

    then m = 3

    Then m^{2} -1 = 9 - 1 = 8 and m^{2} +1 = 9 + 1 = 10.

    Therefore the required triplet is 6, 8 and 10

    Q.2 (ii) Write a Pythagorean triplet whose one member is.

    14

    Answer:

    For any natural number m > 1, 2m, m^{2} - 1 and m^{2} + 1 forms a Pythagorean triplet.

    So if we take, m^{2} - 1 = 14

    m^{2} = 14 + 1 = 15

    But then the value of m will not be an integer.

    We take, m^{2} + 1 = 14

    m^{2} = 14 - 1 = 13

    but the value of m will not be an integer.

    If we take 2m = 14

    or m = 7

    Then m^{2} -1 = 49 - 1 = 48 and m^{2} +1 = 49 + 1 = 50.

    Therefore the combination of number is 14, 48 and 50.

    Q.2 (iii) Write a Pythagorean triplet whose one member is.

    16

    Answer:

    For any natural number m > 1, 2m, m^{2} - 1 and m^{2} + 1 forms a Pythagorean triplet.

    So if we take, m^{2} - 1 = 16

    m^{2} = 16 + 1 = 17

    But the value of m will not be an integer.

    Now we take, m^{2} + 1 = 16

    m^{2} = 16 - 1 = 15

    but the value of m will not be an integer.

    If we take 2m = 16

    then m = 8

    Then m^{2} -1 = 64 - 1 = 63 and m^{2} +1 = 64 + 1 = 65.

    Therefore the required numbers are 16, 63 and 65.

    Q.2 (iv) Write a Pythagorean triplet whose one member is.

    18

    Answer:

    For any natural number m > 1, 2m, m^{2} - 1 and m^{2} + 1 forms a Pythagorean triplet.

    So if we take, m^{2} - 1 = 18

    m^{2} = 18 + 1 = 19

    But the value of m will not be an integer.

    Now we take, m^{2} + 1 = 18

    m^{2} = 18 - 1 = 17

    but the value of m will not be an integer.

    If we take 2m = 18

    then m = 9

    Then m^{2} -1 = 81 - 1 = 80 and m^{2} +1 = 81 + 1 = 82.


    Therefore the required combination is 18, 80 and 82

    Class 8 maths chapter 6 ncert solutions - exercise 6.3

    1 (i). What could be the possible ‘one’s’ digits of the square root of each of the following numbers?

    9801

    Answer:

    We know that square of digits ending with 1 and 9 gives 1 at units place.

    So the number whose square ends in 1 = 1 & 9

    So, possible unit digit of the square root of 9801 = 1 and 9.

    1 (ii). What could be the possible ‘one’s’ digits of the square root of each of the following numbers?

    99856

    Answer:

    We know that square of digits ending with 4 and 6 gives 6 at its units place.

    So possible ‘ones’ digits of the square root of 99856 are 4 and 6.

    Q1 (iii). What could be the possible ‘one’s’ digits of the square root of each of the following numbers?

    998001

    Answer:

    We know that square of digits ending with 1 and 9 gives 1 at units place.

    So the possible ‘one’s’ digits of the square root of 998001 are 1 and 9.

    Q1 (iv). What could be the possible ‘one’s’ digits of the square root of each of the following numbers?

    657666025

    Answer:

    We know that square of a number ending with 5 gives 5 at its units place.

    So the possible ‘one’s’ digits of the square root of 657666025 are 5.

    Q.2 Without doing any calculation, find the numbers which are surely not perfect squares.

    (i) 153

    (ii) 257

    (iii) 408

    (iv) 441

    Answer:

    As we know the units place of a perfect square cannot be 2, 3, 7, and 8.

    So 153, 257, 408 are surely not perfect squares.

    Q.3 Find the square roots of 100 and 169 by the method of repeated subtraction.

    Answer:

    (i) For 100 :- 100 - 1 = 99

    99 - 3 = 96

    96 - 5 = 91

    91 - 7 = 84

    84 - 9 = 75

    75 - 11 = 64

    64 - 13 = 51

    51 - 15 = 36

    36 - 17 = 19

    19 - 19 = 0.

    We obtain zero at 10th step so \sqrt{100} = 10


    (ii) For 169 :- 169 - 1 = 168

    168 - 3 = 165

    165 - 5 = 160

    160 - 7 = 153

    153 - 9 = 144

    144 - 11 = 133

    133 - 13 = 120

    120 - 15 = 105

    105 - 17 = 88

    88 - 19 = 69

    69 - 21 = 48

    48 - 23 = 25;

    25 - 25 = 0.

    We obtain Zero at the 13th step so \sqrt{169} = 13

    Q.4 (i) Find the square roots of the following numbers by the Prime Factorisation Method.

    (i) 729

    Answer:

    By prime factorisation, we know that

    729 = 3\times3\times3\times3\times3\times3

    or 729 = (3\times3\times3)^{2} = 27^{2}

    Thus the square root of 729 is 27.

    Q.4 (ii) Find the square roots of the following numbers by the Prime Factorisation Method.

    400

    Answer:

    By prime factorization, we get

    400 = 2\times2\times2\times2\times5\times5

    or 400 = (2\times2\times5)^{2} = 20^{2}

    Thus the square root of 400 is 20

    Q4 (iii). Find the square roots of the following numbers by the Prime Factorisation Method.

    1764

    Answer:

    We have 1764, by prime factorization we get

    1764 = 2\times2\times3\times3\times7\times7

    or 1764 =( 2\times3\times7)^{2} = 42^{2}

    Thus the square root of 1764 is 42.

    Q.4 (iv) Find the square roots of the following numbers by the Prime Factorisation Method.

    4096

    Answer:

    We have 4096, by prime factorization:

    4096 = 2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2

    or 4096 = (2\times2\times2\times2\times2\times2)^{2} = 64^{2} .

    So the square root of 4096 is 64.

    Q.4 (v) Find the square roots of the following numbers by the Prime Factorisation Method.

    (v) 7744

    Answer:

    We have in 7744. By prime factorization, we get

    7744 = 2\times2\times2\times2\times2\times2\times11\times11

    or 7744 = (2\times2\times11)^{2} = 44^{2}

    Thus the square root of 7744 is 44.

    Q.4 (vi) Find the square roots of the following numbers by the Prime Factorisation Method.

    (vi) 9604

    Answer:

    We have in 9604. By prime factorization we get,

    9604 = 2\times2\times7\times7\times7\times7

    or 9604 = (2\times7\times7)^{2} = 98^{2}

    Hence the square root of 9604 is 98.

    Q.4 (vii) Find the square roots of the following numbers by the Prime Factorisation Method.

    5929

    Answer:

    The solution for the above-written question is as follows

    Prime factorization of number 5929,

    5929 = 7\times7\times11\times11

    or 5929 = (7\times11)^{2} = 77^{2} .

    Thus, the square root of 5929 is 77.

    Q4 (viii). Find the square roots of the following numbers by the Prime Factorisation Method.

    (viii) 9216

    Answer:

    The solution for the above-written question is as follows

    prime factorization of 9216,

    9216 = 2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times3\times3

    or 9216 = (2\times2\times2\times2\times2\times3)^{2} = 96^{2} .

    Thus, the square root of 9216 is 96.

    Q.4 Find the square roots of the following numbers by the Prime Factorisation Method.

    (ix) 529

    Answer:

    The solution for the above-written question is as follows

    We have 529.

    Prime factorization gives 529 = 23\times23

    So square root of 529 is 23.

    Q.4 Find the square roots of the following numbers by the Prime Factorisation Method.

    (x) 8100

    Answer:

    The solution for the above-written question is as follows

    We have in 8100.

    By prime factorization, we get : 8100 = 2\times2\times3\times3\times3\times3\times5\times5

    or 8100 = (2\times3\times3\times5)^{2} = 90^{2} .

    So square root of 8100 is 90.

    Q.5 For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained

    (i) 252

    (ii) 180

    (iii) 1008

    (iv) 2028

    (v) 1458

    (vi) 768

    Answer:

    (i) 252 : Prime factorisation of 252 = 2\times2\times3\times3\times7 .

    To make pairs we will multiply 252 with 7.

    So the number is 1764 and its square root is 42.


    (ii) 180 : Prime factorisation of 180 = 2\times2\times3\times3\times5 .

    To make it perfect square, multiply by 5.

    So the number is 900 and its square root is 30.


    (iii) 1008 : Prime factorization of 1008 gives = 2\times2\times2\times2\times3\times3\times7 .

    To make pairs we need to multiply it by 7.

    So the number we get is 7056 and its square root is 84.


    (iv) 2028 : Prime factorisation of 2028 = 2\times2\times3\times13\times13 .

    To make pairs we multiply the number by 3.

    So the number obtained is 6084 and its square root is 78.


    (v) 1458 : Prime factorisation of 1458 gives = 2\times3\times3\times3\times3\times3\times3

    To make pairs we need to multiply the number by 2.

    So the number obtained is 2916 and its square root is 54.


    (vi) 768 : Prime factorisation of 768 gives = 2\times2\times2\times2\times2\times2\times2\times3

    To make pairs we need to multiply the given number by 6.

    So the required number is 4608 and its square root is 48.

    Q.6 For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square. Also find the square root of the square number so obtained.

    (i) 252

    (ii) 2925

    (iii) 396

    (iv) 2645

    (v) 2800

    (vi) 1620

    Answer:

    (i) 252: Prime factorization of 252 gives = 2\times2\times3\times3\times7 .

    For making pairs we will divide the given number by 7.

    The obtained number is 36 and its square root is 6.

    (ii) 2925: Prime factorization of 2925 gives = 3\times3\times5\times5\times13

    To make pairs divide the given number by 13.

    So the obtained number is 225 and its square root is 15.

    (iii) 396: Prime factorization if 396 = 2\times2\times3\times3\times11

    For obtaining perfect square number we need to divide the given number by 11.

    So the required number is 36 and its square root is 6.

    (iv) 2645: Prime factorization of 2645 = 5\times23\times23

    We need to divide the given number by 5 to obtain the perfect square number.

    So the obtained number is 529 and its square root is 23.

    (v) 2800: Prime factorization of 2800 = 2\times2\times2\times2\times5\times5\times7

    To make pairs we need to divide 2800 by 7.

    So the required number is 400 and its square root is 20.

    (vi) 1620: Prime factorization of 1620 gives = 2\times2\times3\times3\times3\times3\times5

    To make pairs divide the given number by 5.

    We get , number = 324 and its square root = 18.

    Q.7 The students of Class VIII of a school donated Rs.2401 in all, for Prime Minister’s National Relief Fund. Each student donated as many rupees as the number of students in the class. Find the number of students in the class.

    Answer:

    Let the number of students in a class be x.

    According to question,

    Number of student = money donated by each of the students

    So total money donated = x ^{2}

    or x ^{2} = 2401

    Prime factorization of 2401 = 7\times7\times7\times7 = (7\times7)^{2} = 49^{2} = x^2

    So the number of students in the class = 49.

    Q.8 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

    Answer:

    The total number of plants = No. of rows \times No. of plants in 1 row.

    Since in this case no.of rows = no. of plants in each row.

    Thus let us assume the number of rows to be x.

    Then the equation becomes : x^2 = 2025

    Prime factorization of 2025 gives = 3 \times3\times3\times3\times5\times5

    So value of x is = 45.

    Hence no. of rows = 45; and no. of plants in each row = 45.

    Q. 9 Find the smallest square number that is divisible by each of the numbers 4,9 and 10 .

    Answer:

    This has to be done in two steps. First, we will find LCM of given numbers, then we will make it a perfect square.

    So the LCM of 4, 9, 10 is 180. 4 = 2 \times 2 ; 9 = 3 \times 3 ; 10 = 2 \times 5

    Prime factorisation of 180 gives = 2\times2\times3\times3\times5 .

    To make it a perfect square we need to multiply it with 5.

    So, the smallest square number which is divisible by each of the numbers 4, 9 and 10 = 900.

    Q.10 Find the smallest square number that is divisible by each of the numbers 8,15 and 20 .

    Answer:

    This has to be done in two steps. First we will find LCM of given numbers, then we will make it perfect square.

    So the LCM of 8, 15, 20 is 120 . 8 = 2 \times 2 \times 2 ; 15 = 3 \times 5 ; 20 = 2 \times 2 \times 5

    Prime factorisation of 120 gives = 2\times2\times2\times3\times5 .

    To make it a perfect square we need to multiply it with 30.

    So the smallest square number that is divisible by each of the numbers 4, 9 and 10 is 3600.

    Class 8 maths chapter 6 question answer - exercise 6.4

    Q.1 (i) Find the square root of each of the following numbers by Division method.

    2304

    Answer:

    The detailed explanation for the above-written question is as follows,

    We will find the square root using the division method.

    Squares and Square Roots Excercise: 6.4

    Question:


    Q.1 (ii) Find the square root of each of the following numbers by Division method.

    4489

    Answer:

    The square root of 4489 is 67.

    Q.1 (iii ) Find the square root of each of the following numbers by Division method.

    3481

    Answer:

    The square root of 3481 is obtained as 59.

    Q1 (iv). Find the square root of each of the following numbers by Division method.

    529

    Answer:

    The detailed solution for the above-written question is as follows

    The square root of 529 is 23.


    Q1 (v). Find the square root of each of the following numbers by Division method.

    3249

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 3249 is 57.

    Q1 (vi). Find the square root of each of the following numbers by Division method.

    1369

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 1369 is 37.

    Q1 (vii). Find the square root of each of the following numbers by Division method.

    5776

    Answer:

    The solution for the above-written question is as follows,

    The square root of 5776 is 76.

    Q1 (viii). Find the square root of each of the following numbers by Division method.

    7921

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 7921 is 89.

    Q1 (ix). Find the square root of each of the following numbers by Division method.

    576

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 576 is 24.


    Q1 (x). Find the square root of each of the following numbers by Division method.

    1024

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 1024 is 32.

    Q.1(xi) Find the square root of each of the following numbers by Division method.

    3136

    Answer:

    The detailed solution for the above-written question is as follows,

    The square root of 3136 is 56.

    Q.1 (xii) Find the square root of each of the following numbers by Division method.

    900

    Answer:

    The detailed solution for the above-written question is as follows

    The square root of 900 is 30.

    Q.2 Find the number of digits in the square root of each of the following numbers (without any calculation).

    (i) 64

    (ii) 144

    (iii) 4489

    (iv) 27225

    (v) 390625

    Answer:

    (i) 64:- The number of digits in the square root will be

    \frac{n}{2} = \frac{2}{2 } = 1


    (ii) 144:- The number of digits in the square root will be

    \frac{n+1}{2} = \frac{4}{2 } = 2


    (iii) 4489:- The number of digits in the square root will be

    \frac{n}{2} = \frac{4}{2 } = 2


    (iv) 27225:- The number of digits in the square root will be

    \frac{n +1 }{2} = \frac{6}{2 } = 3


    (v) 390625:- The number of digits in the square root will be

    \frac{n }{2} = \frac{6}{2 } = 3

    Q.3. Find the square root of the following decimal numbers.

    (i) 2.56

    (ii) 7.29

    (iii) 51.84

    (iv) 42.25

    (v) 31.36

    Answer:

    The detailed solution for the given questions as follows

    (i) Square root of 2.56 using division method

    (ii) The square root of 7.29 using division method

    (iii) The square root of 51.84 using division method

    (iv) The square root of 42.25 using division method

    (v) The square root of 31.36 using division method

    4. Find the least number which must be subtracted from each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained.

    (i) 402

    (ii) 1989

    (iii) 3250

    (iv) 825

    (v) 4000

    Answer:

    (i) 402 :- It can be seen that 2 is remainder. So we will subtract 2 from 402.

    The required number is 400 and its square root is 20.

    (ii) 1989:- It can be seen that 53 is remainder here. So we will subtract 53 from 1989 in order to make it a perfect square.

    The required number is 1936 and its square root is 44.

    (iii) 3250 :- It can be seen that 1 is remainder. So we will subtract 1 from 3250.

    The required number is 3249 and its square root is 57.

    (iv) 825:- It can be seen that 41 is remainder. So we will subtract 41 from 825 to make it a perfect square number.

    The required number is 784 and its square root is 28.

    (v) 4000 :- It can be seen that 31 is remainder here. So we will subtract 31 from 4000.

    The required number is 3969 and its square root is 63.


    Q.5 Find the least number which must be added to each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained.

    (i) 525

    (ii) 1750

    (iii) 252

    (iv) 1825

    (v) 6412

    Answer:

    (i) 525:- It is clearly visible that if we add 4 to the given number, the remainder will become zero.

    So obtained number is 529 and its square root is 23.

    (ii) 1750:- It is clearly visible that if we add 14 to the given number, the remainder will become zero.

    So the obtained number is 1764 and its square root is 42.

    (iii) 252:- It is clearly visible that if we add 4 to the given number, the remainder will become zero.

    So the obtained number is 256 and its square root is 16.

    (iv) 1825:- It is clearly visible that if we add 24 to the given number, the remainder will become zero.

    So the obtained number is 1849 and its square root is 43.

    (v) 6412:- It is clearly visible that if we add 149 to the given number, the remainder will become zero.

    So the obtained number is 6561 and its square root is 81.

    Q.6 Find the length of the side of a square whose area is 441\; m^{2} .

    Answer:

    Let the length of the side of a square be x m.

    Area of square = x^2

    So equation becomes : x^2 = 441

    By prime factorisation of 441.

    441 = 3\times3\times7\times7

    Thus x = 21.

    So the length of the side of square = 21 m.

    7 (a). In a right triangle ABC, \angle B=90^{\circ}

    (a) If AB=6cm , BC=8cm , find AC

    Answer:

    Using Pythagoras theorem,

    AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 100

    By prime factorisation of 100 :- 2\times2\times5\times5

    We get, AC = 10cm

    Q.7 (b) In a right triangle ABC,\angle B=90^{\circ}

    If AC=13\; cm, BC=5\; cm, find AB

    Answer:

    Using Pythagoras theorem,

    AC^2 = AB^2 + BC^2

    or 13^2 = AB^2 + 5^2

    or 169 = AB^2 + 25

    or AB^2 =169 - 25= 144

    Prime factorisation of 144 gives :- 2\times2\times2\times2\times3\times3

    Hence, AB = 12 cm

    Q.8 A gardener has 1000 plants. He wants to plant these in such a way that the number of rows and the number of columns remain same. Find the minimum number of plants he needs more for this.

    Answer:

    It is given that the number of rows and the number of columns are the same.

    Let a number of rows or number of columns be x.

    The number of plants required = x^2

    The gardener has 1000 plants.

    We need to find a perfect square just greater than 1000.

    We know, 31^2 = 961 and 32^2 = 1024

    So the minimum plants needed by gardener = 1024 - 1000 = 24 plants.

    Q.9 There are 500 children in a school. For a P.T. drill they have to stand in such a manner that the number of rows is equal to number of columns. How many children would be left out in this arrangement?

    Answer:

    Given that the number of rows is equal to the number of columns. i.e., in the form of x^2

    So the number of students that can stand in this order will be the perfect square number just less than 500.

    We know that 22^2 = 484 and 23^2 = 529

    So the number of students that would be left out in this arrangement = 500 - 484 = 16 students.

    NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots - Topics

    • Properties of Square Numbers
    • Some More Interesting Patterns
    • Finding the Square of a Number
    • Square Roots
    • Square Roots of Decimals
    • Estimating Square Root

    NCERT Solutions for Class 8 Maths - Chapter Wise

    NCERT Solutions for Class 8 - Subject Wise

    Key Features of NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots

    Comprehensive Coverage: Solutions for maths chapter 6 class 8 cover all topics and concepts related to squares, square roots, and their properties as per the Class 8 syllabus.

    Step-by-Step Solutions: Detailed step-by-step explanations for each problem, making it easy for students to understand and apply mathematical concepts.

    Illustrations and Diagrams: Inclusion of diagrams, figures, and illustrations to visually explain properties and methods related to squares and square roots ch 6 maths class 8.

    Also Check NCERT Books and NCERT Syllabus here:

    Frequently Asked Question (FAQs)

    1. What are the important topics of chapter Squares and Square Roots ?

    Properties of square numbers, finding the square of a number, Pythagorean triplets, finding square roots by different methods are the important topics this chapter.

    2. Does CBSE provide NCERT solution for class 8 ?

    No, CBSE doesn't provide NCERT solutions for any class and subject.

    3. Where can I find the complete solutions of NCERT for class 8 ?

    Here you will get the detailed NCERT solutions for class 8 by clicking on the link.

    4. Where can I find the complete solutions of NCERT for class 8 maths ?

    Here you will get the detailed NCERT solutions for class 8 maths by clicking on the link.

    5. How does the NCERT solutions are helpful ?

    NCERT solutions are helpful for the students if they are not able to solve NCERT problems. Also, they will get the new ways to solve the problems.

    6. Does CBSE class maths is tough ?

    CBSE class 8 maths is simple and basic maths. Most of the topics related to the previous classes.

    Articles

    Get answers from students and experts

    A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

    Option 1)

    0.34\; J

    Option 2)

    0.16\; J

    Option 3)

    1.00\; J

    Option 4)

    0.67\; J

    A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

    Option 1)

    2.45×10−3 kg

    Option 2)

     6.45×10−3 kg

    Option 3)

     9.89×10−3 kg

    Option 4)

    12.89×10−3 kg

     

    An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

    Option 1)

    2,000 \; J - 5,000\; J

    Option 2)

    200 \, \, J - 500 \, \, J

    Option 3)

    2\times 10^{5}J-3\times 10^{5}J

    Option 4)

    20,000 \, \, J - 50,000 \, \, J

    A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

    Option 1)

    K/2\,

    Option 2)

    \; K\;

    Option 3)

    zero\;

    Option 4)

    K/4

    In the reaction,

    2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

    Option 1)

    11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

    Option 2)

    6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

    Option 3)

    33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

    Option 4)

    67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

    How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

    Option 1)

    0.02

    Option 2)

    3.125 × 10-2

    Option 3)

    1.25 × 10-2

    Option 4)

    2.5 × 10-2

    If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

    Option 1)

    decrease twice

    Option 2)

    increase two fold

    Option 3)

    remain unchanged

    Option 4)

    be a function of the molecular mass of the substance.

    With increase of temperature, which of these changes?

    Option 1)

    Molality

    Option 2)

    Weight fraction of solute

    Option 3)

    Fraction of solute present in water

    Option 4)

    Mole fraction.

    Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

    Option 1)

    twice that in 60 g carbon

    Option 2)

    6.023 × 1022

    Option 3)

    half that in 8 g He

    Option 4)

    558.5 × 6.023 × 1023

    A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

    Option 1)

    less than 3

    Option 2)

    more than 3 but less than 6

    Option 3)

    more than 6 but less than 9

    Option 4)

    more than 9

    Bio Medical Engineer

    The field of biomedical engineering opens up a universe of expert chances. An Individual in the biomedical engineering career path work in the field of engineering as well as medicine, in order to find out solutions to common problems of the two fields. The biomedical engineering job opportunities are to collaborate with doctors and researchers to develop medical systems, equipment, or devices that can solve clinical problems. Here we will be discussing jobs after biomedical engineering, how to get a job in biomedical engineering, biomedical engineering scope, and salary. 

    4 Jobs Available
    Data Administrator

    Database professionals use software to store and organise data such as financial information, and customer shipping records. Individuals who opt for a career as data administrators ensure that data is available for users and secured from unauthorised sales. DB administrators may work in various types of industries. It may involve computer systems design, service firms, insurance companies, banks and hospitals.

    4 Jobs Available
    Cartographer

    How fascinating it is to represent the whole world on just a piece of paper or a sphere. With the help of maps, we are able to represent the real world on a much smaller scale. Individuals who opt for a career as a cartographer are those who make maps. But, cartography is not just limited to maps, it is about a mixture of art, science, and technology. As a cartographer, not only you will create maps but use various geodetic surveys and remote sensing systems to measure, analyse, and create different maps for political, cultural or educational purposes.

    3 Jobs Available
    Operations Manager

    Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

    3 Jobs Available
    GIS Expert

    GIS officer work on various GIS software to conduct a study and gather spatial and non-spatial information. GIS experts update the GIS data and maintain it. The databases include aerial or satellite imagery, latitudinal and longitudinal coordinates, and manually digitized images of maps. In a career as GIS expert, one is responsible for creating online and mobile maps.

    3 Jobs Available
    Ethical Hacker

    A career as ethical hacker involves various challenges and provides lucrative opportunities in the digital era where every giant business and startup owns its cyberspace on the world wide web. Individuals in the ethical hacker career path try to find the vulnerabilities in the cyber system to get its authority. If he or she succeeds in it then he or she gets its illegal authority. Individuals in the ethical hacker career path then steal information or delete the file that could affect the business, functioning, or services of the organization.

    3 Jobs Available
    Database Architect

    If you are intrigued by the programming world and are interested in developing communications networks then a career as database architect may be a good option for you. Data architect roles and responsibilities include building design models for data communication networks. Wide Area Networks (WANs), local area networks (LANs), and intranets are included in the database networks. It is expected that database architects will have in-depth knowledge of a company's business to develop a network to fulfil the requirements of the organisation. Stay tuned as we look at the larger picture and give you more information on what is db architecture, why you should pursue database architecture, what to expect from such a degree and what your job opportunities will be after graduation. Here, we will be discussing how to become a data architect. Students can visit NIT Trichy, IIT Kharagpur, JMI New Delhi

    3 Jobs Available
    Data Analyst

    The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

    Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

    3 Jobs Available
    Bank Probationary Officer (PO)

    A career as Bank Probationary Officer (PO) is seen as a promising career opportunity and a white-collar career. Each year aspirants take the Bank PO exam. This career provides plenty of career development and opportunities for a successful banking future. If you have more questions about a career as  Bank Probationary Officer (PO), what is probationary officer or how to become a Bank Probationary Officer (PO) then you can read the article and clear all your doubts. 

    3 Jobs Available
    Operations Manager

    Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

    3 Jobs Available
    Data Analyst

    The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

    Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

    3 Jobs Available
    Finance Executive

    A career as a Finance Executive requires one to be responsible for monitoring an organisation's income, investments and expenses to create and evaluate financial reports. His or her role involves performing audits, invoices, and budget preparations. He or she manages accounting activities, bank reconciliations, and payable and receivable accounts.  

    3 Jobs Available
    Investment Banker

    An Investment Banking career involves the invention and generation of capital for other organizations, governments, and other entities. Individuals who opt for a career as Investment Bankers are the head of a team dedicated to raising capital by issuing bonds. Investment bankers are termed as the experts who have their fingers on the pulse of the current financial and investing climate. Students can pursue various Investment Banker courses, such as Banking and Insurance, and Economics to opt for an Investment Banking career path.

    3 Jobs Available
    Bank Branch Manager

    Bank Branch Managers work in a specific section of banking related to the invention and generation of capital for other organisations, governments, and other entities. Bank Branch Managers work for the organisations and underwrite new debts and equity securities for all type of companies, aid in the sale of securities, as well as help to facilitate mergers and acquisitions, reorganisations, and broker trades for both institutions and private investors.

    3 Jobs Available
    Treasurer

    Treasury analyst career path is often regarded as certified treasury specialist in some business situations, is a finance expert who specifically manages a company or organisation's long-term and short-term financial targets. Treasurer synonym could be a financial officer, which is one of the reputed positions in the corporate world. In a large company, the corporate treasury jobs hold power over the financial decision-making of the total investment and development strategy of the organisation.

    3 Jobs Available
    Product Manager

    A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

    3 Jobs Available
    Transportation Planner

    A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.

    3 Jobs Available
    Architect

    Individuals in the architecture career are the building designers who plan the whole construction keeping the safety and requirements of the people. Individuals in architect career in India provides professional services for new constructions, alterations, renovations and several other activities. Individuals in architectural careers in India visit site locations to visualize their projects and prepare scaled drawings to submit to a client or employer as a design. Individuals in architecture careers also estimate build costs, materials needed, and the projected time frame to complete a build.

    2 Jobs Available
    Landscape Architect

    Having a landscape architecture career, you are involved in site analysis, site inventory, land planning, planting design, grading, stormwater management, suitable design, and construction specification. Frederick Law Olmsted, the designer of Central Park in New York introduced the title “landscape architect”. The Australian Institute of Landscape Architects (AILA) proclaims that "Landscape Architects research, plan, design and advise on the stewardship, conservation and sustainability of development of the environment and spaces, both within and beyond the built environment". Therefore, individuals who opt for a career as a landscape architect are those who are educated and experienced in landscape architecture. Students need to pursue various landscape architecture degrees, such as M.Des, M.Plan to become landscape architects. If you have more questions regarding a career as a landscape architect or how to become a landscape architect then you can read the article to get your doubts cleared. 

    2 Jobs Available
    Plumber

    An expert in plumbing is aware of building regulations and safety standards and works to make sure these standards are upheld. Testing pipes for leakage using air pressure and other gauges, and also the ability to construct new pipe systems by cutting, fitting, measuring and threading pipes are some of the other more involved aspects of plumbing. Individuals in the plumber career path are self-employed or work for a small business employing less than ten people, though some might find working for larger entities or the government more desirable.

    2 Jobs Available
    Construction Manager

    Individuals who opt for a career as construction managers have a senior-level management role offered in construction firms. Responsibilities in the construction management career path are assigning tasks to workers, inspecting their work, and coordinating with other professionals including architects, subcontractors, and building services engineers.

    2 Jobs Available
    Carpenter

    Carpenters are typically construction workers. They stay involved in performing many types of construction activities. It includes cutting, fitting and assembling wood.  Carpenters may help in building constructions, bridges, big ships and boats. Here, in the article, we will discuss carpenter career path, carpenter salary, how to become a carpenter, carpenter job outlook.

    2 Jobs Available
    Welder

    An individual who opts for a career as a welder is a professional tradesman who is skilled in creating a fusion between two metal pieces to join it together with the use of a manual or fully automatic welding machine in their welder career path. It is joined by intense heat and gas released between the metal pieces through the welding machine to permanently fix it. 

    2 Jobs Available
    Environmental Engineer

    Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems. 

    2 Jobs Available
    Orthotist and Prosthetist

    Orthotists and Prosthetists are professionals who provide aid to patients with disabilities. They fix them to artificial limbs (prosthetics) and help them to regain stability. There are times when people lose their limbs in an accident. In some other occasions, they are born without a limb or orthopaedic impairment. Orthotists and prosthetists play a crucial role in their lives with fixing them to assistive devices and provide mobility.

    6 Jobs Available
    Veterinary Doctor

    A veterinary doctor is a medical professional with a degree in veterinary science. The veterinary science qualification is the minimum requirement to become a veterinary doctor. There are numerous veterinary science courses offered by various institutes. He or she is employed at zoos to ensure they are provided with good health facilities and medical care to improve their life expectancy.

    5 Jobs Available
    Pathologist

    A career in pathology in India is filled with several responsibilities as it is a medical branch and affects human lives. The demand for pathologists has been increasing over the past few years as people are getting more aware of different diseases. Not only that, but an increase in population and lifestyle changes have also contributed to the increase in a pathologist’s demand. The pathology careers provide an extremely huge number of opportunities and if you want to be a part of the medical field you can consider being a pathologist. If you want to know more about a career in pathology in India then continue reading this article.

    5 Jobs Available
    Gynaecologist

    Gynaecology can be defined as the study of the female body. The job outlook for gynaecology is excellent since there is evergreen demand for one because of their responsibility of dealing with not only women’s health but also fertility and pregnancy issues. Although most women prefer to have a women obstetrician gynaecologist as their doctor, men also explore a career as a gynaecologist and there are ample amounts of male doctors in the field who are gynaecologists and aid women during delivery and childbirth. 

    4 Jobs Available
    Surgical Technologist

    When it comes to an operation theatre, there are several tasks that are to be carried out before as well as after the operation or surgery has taken place. Such tasks are not possible without surgical tech and surgical tech tools. A single surgeon cannot do it all alone. It’s like for a footballer he needs his team’s support to score a goal the same goes for a surgeon. It is here, when a surgical technologist comes into the picture. It is the job of a surgical technologist to prepare the operation theatre with all the required equipment before the surgery. Not only that, once an operation is done it is the job of the surgical technologist to clean all the equipment. One has to fulfil the minimum requirements of surgical tech qualifications. 

    Also Read: Career as Nurse

    3 Jobs Available
    Oncologist

    An oncologist is a specialised doctor responsible for providing medical care to patients diagnosed with cancer. He or she uses several therapies to control the cancer and its effect on the human body such as chemotherapy, immunotherapy, radiation therapy and biopsy. An oncologist designs a treatment plan based on a pathology report after diagnosing the type of cancer and where it is spreading inside the body.

    3 Jobs Available
    Dentist

    Those who wish to make a dentist career in India must know that dental training opens up a universe of expert chances. Notwithstanding private practice, the present dental school graduates can pick other dental profession alternatives, remembering working in medical clinic crisis rooms, leading propelled lab examinations, teaching future dental specialists, or in any event, venturing to the far corners of the planet with International health and relief organizations.

    2 Jobs Available
    Health Inspector

    Individuals following a career as health inspectors have to face resistance and lack of cooperation while working on the sites. The health inspector's job description includes taking precautionary measures while inspecting to save themself from any external injury and the need to cover their mouth to avoid toxic substances. A health inspector does the desk job as well as the fieldwork. Health inspector jobs require one to travel long hours to inspect a particular place.

    2 Jobs Available
    Actor

    For an individual who opts for a career as an actor, the primary responsibility is to completely speak to the character he or she is playing and to persuade the crowd that the character is genuine by connecting with them and bringing them into the story. This applies to significant roles and littler parts, as all roles join to make an effective creation. Here in this article, we will discuss how to become an actor in India, actor exams, actor salary in India, and actor jobs. 

    4 Jobs Available
    Acrobat

    Individuals who opt for a career as acrobats create and direct original routines for themselves, in addition to developing interpretations of existing routines. The work of circus acrobats can be seen in a variety of performance settings, including circus, reality shows, sports events like the Olympics, movies and commercials. Individuals who opt for a career as acrobats must be prepared to face rejections and intermittent periods of work. The creativity of acrobats may extend to other aspects of the performance. For example, acrobats in the circus may work with gym trainers, celebrities or collaborate with other professionals to enhance such performance elements as costume and or maybe at the teaching end of the career.

    3 Jobs Available
    Video Game Designer

    Career as a video game designer is filled with excitement as well as responsibilities. A video game designer is someone who is involved in the process of creating a game from day one. He or she is responsible for fulfilling duties like designing the character of the game, the several levels involved, plot, art and similar other elements. Individuals who opt for a career as a video game designer may also write the codes for the game using different programming languages. Depending on the video game designer job description and experience they may also have to lead a team and do the early testing of the game in order to suggest changes and find loopholes.

    3 Jobs Available
    Talent Agent

    The career as a Talent Agent is filled with responsibilities. A Talent Agent is someone who is involved in the pre-production process of the film. It is a very busy job for a Talent Agent but as and when an individual gains experience and progresses in the career he or she can have people assisting him or her in work. Depending on one’s responsibilities, number of clients and experience he or she may also have to lead a team and work with juniors under him or her in a talent agency. In order to know more about the job of a talent agent continue reading the article.

    If you want to know more about talent agent meaning, how to become a Talent Agent, or Talent Agent job description then continue reading this article.

    3 Jobs Available
    Radio Jockey

    Radio Jockey is an exciting, promising career and a great challenge for music lovers. If you are really interested in a career as radio jockey, then it is very important for an RJ to have an automatic, fun, and friendly personality. If you want to get a job done in this field, a strong command of the language and a good voice are always good things. Apart from this, in order to be a good radio jockey, you will also listen to good radio jockeys so that you can understand their style and later make your own by practicing.

    A career as radio jockey has a lot to offer to deserving candidates. If you want to know more about a career as radio jockey, and how to become a radio jockey then continue reading the article.

    3 Jobs Available
    Producer

    An individual who is pursuing a career as a producer is responsible for managing the business aspects of production. They are involved in each aspect of production from its inception to deception. Famous movie producers review the script, recommend changes and visualise the story. 

    They are responsible for overseeing the finance involved in the project and distributing the film for broadcasting on various platforms. A career as a producer is quite fulfilling as well as exhaustive in terms of playing different roles in order for a production to be successful. Famous movie producers are responsible for hiring creative and technical personnel on contract basis.

    2 Jobs Available
    Fashion Blogger

    Fashion bloggers use multiple social media platforms to recommend or share ideas related to fashion. A fashion blogger is a person who writes about fashion, publishes pictures of outfits, jewellery, accessories. Fashion blogger works as a model, journalist, and a stylist in the fashion industry. In current fashion times, these bloggers have crossed into becoming a star in fashion magazines, commercials, or campaigns. 

    2 Jobs Available
    Photographer

    Photography is considered both a science and an art, an artistic means of expression in which the camera replaces the pen. In a career as a photographer, an individual is hired to capture the moments of public and private events, such as press conferences or weddings, or may also work inside a studio, where people go to get their picture clicked. Photography is divided into many streams each generating numerous career opportunities in photography. With the boom in advertising, media, and the fashion industry, photography has emerged as a lucrative and thrilling career option for many Indian youths.

    2 Jobs Available
    Copy Writer

    In a career as a copywriter, one has to consult with the client and understand the brief well. A career as a copywriter has a lot to offer to deserving candidates. Several new mediums of advertising are opening therefore making it a lucrative career choice. Students can pursue various copywriter courses such as Journalism, Advertising, Marketing Management. Here, we have discussed how to become a freelance copywriter, copywriter career path, how to become a copywriter in India, and copywriting career outlook. 

    5 Jobs Available
    Journalist

    Careers in journalism are filled with excitement as well as responsibilities. One cannot afford to miss out on the details. As it is the small details that provide insights into a story. Depending on those insights a journalist goes about writing a news article. A journalism career can be stressful at times but if you are someone who is passionate about it then it is the right choice for you. If you want to know more about the media field and journalist career then continue reading this article.

    3 Jobs Available
    Publisher

    For publishing books, newspapers, magazines and digital material, editorial and commercial strategies are set by publishers. Individuals in publishing career paths make choices about the markets their businesses will reach and the type of content that their audience will be served. Individuals in book publisher careers collaborate with editorial staff, designers, authors, and freelance contributors who develop and manage the creation of content.

    3 Jobs Available
    Vlogger

    In a career as a vlogger, one generally works for himself or herself. However, once an individual has gained viewership there are several brands and companies that approach them for paid collaboration. It is one of those fields where an individual can earn well while following his or her passion. Ever since internet cost got reduced the viewership for these types of content has increased on a large scale. Therefore, the career as vlogger has a lot to offer. If you want to know more about the career as vlogger, how to become a vlogger, so on and so forth then continue reading the article. Students can visit Jamia Millia Islamia, Asian College of Journalism, Indian Institute of Mass Communication to pursue journalism degrees.

    3 Jobs Available
    Editor

    Individuals in the editor career path is an unsung hero of the news industry who polishes the language of the news stories provided by stringers, reporters, copywriters and content writers and also news agencies. Individuals who opt for a career as an editor make it more persuasive, concise and clear for readers. In this article, we will discuss the details of the editor's career path such as how to become an editor in India, editor salary in India and editor skills and qualities.

    3 Jobs Available
    Fashion Journalist

    Fashion journalism involves performing research and writing about the most recent fashion trends. Journalists obtain this knowledge by collaborating with stylists, conducting interviews with fashion designers, and attending fashion shows, photoshoots, and conferences. A fashion Journalist  job is to write copy for trade and advertisement journals, fashion magazines, newspapers, and online fashion forums about style and fashion.

    2 Jobs Available
    Multimedia Specialist

    A multimedia specialist is a media professional who creates, audio, videos, graphic image files, computer animations for multimedia applications. He or she is responsible for planning, producing, and maintaining websites and applications. 

    2 Jobs Available
    Corporate Executive

    Are you searching for a Corporate Executive job description? A Corporate Executive role comes with administrative duties. He or she provides support to the leadership of the organisation. A Corporate Executive fulfils the business purpose and ensures its financial stability. In this article, we are going to discuss how to become corporate executive.

    2 Jobs Available
    Product Manager

    A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

    3 Jobs Available
    Quality Controller

    A quality controller plays a crucial role in an organisation. He or she is responsible for performing quality checks on manufactured products. He or she identifies the defects in a product and rejects the product. 

    A quality controller records detailed information about products with defects and sends it to the supervisor or plant manager to take necessary actions to improve the production process.

    3 Jobs Available
    Production Manager

    Production Manager Job Description: A Production Manager is responsible for ensuring smooth running of manufacturing processes in an efficient manner. He or she plans and organises production schedules. The role of Production Manager involves estimation, negotiation on budget and timescales with the clients and managers. 

    Resource Links for Online MBA 

    3 Jobs Available
    QA Manager

    Quality Assurance Manager Job Description: A QA Manager is an administrative professional responsible for overseeing the activity of the QA department and staff. It involves developing, implementing and maintaining a system that is qualified and reliable for testing to meet specifications of products of organisations as well as development processes. 

    2 Jobs Available
    QA Lead

    A QA Lead is in charge of the QA Team. The role of QA Lead comes with the responsibility of assessing services and products in order to determine that he or she meets the quality standards. He or she develops, implements and manages test plans. 

    2 Jobs Available
    Reliability Engineer

    Are you searching for a Reliability Engineer job description? A Reliability Engineer is responsible for ensuring long lasting and high quality products. He or she ensures that materials, manufacturing equipment, components and processes are error free. A Reliability Engineer role comes with the responsibility of minimising risks and effectiveness of processes and equipment. 

    2 Jobs Available
    Safety Manager

    A Safety Manager is a professional responsible for employee’s safety at work. He or she plans, implements and oversees the company’s employee safety. A Safety Manager ensures compliance and adherence to Occupational Health and Safety (OHS) guidelines.

    2 Jobs Available
    Corporate Executive

    Are you searching for a Corporate Executive job description? A Corporate Executive role comes with administrative duties. He or she provides support to the leadership of the organisation. A Corporate Executive fulfils the business purpose and ensures its financial stability. In this article, we are going to discuss how to become corporate executive.

    2 Jobs Available
    ITSM Manager

    ITSM Manager is a professional responsible for heading the ITSM (Information Technology Service Management) or (Information Technology Infrastructure Library) processes. He or she ensures that operation management provides appropriate resource levels for problem resolutions. The ITSM Manager oversees the level of prioritisation for the problems, critical incidents, planned as well as proactive tasks. 

    3 Jobs Available
    Information Security Manager

    Individuals in the information security manager career path involves in overseeing and controlling all aspects of computer security. The IT security manager job description includes planning and carrying out security measures to protect the business data and information from corruption, theft, unauthorised access, and deliberate attack 

    3 Jobs Available
    Computer Programmer

    Careers in computer programming primarily refer to the systematic act of writing code and moreover include wider computer science areas. The word 'programmer' or 'coder' has entered into practice with the growing number of newly self-taught tech enthusiasts. Computer programming careers involve the use of designs created by software developers and engineers and transforming them into commands that can be implemented by computers. These commands result in regular usage of social media sites, word-processing applications and browsers.

    3 Jobs Available
    Product Manager

    A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

    3 Jobs Available
    IT Consultant

    An IT Consultant is a professional who is also known as a technology consultant. He or she is required to provide consultation to industrial and commercial clients to resolve business and IT problems and acquire optimum growth. An IT consultant can find work by signing up with an IT consultancy firm, or he or she can work on their own as independent contractors and select the projects he or she wants to work on.

    2 Jobs Available
    Data Architect

    A Data Architect role involves formulating the organisational data strategy. It involves data quality, flow of data within the organisation and security of data. The vision of Data Architect provides support to convert business requirements into technical requirements. 

    2 Jobs Available
    Security Engineer

    The Security Engineer is responsible for overseeing and controlling the various aspects of a company's computer security. Individuals in the security engineer jobs include developing and implementing policies and procedures to protect the data and information of the organisation. In this article, we will discuss the security engineer job description, security engineer skills, security engineer course, and security engineer career path.

    2 Jobs Available
    UX Architect

    A UX Architect is someone who influences the design processes and its outcomes. He or she possesses a solid understanding of user research, information architecture, interaction design and content strategy. 

     

    2 Jobs Available
    Back to top